Supplementary Figures

Supplementary Figure 1. Convex hull of Bi-Se system, where the black line represents the convex hull, red points are the structures, blue triangles are the experimentally achievable phases, black triangles are the corresponding structures in the MP database.

Supplementary Figure 2. Distribution and structures of generated data. (a) Distribution of formation energy of DCGAN generated data, where the size of bin is 5 meV; (b) crystal structure of generated Bi₂Se₄; (c) crystal structure of generated Bi₁Se₃; (d) Distribution of formation energy of DCGAN + constraint generated data, where the size of bin is 5 meV; (e) crystal structure of generated Bi₃Se₁; (f) crystal structure of generated Bi₂Se₂; (g) Distribution of formation energy of CCDCGAN generated data, where the size of bin is 5 meV; (h) crystal structure of generated Bi₄Se₁; (i) crystal structure of generated Bi₄Se₂.

Supplementary Figure 3. Comparison of formation energy. (a) DFT calculated formation energy vs predicted formation energy for test set of original database; (b) Predicted formation energy of generated structures by DCGAN before structure relaxation vs their corresponding formation energy after relaxation.

Supplementary Tables

Model	Layer type	Stride	Activation	Padding	Input	Output
type					size	size
Encoder	3D	2,2,2	LeakyRELU(0.2)	SAME	64,64,64	32,32,32
	Convolution					
	3D	2,2,2	LeakyRELU(0.2)	SAME	32,32,32	16,16,16
	Convolution					
	3D	2,2,2	LeakyRELU(0.2)	SAME	16,16,16	8,8,8
	Convolution					
	3D	2,2,2	LeakyRELU(0.2)	SAME	8,8,8	4,4,4
	Convolution					
	3D	1,1,1	tanh	VALID	4,4,4	200
	Convolution					
Decoder	3D		LeakyRELU(0.2)	VALID	200	4,4,4
	Convolution					
	3D		LeakyRELU(0.2)	SAME	4,4,4	8,8,8
	Convolution					
	3D		LeakyRELU(0.2)	SAME	8,8,8	16,16,16
	Convolution					
	3D		LeakyRELU(0.2)	SAME	16,16,16	32,32,32
	Convolution					
	3D		sigmoid	SAME	32,32,32	64,64,64
	Convolution					

Supplementary Table 1. Design of sites autoencoder.

Supplementary Table 2. Design of lattice autoencoder.

Model	Layer type	Stride	Activation	Padding	Input	Output
type					size	size
Encoder	3D	2,2,2	LeakyRELU(0.2)	SAME	32,32,32	16,16,16
	Convolution					
	3D	2,2,2	LeakyRELU(0.2)	SAME	16,16,16	8,8,8
	Convolution					
	3D	2,2,2	LeakyRELU(0.2)	SAME	8,8,8	4,4,4
	Convolution					
	3D	1,1,1	tanh	VALID	4,4,4	200
	Convolution					
Decoder	3D		LeakyRELU(0.2)	VALID	200	4,4,4
	Convolution					
	3D		LeakyRELU(0.2)	SAME	4,4,4	8,8,8
	Convolution					
	3D		LeakyRELU(0.2)	SAME	8,8,8	16,16,16
	Convolution					
	3D		sigmoid	SAME	16,16,16	32,32,32
	Convolution					

Supplementary Table 3. Design of generator.

Layer type	Stride	Activation	Padding	Input size	Output
					size
Fully connected		RELU		200	7,7,128
2D Convolution		RELU	SAME	7,7,128	14,14,128
BatchNormallization(0.8)				14,14,128	14,14,128
2D Convolution		RELU	SAME	14,14,128	28,28,128
2D Convolution		RELU	SAME	28,28,128	28,28,64
BatchNormallization(0.8)				28,28,64	28,28,64
2D Convolution		tanh	SAME	28,28,64	28,28,1

Layer type	Strid	Activation	Padding	Input	Output
	e			size	size
2D Convolution	2,2	LeakyRELU(0.	SAME	28,28,1	14,14,3
		2)			2
Dropout(0.25)				14,14,3	14,14,3
				2	2
2D Convolution	2,2	LeakyRELU(0.	PADDIN	14,14,3	8,8,64
		2)	G	2	
BatchNormallization(0.				8,8,64	8,8,64
8)					
Dropout(0.25)				8,8,64	8,8,64
2D Convolution	2,2	LeakyRELU(0.	SAME	8,8,64	4,4,128
		2)			
BatchNormallization(0.				4,4,128	4,4,128
8)					
Dropout(0.25)				4,4,128	4,4,128
2D Convolution	1,1	LeakyRELU(0.	SAME	4,4,128	4,4,256
		2)			
BatchNormallization(0.				4,4,256	4,4,256
8)					
Dropout(0.25)				4,4,256	4,4,256
Flatten				4,4,256	4096
Fully connected		sgimoid		4096	1

Supplementary Table 4. Design of discriminator.

Su	pp	lementarv	Table	5.	Design	ofco	onstraint	model.
~ ••	P P		10010	•••				

Layer type	Strid	Activation	Padding	Input	Output
	e			size	size
2D Convolution	2,2	LeakyRELU(0.	SAME	28,28,1	14,14,3
		2)			2
Dropout(0.25)				14,14,3	14,14,3
				2	2
2D Convolution	2,2	LeakyRELU(0.	PADDIN	14,14,3	8,8,64
		2)	G	2	
BatchNormallization(0.				8,8,64	8,8,64
8)					
Dropout(0.25)				8,8,64	8,8,64
2D Convolution	2,2	LeakyRELU(0.	SAME	8,8,64	4,4,128
		2)			
BatchNormallization(0.				4,4,128	4,4,128
8)					
Dropout(0.25)				4,4,128	4,4,128
2D Convolution	1,1	LeakyRELU(0.	SAME	4,4,128	4,4,256
		2)			
BatchNormallization(0.				4,4,256	4,4,256
8)					
Dropout(0.25)				4,4,256	4,4,256
Flatten				4,4,256	4096
Fully connected		LeakyRELU(0.		4096	1024
		2)			
Fully connected		LeakyRELU(0.		1024	256
		2)			
Fully connected		LeakyRELU(0.		256	256
		2)			
Fully connected		LeakyRELU(0.		256	256
		2)			
Fully connected		LeakyRELU(0.		256	64
		2)			
Fully connected		LeakyRELU(0.		64	1
		2)			

ID	Formula	Formation energy (eV/atom)	Convex hull (eV/atom)	Structure	Space group #
DCGAN Epoch_11731	Bi ₄ Se ₂	-0.1391	0.0798	000	141
DCGAN Epoch_2368	Bi ₂ Se ₄	-0.2481	0.0803		12
DCGAN Epoch_1651	Bi ₂ Se ₄	-0.2447	0.0837		2
DCGAN Epoch_1343	Bi ₅ Se ₁	-0.021	0.0893		8
DCGAN Epoch_876	Bi ₆ Se ₂	-0.066	0.0981		12
DCGAN Epoch_7598	Bi ₄ Se ₂	-0.1201	0.0988		8
CCDCGAN Epoch_315	Bi ₂ Se ₄	-0.2871	0.0413		2
CCDCGAN Epoch_8688	Bi ₄ Se ₂	-0.1394	0.0795		141
CCDCGAN Epoch_12310	Bi ₆ Se ₃	-0.1314	0.0876		1
CCDCGAN Epoch_4803	Bi ₄ Se ₂	-0.1258	0.0931		10
CCDCGAN Epoch_9982	Bi ₆ Se ₃	-0.1214	0.0975		1

Table Supplementary 6. Generated distinct structures.

compositions included in the training.								
Phase	Composition	Formation	Distance to	Formation	Formation			
	% of Bi	energy	the convex	energy	energy			
		(EXP)	hull (EXP)	(training)	(CCDCGAN)			
		(eV/atom)	(eV/atom)	(eV/atom)	(eV/atom)			
BiSe ₃	0.25	-0.15	0.10	-0.15	-0.15			
BiSe ₂	0.333	-0.30	0.03	-0.27	-0.30			
Bi ₂ Se ₃	0.4	-0.39	0	-0.39	-0.39			
Bi ₃ Se ₄	0.429	-0.33	0.06	-0.31	-0.33			
Bi ₄ Se ₅	0.444	-0.28	0.09	-0.28	-0.28			
Bi ₈ Se ₉	0.471	-0.35	0.01	-0.22	-0.22			
BiSe	0.5	-0.32	0.01	-0.30	-0.30			
Bi ₈ Se ₇	0.533	-0.30	0.01	None	-0.02			
Bi ₆ Se ₅	0.545	-0.21	0.13	-0.16	-0.21			
Bi ₄ Se ₃	0.571	-0.28	0.01	-0.17	-0.26			
Bi ₃ Se ₂	0.6	-0.19	0.07	-0.19	-0.19			
Bi ₅ Se ₃	0.625	-0.16	0.08	-0.16	-0.16			
Bi ₂ Se	0.667	-0.16	0.08	-0.16	-0.16			
Bi ₇ Se ₃	0.7	-0.07	0.13	-0.07	-0.07			
Bi ₃ Se	0.75	-0.07	0.10	-0.07	-0.07			

Table Supplementary 7. Compilation of the experimentally achievable (EXP) phases and the corresponding generated phases (CCDCGAN) of the binary Bi-Se system. The fifth column shows the formation energy of the structures with corresponding compositions included in the training. ¹

Supplementary Discussion

Batch training is conducted for both sites autoencoder and lattice autoencoder, the batch size is 822 and 311 respectively, and the epoch used in training are 100 and 200 respectively. Exact model designs are listed in Supplementary Table 1 and 2. The generated vectors are resized into a 28×28 2d graphs where the rest are padding zeros.

Batch training is conducted for DCGAN model, batch size is 128 and total epoch is 500000. Detailed model design is listed in Supplementary Table 3 and 4. The loss function used in the GAN model is "binary_crossentropy", generator loss is to minimize the entropy between 1 and generated structures, while the discriminator loss is to minimize the entropy between 1 and real structures.

Batch training is conducted for constraint model, batch size is 128 and total epoch is 2000. Detailed model design is listed in Supplementary Table 5.

The performance of constraint model is in Supplementary Figure 3 (a). In the DCGAN + constraint model, the selection criterion is 0.3 eV/atom. The selection is calculated for two reasons: first, the MAE of the model is not exactly 0, so cutting at 0 eV/atom is highly likely to drop some reasonable structures; second, DFT is highly likely to reduce the formation energy of generated structures through relaxation as Supplementary Figure 3 (b) demonstrates, so we select this number to balance these two factors. And the effects of constraint in the latent space are demonstrated in movie file Supplementary Movie 1.

All parameters and designs are the same as DCGAN, except the loss of generator, it is the combination of "binary_crossentropy" and the average of generated structures predicted by the constraint.

Supplementary Reference

1. ASM handbook. (ASM International, 1990).