
-1- 

Supplementary Information 

Rui-Chun Xiao1, Yang Gao2,*, Hua Jiang3, Wei Gan1, Changjin Zhang1,4, Hui Li1,* 

1Institute of Physical Science and Information Technology and Information Materials and 

Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China 

2Department of Physics, University of Science and Technology of China, Hefei 230026, China 

3School of Physical Science and Technology, Soochow University, Suzhou 215006, China 

4High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China 

Email: ygao87@ustc.edu.cn (Y. G.), huili@ahu.edu.cn (H. L.) 

Supplementary Note 1: Symmetry analysis of bilayer materials with 

interlayer sliding using abstract bilayer crystal model 

As stated in the main text, the non-ferroelectric monolayer materials always belong 

to the following two cases: 

1. Monolayer has inversion symmetry but no horizontal mirror symmetry, including 

transition-metal dichalcogenides and dihalides in 1T phase [short for 1T-MX2, such 

as CdI2 and PtS2, Supplementary Figure 1(a)], transition-metal dichalcogenides 

in 1T’ phase [short for 1T’-MX2, such as MoTe2, WTe2, and ZrI2, Supplementary 

Figure 1(b)], and metal trihalide [short for MX3, such as BiI3 and CrI3, 

Supplementary Figure 1(c)]; 

2. Monolayer has horizontal mirror symmetry but no inversion symmetry, including 

BN [Supplementary Figure 2(a)], transition-metal dichalcogenides in 1H phase 

[short for 1H-MX2, such as MoS2, MoSe2, WS2 and WSe2, Supplementary Figure 

2(b)], and post-transition metal chalcogenides [short for MX, such InSe, GaSe and 

GaS, Supplementary Figure 2(c)]. 

 

Supplementary Figure 1. Crystal structure of monolayer of (a) 1T-MX2, (b)1T’-MX2, and (c) 

MX3 
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Supplementary Figure 2. Crystal structure of monolayer of (a) BN, (b) 1H-MX2, and (c) MX 

In each case, the stacking way of the bilayer can be further divided into two 

subcases (A/A or A/B, where A or B is the crystal structure, and 
2zB C A ). 

The bilayer materials with interlayer sliding can be described with an abstract 

bilayer crystal model (as shown in Supplementary Figure 3) by:  

 // / /[( , ), ( , )],A B r r   (1) 

where the parentheses / /( , )A r  and //( , )B r  represent the states of the first (top) and 

second (button) layers respectively, where the A or B represents the crystal structure of 

the monolayer and //r  represents the in-plane sliding vector. 

 

Supplementary Figure 3. Schematic of abstract bilayer crystal model. The yellow rectangles 

denote the unit cells, and line lo is the original line.  

In the interlayer-sliding motion, atoms in each monolayer do not move relative to 

themselves, so the symmetry of each layer does not change.  Theinterlayer-sliding 

vector in Eq. (1) is a random number that does not equal the integral or half-integral 

lattice vector, so the in-plane C2 symmetry is broken in the bilayer system. In the 

following, we analyze the symmetries of the bilayer materials with interlayer sliding, 

specifically the inversion I and mirror  xyM  symmetry. In the following, we analyze 

the symmetry of the four cases in Table I the main text with the abstract bilayer crystal 

model. 
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Case 1: Monolayer with inversion symmetry without Mxy symmetry 

Case 1a: A/A stacking  

 

Supplementary Figure 4. 2D bilayer system stacking by Case 1a. The quadrilateral means abstract 

unit cell of the monolayer, and star means the inversion symmetry.  

In this case, the bilayer materials are composed of two identical monolayers which 

both have the inversion symmetry, as shown in Supplementary Figure 4. According 

to the definition of Eq. (1), the bilayer crystal structure can be written as  

 / / / /: [( , ), ( , )].S A A  r r   (2) 

Similarly, the bilayer with the opposite interlayer-sliding direction can be described as  

 
/ / / /: [( , ), ( , )].S A A  r r   (3) 

Now, we perform inversion operation I  (in the middle of the bilayer and at the 

original axis) to the bilayer with S+ state,  

    

/ / / /

/ / / /

/ / / /

/ / / /

[( , ), ( , )]

[ ( , ), ( , )]
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I A I A
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  

  

   
 

  



r r
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r r
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 

 

      (4) 

The formula at the second line runs because the inversion I  operator between the two 

layers switches the first layer and the second layer. The formula at the fourth line holds 

because each monolayer is invariant under the inversion operator: I A A , and the 

sliding vector //r  reverse under the inversion operator. Therefore, the S+ state is 

invariant under the inversion symmetry.  

Now, we perform mirror operation  xyM  to S+ state:  
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  (5) 
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Because the monolayers have no  xyM  symmetry, the monolayer crystal structure 

changes from A to B, therefore the bilayer also has no  xyM  symmetry.  

In all, under the inversion operator I , S+ changes into itself whatever //r , so this 

kind of bilayer has inversion symmetry and cannot process ferroelectricity.  

Case 1b: A/B stacking  

 

Supplementary Figure 5. 2D bilayer material stacking by Case 1b. 

In this case, each monolayer is related to each other by  2 zC  operator, as shown in 

Supplementary Figure 5 (A/B stacking). The two opposite sliding states can be 

described as  

 / / / /

/ / / /

: [( , ), ( , )],

: [( , ), ( , )],

S A B

S A B





 


 

r r

r r
  (6) 

where  

 
,

,

I A A

IB B

 







  (7)  

and each monolayer crystal structure is switched by  2 zC  symmetry: 

 




2

2

,

.

z

z

C A B

C B A

 



  (8) 

For a system with inversion symmetry I ,  xyM  and  2zC  operators are equivalent, 

because  
2 = xyzIC M . Therefore, the monolayer crystal structure is also switched under 

the  xyM  operator: 

 




,

.

xy

xy

M A B

M B A

 




  (9) 

Now, we perform inversion operation I  to the S+ state,  
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/ / / /

/ / / /

/ / / /

[( , ), ( , )]

( , ), ( , )

[( , ), ( , )].
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    (10) 

ÎS S  , so bilayer S+ does not have the inversion symmetry whatever //r . Besides, 

ÎS S  , therefore the two opposite interlayer-sliding states are not connected by 

inversion operation. 

 Performing  xyM  operation to the S+ state, 

 

 

 

/ / / /

/ / / /

/ / / /
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
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  (11) 

The formula at the second line holds because the  xyM  operator between the two layers 

will switch the first layer and the second layer. The formula after the third line runs 

because the monolayer crystal types switch under  xyM  [Eq. (9)], and //r  is invariant 

under  xyM . Therefore, under the  xyM  operation, S+ cannot transform into itself but 

convert to the S- state. Besides, the bilayer has the  xyM  symmetry if / / 0r . 

To sum up, the bilayer crystal structure in Case 1b does not have both inversion 

and  xyM  symmetry, but the two opposite interlayer-sliding states are connected by 


xyM  symmetry.  

Case 2 Monolayer without inversion symmetry but has the Mxy symmetry  

Case 2a: A/A stacking  

 

Supplementary Figure 6. 2D bilayer material stacking by Case 2a.  
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In this case, the bilayer material is composed of two identical monolayers without 

inversion symmetry but with the  xyM  symmetry, as shown in Supplementary Figure 

6. The two opposite interlayer-sliding states of this case can be described as  

 / / / /

/ / / /

: [( , ), ( , )],

: [( , ), ( , )].

S A A

S A A





 


 

r r

r r
  (12) 

The monolayer crystal structure is invariant under the  xyM  operation:  xyM A A .  

Performing I  operation to the S+ state, we will get  

 

// //
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/ / //

[( , ),( , )]
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r r

r r
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 

    (13) 

where the monolayer has no inversion symmetry, and A transforms into B under I . 

We find IS S  , and IS S  . Therefore, S+ does not have the inversion symmetry, 

and the two opposite interlayer-sliding states are not related to each other by the 

inversion operation either.  

 We perform the  xyM  operator to S+ state,  

 

 

 
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/ / / /
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( , ), ( , )

[( , ), ( , )]
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  
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

r r
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  (14) 

Therefore, S+ has no  xyM  symmetry if / / 0r , but S+ can convert to S- by  xyM . 

In summary, the bilayer 2D materials in Case 2a do not have both inversion I  

and  xyM  symmetry, but the two opposite interlayer-sliding states are connected by 


xyM  operation.  

Case 2b A/B stacking  

 

Supplementary Figure 7. 2D bilayer material stacking by Case 2b  
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In this case, the bilayer is constituted by two 180°-rotated monolayers (A/B 

stacking), as shown in Supplementary Figure 7. The two opposite interlayer-sliding 

states of this case can be described as 

 / / / /

/ / / /

: [( , ), ( , )],

: [( , ), ( , )],

S A B

S A B





 


 

r r
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  (15) 

where each layer has the  xyM  symmetry:  

 

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.
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  (16) 

and each monolayer is switched by  2zC  symmetry  
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
  (17) 

In a system with  xyM  symmetry,  2 zC  and I  are equivalent, because  
2xy zM C I. 

Therefore, the monolayer crystal types are also switched under I : 

 
,
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
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Performing I  operation to the S+ state, 
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S+ turns itself into itself under inversion operation whatever //r , so this structure has 

inversion symmetry, even though the monolayer has no inversion symmetry. Therefore, 

the bilayer in Case 2b cannot have ferroelectricity and BPVE.  

Besides, we perform inversion operation  xyM  to S+ state:  
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  (20) 

Even though monolayer lattices A and B have the  xyM  symmetry, this kind of bilayer 

has no  xyM  symmetry.  

The above four cases are summarized in Table I of the main text.  

Last but not least, in real materials such as bilayer MoS2, BN, InSe, GaSe (Case 

2a), except the sliding vector //r , there is also a half lattice vector shift 1/2 a  for the 
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top layer in the positive and negative ferroelectric state. 1/2 a  is vertical to the 

interlayer-sliding direction [see Fig. 2 (a) in the main text]. The two interlayer-sliding 

states in Eq. (12) of Case 2a are changed into  

 / / / /

/ / / /

: [( , +1/2 ), ( , +1/2 )],

: [( , +1/2 ), ( , +1/2 )],

S A A

S A A

  

  

 


 

r a r a

r a r a
  (21) 

The crystals have the translation symmetry with integer lattice vector, so we can shift 

the second/first layer with an integral constant vector a  for S+/S-, then  

 / / / /

/ / / /

: [( , +1/2 ), ( , 1/2 )],

: [( , 1/2 ), ( , +1/2 )].

S A A

S A A

  

  

   


   

r a r a

r a r a
  (22) 

Now, Eq. (22) here is equal to Eq. (12) in Case 2a.  

 
Supplementary Figure 8. Interlayer sliding of bilayer WTe2 with (a) +P and (b) –P states, where 

//2r  means the interlayer sliding vector compared to Supplementary Figure 5. 

For bilayer WTe2 (Case 1b), except for the half lattice vector shift 1/2 a  [See Fig. 

3 (a) in the main text], there also is a half lattice vector interlayer shift //1/2a  that is 

parallel to the interlayer-sliding direction [Supplementary Figure 8]. The two 

interlayer-sliding states for bilayer WTe2 are  

 / / / / / / / /

/ / / / / / / /

: [( , +1/2 1/2 ), ( , +1/2 1/2 )],

: [( , +1/2 1/2 ), ( , +1/2 1/2 )],

S A B

S A B

  

  

   


   

r a a r a a

r a a r a a
  (23) 

Similarly, if we shift the second/first layer with // a a  for S+/S-, the two new 

interlayer-sliding states are  

 / / / / / /

/ / / / / /

: [( , +1/2 ), ( , 1/2 1/2 )],

: [( , 1/2 1/2 ), ( , +1/2 )].

S A B

S A B

  

  

    


    

r a r a a

r a a r a
  (24) 

Here, Eq. (24) is equal to Eq. (6) in Case 1b. Therefore, the above rule of Case 1b is 

also suitable to the bilayer WTe2. 

Supplementary Note 2: Effect model for 1D interlayer sliding  

The 1D single chain in Fig. 1 (a) of the main text is very similar to the SSH (Su-

Schrieffer-Heeger) Hamiltonian model  
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  † † † †
1

ˆ ˆˆ ˆ ˆ ˆ ˆ+ +  . . ˆ ,ˆ
a i i b i i ii i i

i i i

H a a Ja b J ab b b h c  
       (25) 

i.e.  

 0 ,a ab

ba b

T
H

T





 
 
  

  (26) 

where * exp( ) exp( )ab ba x xT T J ik J ik    , J and J’ mean the nearest atom hopping, 

and a  and b  mean the onsite energies for a (anion) and b (cations) atoms.  

For the bi-chain with +P which considering the nearest inter-chain hopping in Fig. 

1(a) of the main text, the corresponding effect model is  

 

0 0

0
( ) ,

0

0 0

a ab

ba b

a ab

ba b

T

T t
H P

t T

T













 
 
 
  
 
 
  

  (27) 

where the basis is  , , ,a b a b       , and t  is the nearest hopping parameter between 

two chains as shown in Supplementary Figure 9(a). The effective model in bi-chain 

of –P in Fig. 1 (c) of the main text is  

 

0

0 0
( ) .

0 0

0

a ab

ba b

a ab

ba b

T t

T
H P

T

t T













 
 
 
  
 
 
  

  (28) 

The ( )H P  and ( )H P  are correlated by the mirror symmetry 

  0

0

0 0 1 0

0 0 0 0 1

0 1 0 0 0

0 1 0 0

z

I
M

I

 
 

   
    
      

  

  (29) 

i.e. 

  ( ) ( ).z zM H P M H P     (30) 

Supplementary Figure 9(b) shows the band structure of bi-chain. The in-plane 

and out-of-plane BPVE coefficients are shown in Supplementary Figure 9(c) and (d). 

Consistent with our symmetry analysis, the in-plane BPVE coefficients are invariant 

while the out-of-plane BPVE coefficients change with the ferroelectric order.  
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Supplementary Figure 9. (a) 1D bi-chain SSH model. (b) Band structure. (c) In-plane and (d) out-

of-plane BPVE coefficients. 0.5a b eV    , 1J eV , 0.7J eV  , 0.2t eV  .  

Supplementary Note 3: Symmetry analysis of the BPVE coefficients  

Except for the symmetry requirement shown the Eq. (3) of the main text, the BPVE 

tensor 
3 3 3

a
bc

 
    elements have the subscripts-switch symmetry, i.e. 

i i
jk kj  . 

Therefore, the 3×3×3 
a
bc  tensor can be contracted as a 3×6 matrix 

3 6

i
jk


   , and the 

elements in each row are in the sequence of 
i
xx , i

yy , i
zz , i

yz , i
xz  and i

xy .  

Acoordingly, BPVE tensor of bilayer ferroelectric MoS2 with C3v symmetry is  

 
3 6

0 0

0

0 0

0 .

0 0

0

0

x
xz

i x
jk xz

z z

y
yy

y y
yy

z
xx xx

yy

zz



 












 

 
 

     











  (31) 

The tensor elements in red mean the in-plane BPVE coefficients, and 
x y y
xy xx yy    , 

and 0x x y
xx yy xy     . The elements in blue in Eq. (31) represent the out-of-plane 

BPVE coefficients under the normal incidence of light, and we find that z z
xx yy   , and 

0z z
xy yx    . 

For bilayer ferroelectric WTe2 with C1v symmetry, the BPVE tensor is  
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3 6

0

0

.

0 0

0

0

0

0

x
xy

y y
xx y

x
xz

i y y
jk zz yz

z z
zz

z z
xx y yz

y

y



  





  






 
 

     
 
  

  (32) 

Due to lower symmetry, the BPVE tensor of bilayer WTe2 is more complicated than 

those of bilayer MoS2 [Eq. (31)]. We find there are three independent in-plane BPVE 

coefficients 
x
xy , 

y
xx , 

y
yy , and 0x x y

xx yy xy      due to  yzM  symmetry, and 

two independent out-of-plane BPVE coefficients 
z

xx   and 
z

yy   ( = 0z z
xy yx    ) for 

ferroelectric bilayer WTe2, which is consistent with our calculation results.  

Supplementary Note 4: In-plane and out-of-plane BPVE with the 

polarization of light  

Now, we study the in-plane and out-of-plane BPVE response with the polarization 

of light. For a linearly polarized light, E(ω) is a vector. For the 2D material under the 

normal incidence of light, E(ω) only has the Ex and Ey components, and  

 
cos ,

sin ,
x

y

E E

E E









  (33) 

where E is the magnitude of the light, and θ is the azimuthal angle relative to the x axis.  

According to Eq. (31), the in-plane BPVE current of bilayer MoS2 is 

 

2

2

sin 2 ,

cos 2 .

y
x yy

y
y yy

j E

j E

 

 

  


 
  (34) 

If the light is the natural light that contains all-directions linearly polarized lights, θ 

varies from 0 to π, so the in-plane BPVE current is the sum of all the polarized light: 

 
π π

0 0
0, 0.x yj j     (35) 

Therefore, the light should be linearly polarized to get the in-plane BPVE. The out-of-

plane BPVE (light-induced polarization) of bilayer MoS2 is  

  2 2 2 2 2cos sin = ,z z z
z xx yy xxE E Ep        (36) 

because 
z z

xx yy   , and 0z z
xy yx    . According to Eq. (36), the out-of-plane BPVE 

polarization is isotropic and independent of the direction of the polarization of light, as 

shown in Fig. 2 (f) in the main text.  

Similarly, for bilayer WTe2, we find in-plane BPVE current obeys  
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 

2

2 2 2

sin 2 ,

cos sin .

x
x xy

y y
y xx yy

j E

j E

 

   

 


 
  (37) 

The in-plane BPVE only shows the  yzM  symmetry, as shown in the main text. 

Because 0z z
xy yx    , 0z z

xx yy    , the out-of-plane BPVE polarization is  

 
2 2 2 2cos sin .z z

z xx yyEp E      (38) 

According to Eq. (38), the light-induced BPVE polarization is anisotropic and 

dependent on the direction of the polarization of light, as shown in Fig. 3 (f) in the main 

text. 

Supplementary Note 5: In-plane and out-of-plane BVPE of MoS2 with 

interlayer sliding displacement 

To show the dependence of in-plane and out-of-plane BPVE with interlayer sliding 

displacement, we manually change the interlayer sliding displacement defining as a 

parameter ζ. ζ=0 corresponds to no interlayer sliding, while ζ=+1/-1 corresponds to the 

+P/–P phase.  

In-plane and out-of-plane BVPE of bilayer MoS2 with ζ are shown in 

Supplementary Figure 10. The in-plane BVPE coefficient is even with interlayer 

sliding displacement parameter ζ, while the out-of-plane BVPE coefficient is odd with 

ζ. The out-of-plane BVPE vanishes when ζ=0, while the in-plane BVPE still exists. The 

in-plane BPVE is robust with the interlayer sliding displacement ζ, while the out-of-

plane BPVE is sensitive to the interlayer sliding displacement ζ. 

 

Supplementary Figure 10. (a) In-plane BVPE coefficient y
yy  and (b) out-of-plane BVPE 

coefficient 
z

xx   of bilayer MoS2 with interlayer-sliding displacement ζ. 
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Supplementary Note 6: Band structures and BPVE coefficients with 

the choice of vdW correction  

We calculated the band structures and BPVE coefficients with DFT-D2 (presented 

in the main text) and DFT-D3 vdW correction for bilayer MoS2 and WTe2. The crystal 

structures are relaxed accordingly. As shown in Supplementary Figure 11 and 

Supplementary Figure 12, the band structures and BPVE coefficients depend on the 

vdW corrections. However, the magnitude of the out-of-plane and in-plane BPVE 

coefficients of two materials are basically the same, which is what we care more about. 

Besides, we think the above calculation deviations mainly come from differences 

in crystal structure caused by structural optimization via vdW correction. We calculated 

the band structures and BPVE coefficients of bilayer MoS2 with the same crystal 

structure but with different vdW corrections. We find that the results are almost the 

same, as shown in Supplementary Figure 13. 

 
Supplementary Figure 11. (a) Band structure, (b) in-plane BPVE, and (c) out-of-plane BPVE of 

bilayer MoS2 (with +P phase) with the choice of vdW corrections. The crystal structure of bilayer 

MoS2 is relaxed using vdW correction accordingly. 

 

 

Supplementary Figure 12. (a) Band structure, (b) in-plane BPVE, and (c) out-of-plane BPVE of 

bilayer WTe2 (with +P phase) with the choice of vdW corrections. The crystal structure of bilayer 

WTe2 is relaxed using the vdW correction accordingly. 
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Supplementary Figure 13. (a) Band structure, (b) in-plane BPVE, and (c) out-of-plane BPVE of 

bilayer MoS2 (with +P phase) with different vdW corrections but with the same crystal structure. 

Supplementary Note 7: Symmetry of trilayer vdW materials with 

interlayer sliding  

We can use our abstract model to analyze the symmetry of the trilayer vdW 

materials with interlayer sliding. We can divide them into two situations: (1) the top 

and bottom layer slide along the same direction relative to the middle layer, (2) the top 

and bottom layer slide along the opposite directions relative to the middle layer. Using 

a similar method as Supplementary Note 1, we can obtain the symmetry of trilayer 

interlayer-sliding ferroelectric materials which are summarized are in Supplementary 

Table I and Supplementary Table II respectively. The ferroelectricity and BPVE 

obey the following rules:  

(1) For the first situation, we find that only Case 1a and Case 1b have 

ferroelectricity, and the two opposite ferroelectric states are related by the inversion 

symmetry (Supplementary Table I). Therefore, the in-plane and out-of-plane BPVE 

are both reversed with ferroelectric order in these two cases. Trilayer WTe2 [npj 

Comput. Mater. 5, 119, (2019)] belongs to Case 1b here. 

(2) For the second situation, we find that only Case 2a and Case 2b have 

ferroelectricity, and the two opposite ferroelectric states are related by the mirror 

symmetry (Supplementary Table II). Therefore, the out-of-plane BPVE reverses with 

ferroelectric order, while the in-plane BPVE invariant for trilayer materials with these 

stacking ways. 
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Supplementary Table I. Symmetries of trilayer vdW material with top and bottom layer 

sliding along the same direction. 

Stacking way 

Monolayer symmetry 
a. A/A/A b. A/B/A 

1. 


:

:xy

I

M

 





   

Case 1a:  :

:

xyM

IS

I

S 

 










 Case 1b:  :

:

xyM

IS

I

S 

 










 

2. 


:

:xy

I

M

 





   

Case 2a: 
 :

:

xy

I

M

 

 √


 Case 2b: 

 :

:

xy

I

M

 

 √


 

 

 

Supplementary Table II. Symmetries of trilayer vdW material with top and bottom layer sliding 

along the opposite directions. 

Stacking way 

Monolayer symmetry 
a. A/A/A b. A/B/A 

1. 


:

:xy

I

M

 





   

Case 1a: 
 :

:

xy

I

M






√
 Case 1b: 

 :

:

xy

I

M






√
 

2. 


:

:xy

I

M

 





   

Case 2a: 



:

=

:

×xy

xy

M

M S S

I

 

 







 Case 2b: 



:

=

:

×xy

xy

M

M S S

I

 

 







 

 


