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Supplementary Figures 

 

Supplementary Figure 1. LASSO regression: (a) parity plot comparison to experimental values; 
(b) descriptor coefficients following L1 regularization. Most important descriptors have been 
annotated. 



 

Supplementary Figure 2. Ridge regression: (a) parity plot comparison to experimental values; (b) 
descriptor coefficients following L2 regularization. The test temperature is the most important 
descriptor by far. 

 

Supplementary Figure 3. Parity plot comparison for the gradient boosting model. The R2 (CV) is 
approximately equivalent to what was obtained for the random forest model. 



 

Supplementary Figure 4. Predicted vs. experimental yield strength for compression data when the 
test temperature T is replaced by the homologous temperature, T/Tm. R2 (CV) = 88.8%. Note that 
we used a repeated k-fold method where 5-fold cross validation was performed 1000 times to 
compute the mean and standard deviation of each data point; 

 

Supplementary Figure 5. SHAP analysis is performed to identify descriptor importance for model 
with T/Tm descriptor in place of T. Features on the left are ordered according to their importance, 
with the most important feature (temperature) shown on top. The data points correspond to the 
individual alloy data points, where each have been colored according to the magnitude (high or 
low) of the feature in question. Positive SHAP values indicate that the yield strength is increased 
as a result of the feature value, whereas negative SHAP values indicate the yield strength is 
decreased due to the feature value. 



 

 

Supplementary Figure 6. Dependence of the SHAP value of Ω on the value of Ω. 

 

 

Supplementary Figure 7. Percentage error distribution of the model presented in this work relative 
to the measured values. MAE = 20.1%. 

 



 

Supplementary Figure 8. Predictions obtained using the analytical temperature-dependent yield 
strength model proposed by Varvenne and Curtin. (a) parity plot of measured values and predicted 
values from the Varvenne and Curtin model. (b) distribution of error relative to measured values 
for the Varvenne and Curtin model. MAE = 683 MPa. 

 

 

Supplementary Figure 9: Comparison of experimental (dashed lines, square symbols) and ML 
model predictions (solid lines, round symbols) of yield strength for four different RHEAs at various 
temperatures. 

 

 



 

Supplementary Figure 10: (a) Three-dimensional score plot of compression yield strength data 
according to their first, second, and third principal component values; (b) Loadings of the six 
original descriptors on the first three principal components; (c) Histogram of tantalum modulus 
distortion values. The 155 alloys with δGTa equal to zero correspond to non-tantalum-containing 
alloys. 

 



 

Supplementary Figure 11: Optimization trajectories in principal component space for the (a) 25 
°C optimization and the (b) 1,000 °C optimization of the AlMo0.5NbTa0.5TiZr base alloy. 

 

 

Supplementary Figure 12. Experimental values of yield strength and ductility at different 
temperatures from the Couzinie et al. dataset8.  

 



 

Supplementary Figure 13. Comparison of temperature-dependent yield strength of equiatomic 
quinary HEAs reported in the literature to the two equiatomic HEAs (AlMoTaTiZr at 25 °C, and 
AlMoTaTiHf at 1000 °C) predicted by our model. 

 

 

Supplementary Figure 14. Histogram of feature selection probability for a six-feature random 
forest model. 

 



 

 

 

 

 

Supplementary Notes 

Dependence of Yield Strength on Ω from SHAP Analysis 

As was noted in the discussion alongside Figure 2 in regards to the SHAP explainability analysis 

that was performed for the forward model, Ω has a complex, but important effect on the predicted 

yield strength. As shown in Supplementary Figure 6, small values of Ω result in positive SHAP 

values (i.e., an increase in the predicted yield strength), whereas large values of Ω result in a 

negative impact on the yield strength. Notably, this shift in the effect of Ω undergoes a transition 

across a small regime. It is theorized that this could result from the interplay of the entropy and 

enthalpy of mixing. Large values of Ω result when the enthalpy of mixing approaches zero, which 

may be detrimental to improving yield strength. 

 

Examination of Temperature-Dependence of Yield Strength for Training Data 

Supplementary Figure 9 shows the temperature dependent prediction of four different RHEAs 

along with their experimental yield strength. Readily apparent from Supplementary Figure 9 is an 

excellent agreement between predicted and experimental yield strengths over the entire 

temperature range. Two of these RHEAs have garnered some attention recently. The 

AlMo0.5NbTa0.5TiZr HEA is of interest due to its exceptional high-temperature yield strength (745 

MPa at 1,000 °C)1–4. It has been reported in multiple studies, and is among the state-of-the-art 

RHEAs. The HfNbTaTiZr alloy is also multiply attested, and is of interest due to its high ductility 



under tension5–7. However, HfNbTaTiZr has a relatively poor yield strength (929 MPa at 25 °C). 

In the following section, AlMo0.5NbTa0.5TiZr and HfNbTaTiZr were used as the base alloys for 

subsequent improvement of the yield strength through compositional optimization. Finally, 

CrNbTiVZr and MoNbTaTiW were chosen to complete the remaining elements (i.e., Cr, V, and 

W) that are covered in the Couzinie dataset8. 

  

Interpretation Using Principal Component Analysis 

As mentioned above, the yield strength model provided here employs six descriptors: test 

temperature, Ω, atomic size mismatch (δ), modulus distortion of tantalum (δGTa), molybdenum 

atomic fraction, xMo, and a base strength quantity, σ0, min0.5. Given that the input to the model has 

been limited to only these six descriptors, an unsupervised approach such as principal component 

analysis (PCA) can be used to further reduce the dimensionality and allow for clustering of the 

data in the descriptor space to be visualized. 

Analysis of the corresponding loading coefficients of the original six descriptors on the three 

principal components reveals the origin of the clustering observed in Supplementary Figure 10a. 

The loadings are provided in Supplementary Figure 10b. The loadings reveal that the first principal 

component is primarily composed of, and positively correlated to, the tantalum modulus distortion 

(δGTa). As a result, the clustering observed in Supplementary Figure 10 (a) is in fact distinguishing 

between Ta and non-Ta HEAs. The Couzinie data8 is approximately balanced with regards to Ta 

alloys, with 159 alloys (50.6%) containing Ta, and 154 alloys (49.4%) not containing Ta.  The 

data clustering in Supplementary Figure 10a based on Ta content is further evident upon analyzing 

the effect of Ta on modulus distortion. The Ta modulus distortion values for the RHEA dataset is 

provided in Supplementary Figure 10(c). As can be seen, in the 155 alloys which do not contain 



Ta, δGTa is equal to zero. When Ta is present in the alloy, however, δGTa always has a positive 

value. This is due to Ta having a high elemental shear modulus (69 GPa) relative to most of the 

other elements of interest. From a physical point of view, a positive modulus distortion implies 

that the presence of Ta usually leads to an increase in the shear modulus of the alloy. Another 

conclusion which can be drawn from the loading plot is that an increase in test temperature is 

primarily responsible for decreasing PC3 which has negative effects on the yield strength 

(Supplementary Figure 10(a)). 

To analyze the optimization progress, we have performed principal component analysis 

(PCA) to reduce dimensionality such that the descriptor values for a given alloy composition can 

be visualized in the three dimensions. We first performed PCA on the original Couzinie et al. 

dataset8 that was used to train and validate the model (Supplementary Figure 7). Using the same 

PCA transformation, Supplementary Figure 11 shows the values of the principal components for 

both the 25 °C and the 1,000 °C optimal alloy along the optimization path. Considering first the 

25 °C optimal alloy in Supplementary Figure 11a, the optimization proceeds in the direction of 

increasing yield strength, ultimately optimizing primarily through an increase in the value of the 

second and third principal component. Evident from the PCA loading plot in Supplementary 

Figure 10 is that the second principal component (PC2) is primarily composed of positive loading 

of xMo, whereas the third principal component (PC3) mainly of positive loadings of xMo, δ, and 

δGTa. Optimization occurring through an increase in PC2 and PC3 is, therefore, consistent with 

the observation made in the Manuscript for Supplementary Figure 10 that an increase in xMo is 

frequently correlated to an improvement of yield strength. For the optimization trajectory 

performed at 1,000 °C in Supplementary Figure 11b, the initial and final point are noticeably closer 

together in principal component space, indicating that the base alloy and optimized alloy are 



relatively similar materials. Nevertheless, the optimal alloy has a noticeably smaller value of PC3, 

which corresponds in an observed decrease of δ. We also want to emphasize that the protocol 

presented here does not sample the composition space randomly to find the composition with a 

maximized yield strength, but instead maximizes the yield strength through an intelligent 

navigation of the composition space informed by previous iterations.    

Example Calculation of Yield Strength Using Varvenne and Curtin Model 

We have utilized the temperature-dependent yield strength model formulated by Varvenne and 

Curtin9 to augment the experimentally available HEA dataset at temperatures between 25 °C and 

600 °C. The accuracy of ML approaches is always fundamentally limited by the availability of 

adequate data, and HEA mechanical properties at temperatures between 25 °C and 600 °C are 

typically not reported. Using the experimental yield strengths at 25 °C and 600 °C and the 

temperature-dependent yield strength model proposed by Varvenne and Curtin9, the yield strength 

for 200 °C and 400 °C were computed. An example calculation is provided below for the 

AlMo0.5NbTa0.5TiZr HEA, which has a yield strength of 2000 MPa at 25 °C and 1870 MPa at 600 

°C. 

The thermally-activated finite-temperature yield strength is given by Varvenne and Curtin as, 
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, where ��� is the zero-temperature flow stress, � is the Boltzmann constant, � is the temperature, 

∆��� is the dislocation energy barrier, �̇ is the strain rate (a value that is always reported 

experimentally when generating the stress-strain curve), and ��̇ is the reference strain rate (taken 

as 104 s-1). Let �� = 25 °C = 298.15 K and �� = 600 °C = 873.15 K, where ��(��, �̇) and ��(��, �̇) 



are known experimentally. Then, ��� cancels when calculating the ratio of the two known yield 

strengths: 
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Thus, the only unknown is the zero-temperature energy barrier, ∆���. Taking the natural logarithm 

of both sides and solving for ∆��� yields: 
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The yield strength measurements for the AlMo0.5NbTa0.5TiZr HEA were performed at a strain rate 

of 10-3 s-1. Therefore, ∆��� is calculated from the experimental data as: 
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∆��� = 21.74 eV = 2085 kJ mol�� 

The value of ∆��� calculated from the experimental yield strength values can then be used to 

calculate the yield strength at a new temperature, �. Calculating for � = 400 °C: 
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Repetition of Feature Selection Process  

Sequential feature selection (SFS)10,11 was performed 25 times to assess the variability of which 

features are included in the model. The result of the SFS replication is provided in Supplementary 

Figure 14. The test temperature is selected as one of the six features in every model. Yield strength 

has a well-known inverse relationship with the temperature as materials generally weaken with 

increasing temperature. The relationship of yield strength with the other composition-based 

descriptors are generally less understood. From the SFS replication, the most frequently selected 

descriptors, in addition to test temperature, were: dG Mo (molybdenum modulus distortion), Mo 

(element fraction of molybdenum), dr Al (lattice distortion of aluminum), Yang VEC (valence 

electron concentration), Yang HPsigma_min05 (half the average base strength, plus half the 

minimum elemental base strength), Yang omega (defined in Equation 4), Yang delta (defined in 

Equation 1), dG Ta (modulus distortion of tantalum), Al (aluminum element fraction), Anneal (0/1 

hot-encoded variable indicated whether the synthesized alloy was annealed following casting), and 

Yang delXi (the standard deviation of the electronegativity).  
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