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1 Dataset Curation
We select the material data from three databases: MP [2], ICSD [1], OQMD [3]. The selection criteria are
described following:

1. Ternary materials with only three base atom sites (a.k.a. one element is allowed to have only one base atom
site);

2. Only keep materials that do not contain elements in Lanthanoid and Actinoid;
3. Ternary materials whose space group has more than 400 materials totally in three databases;
4. Ternary materials in OQMD whose fractional coordinates does not all belong to the set [0.0, 0.25, 0.5, 0.75]

since materials with fractional coordinates all falling in that set dominate the database [4].
In total, 42072 materials are selected and 20 space groups are found in those materials following above criteria.
The statistics of materials in each space group is shown in Supplementary Table 1.

Supplementary Table 1: 20 space groups and their frequency in dataset MIO.

SG SG Id # samples SG SG Id # samples
P4/mmm 123 1180 Immm 71 4679
Fm3̄m 225 3716 Cmcm 63 1004
I41/amd 141 588 I 4̄2d 122 749
Pm3̄m 221 1462 R3̄ 148 1969
F 4̄3m 216 898 I4/mmm 139 6162

P63/mmc 194 5599 Fd3̄m 227 3292
P 3̄m1 164 1191 Pnma 62 2527

P6/mmm 191 2214 R3̄m 166 1479
I4/mcm 140 433 P63mc 186 692

R3̄c 167 1246 P4/nmm 129 992

Supplementary Table 2: 20 space groups and their frequency in dataset TST.

SG SG Id # samples SG SG Id # samples
P4/mmm 123 317 Immm 71 59
Fm3̄m 225 675 Cmcm 63 507
I41/amd 141 168 I 4̄2d 122 482
P4/nmm 129 719 R3̄ 148 374
F 4̄3m 216 60 I4/mmm 139 768

P63/mmc 194 1713 Fd3̄m 227 239
P 3̄m1 164 674 Pnma 62 1386

P6/mmm 191 281 R3̄m 166 576
I4/mcm 140 81 P63mc 186 151

R3̄c 167 211 Pm3̄m 221 0

We use first, second, and four criteria above to select materials in new released OQMD and the distribution
of materials in 20 space groups is shown in Supplementary Table 2. 9441 materials are chosen and space group
Pm3̄m does not have any new released materials.
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2 Model Details

2.1 Implementation Hyperparameters for training PGCGM
Supplementary Table 3 shows the hyper-parameters in PGCGM. We use λ1 = 1 and λ2 = 1 for atom distance
losses. We use Property distribution to select best atom dist bound ϕs combination and then using best ϕs, we
optimize the best base coordinates and average full coordinates loss coefficients λ1 and λ2 . Supplementary Table 4
and Supplementary Table 5 show the performance with different settings. We use 9 different combinations of ϕs
and the best average Property distribution is achieved when ϕs are (0.3, 7.5, 0.15, 7.5) as shown in 4. With best
ϕs, we add coordinates based losses for the generator and the best λ1 and λ2 are 0.001 and 0.01 averagely as
shown in Supplementary Table 5.

Supplementary Table 3: Hyper-parameters for training.

Hyper-parameters Values

Adam optimizer
learning rate 0.0002

β1 0.5
β2 0.5

batch size 8192
gradient penalty coefficient 10

# of iterations of D per G iteration 5
low bound for inter atom dist ϕlower

inter 0.3
upper bound for inter atom dist ϕupper

inter 7.5
low bound for intra atom dist ϕlower

intra 0.15
upper bound for intra atom dist ϕupper

intra 7.5
inter dist loss coefficient λ1 1.0
intra dist loss coefficient λ2 1.0

base coord diff loss coefficient λ3 0.001
avg. full coord loss coefficient λ4 0.1

Supplementary Table 4: Choose the best ϕs (ϕlower
inter , ϕ

upper
inter , ϕ

lower
intra , ϕ

upper
intra ) when adding dist losses.

ϕs minD maxD density avg.
(0.3, 7.8, 0.0009, 30.5) 0.220 0.846 1.481 0.849
(0.3, 12.5, 0.15, 25.0) 0.256 1.703 1.770 1.243
(0.3, 15.0, 0.15, 25.0) 0.228 1.879 2.139 1.415
(0.3, 7.5, 0.15, 12.5) 0.401 0.834 0.548 0.594
(0.3, 7.5, 0.15, 20.0) 0.301 1.000 1.176 0.826
(0.3, 7.5, 0.15, 7.5) 0.354 0.512 0.757 0.541

(0.3, 2.75, 0.15, 2.75) 0.573 2.157 3.214 1.981
(0.3, 5.0, 0.15, 5.0) 0.424 0.590 0.721 0.578
(0.3, 2.0, 0.15, 2.0) 0.728 2.322 3.848 2.299

Supplementary Table 5: Choose the best λ1 and λ2 when adding coordinates based losses.

(λ1 , λ2 ) minD maxD density avg.
(0.001, 0.0001) 0.301 0.594 0.993 0.629
(0.001, 0.001) 0.258 1.103 0.823 0.728

(0.0001, 0.0001) 0.299 1.346 1.206 0.950
(0.0001, 0.001) 0.367 0.770 0.728 0.622
(0.01, 0.001) 0.337 1.032 1.440 0.936
(0.01, 0.01) 0.203 1.147 2.17 1.173

(0.001, 0.01) 0.308 0.504 0.689 0.500
(0.01, 0.0001) 0.251 0.991 0.942 0.728

(0.1, 0.1) 0.159 1.359 2.918 1.479
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2.2 Model Structures
Supplementary Table 6 and 7 show the detailed architectures of discriminator and generator.

Supplementary Table 6: Discriminator configuration. Mat is the input material representations with shape of 3 × 8 × 8.
SymOp is the zero-padded symmetric operation matrix for space groups of materials. The 2D convolutional layer parameters
are denoted as ”C2D-<number of channels>-<receptive field size>”. The fully connected layer parameters are denotes as
”FC-<number of neurons>”. The concatenation is denoted as ”CAT-<number of neurons>”. We use LeakyReLU as the
activation function after each layer except for the last layer. The negative slope for it is 0.2.

Discriminator Configuration
Mat-3× 8× 8

C2D-16-2
C2D-32-2
C2D-64-2
C2D-96-2 SymOp-192× 4× 4

C2D-128-2 C2D-64-2
C2D-192-2 C2D-128-2
C2D-256-2 C2D-256-2

CAT-512
FC-265
FC-1

Supplementary Table 7: Generator configuration. SymOp is the zero-padded symmetric operation matrix for space groups
of materials. Z is the random noise with shape of 128 and it shared by two branches for generating unit cell length P∗ and
three set of base atom sites (B0

fake ,B
1
fake ,B

2
fake). The 2D convolutional layer parameters are denoted as ”C2D-<number of

channels>-<receptive field size>”. The 2D deconvolutional layer parameters are denoted as ”TC2D-<number of channels>-
<receptive field size>”. The fully connected layer parameters are denotes as ”FC-<number of neurons>”. The concatenation
is denoted as ”CAT-<number of neurons>”. We use batch normalization and ReLU after each layer except for the last layers
of two branches. They are followed by a Tanh activation to generate lengths and atom coordinates.

Generator Configuration
ElemProp-23× 3

SymOp-192× 4× 4 C1D-64-2
C2D-64-2 C1D-128-2

C2D-128-2 Z-128 flatten
C2D-256-2 FC-256 FC-256

CAT-512 CAT-512
FC-128 TC2D-1024-2
FC-64 TC2D-512-2
FC-32 TC2D-256-1
FC-16 TC2D-128-1
FC-3 TC2D-64-1

output: P∗-3 TC2D-3-1
output: B - 3× 3× 3

3 DFT configuration
The structures were optimized by density functional theory (DFT) that were carried out with Vienna ab initio
simulation package (VASP). The structure optimization convergence criteria of force and energy are 10−4 eV/A
and 10−7 eV, respectively. VASP runs were performed with full degree of freedom in terms of allowing the
atomic coordinates, lattice size, lattice constant, and lattice shape to change to reach the convergence criteria of
force and energy in the structure optimization process. The Perdew–Burke–Ernzerhof (PBE) of the generalized
gradient approximation (GGA) was used for exchange–correlation functional. The kinetic energy cutoff was
set to be 520 eV for the electronic wavefunction having a plane wave basis set which was obtained using the
projector augmented-wave method. The Monkhorst–pack k-mesh grids selected to sample the Brillouin zone in
the calculations were determined depending on the lattice constants. The product of the number of k-meshes in
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one direction and the lattice constant (measured in Angstrom) in the same direction is roughly set as 60, which is
dense enough for structure optimization.
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