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Supplementary Note 1: Definition of various diffusion coefficients and ionic conductivity 
Herein, we clarify the definitions of various diffusion coefficients and the ionic conductivity using the 

Onsager relationship. For simplicity, we discuss one-dimensional transport. The mass flux along the x-

direction of species a, Ja, is expressed as: 
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1
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&𝑣"!
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= −&𝐿!#
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#

	,	 (1) 

where b is a species, �̅�# is the electrochemical potential of species b, and Lab is the Onsager coefficient 

related to the Green–Kubo formula and is defined as:  
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where V and T are the system volume and temperature, respectively, and kB is the Boltzmann constant. 

The electrochemical potential of species a is defined as: 

�̅�! 	= 𝜇!& + 𝑘$𝑇 ln 𝑎! + 𝑧!𝑒𝜙 (3) 

where 𝜇!& , aa, and za  are the standard chemical potential, activity, and charge valency of species a, 

respectively, e is the elementary charge, and f is the electrical potential. Using Eq. (3), Eq. (1) can be 

rewritten as 
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where ρa, γa, Θa,β, and 𝐷E!  are the number density, activity coefficient, thermodynamics factor, and 

“chemical diffusion coefficient” of species a, respectively. 𝐷E! is often used for mixed conductors. The  

𝐷E! value of a system with two mobile species {α, β} was derived by using the local charge-neutrality 

condition 1,2: 
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The transport coefficient of ∂ρa/∂x of the first term in Eq. (7)) is called the “transport diffusion 

coefficient” of species a and is written as 𝐷M!.3 The transport diffusion coefficient is related to the “self-

diffusion (tracer diffusion) coefficient”, Dself,a, as: 
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where Na is the number of particles of species a. Dc,a is called the “corrected diffusion coefficient”.3 

The coefficient against the gradient of the electric potential, which is the third term in Eq. (8)), is related 

to the ionic conductivity s  using the Green–Kubo relationship as follows:  
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			∶= 𝜎612,3 + 𝜎712,3 + 𝜎66891:9-;: + 𝜎77891:9-;: + 2𝜎67891:9-;: 
(19) 

In Eq. (19), we decompose the conductivity into the self-correlation and distinct terms: 
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The “conductivity diffusion coefficient”, “charge diffusion coefficient”, or “component diffusion 

coefficient” Dσ,a is often used as a quantity with the same dimensions as the diffusion coefficients 

converted from the conductivity. Dσ,a is defined based on the electrophoretic mobility ua. ua is expressed 

as 4: 

𝑢! =&𝐿!#
𝑧#𝑒
𝜌!#

 (25) 

According to the Einstein–Smoluchowski equation, the conductivity diffusion coefficient, Dσ,a, is 

related to the mobility via: 
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At the limit of an infinite dilution, all cross-correlation terms such as 〈𝑣"!(𝑡)𝑣4!*"!(0)〉  and 

〈𝑣"!(𝑡)𝑣""(0)〉 are zero and all activity coefficients are 1, which leads to an equivalence between 𝐷E!, 

𝐷M!, 𝐷?,!, and  𝐷12,3,! via Eqs. (14) and (28): 

𝐷E! = 𝐷M! = 𝐷?,! = 𝐷12,3,! (29) 

The conductivity of the dilute system sdilute is the sum of the self-correlation term of each species, which 

corresponds to the Nernst–Einstein approximation formula: 

𝜎89,@:2 =
𝑒0

𝑉𝑘)𝑇
&𝑧!0𝑁!𝐷12,3,!
!

 (30) 

 

Supplementary Note 2.  Details of equations of motion 
Equilibrium molecular dynamics (EMD) uses the following equations of motion in the NVT ensemble: 

�̇�" =
𝐩"
𝑚"

 (31) 

�̇�" = 𝐅" − 𝛼𝐩" (32) 
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𝛼Ḃ =
𝑄0𝛼0 − 𝑘$𝑇

𝑄B
 (35) 

where qi, pi, and Fi are the position, momentum, and force via DFT and color charge of the atom i, 

respectively. α, Q, and T are the coupling parameter to the Nosé–Hoover chain thermostat (chain length 

= 3), friction coefficient, and target temperature, respectively.  

    CCD-NEMD with external field along z-axis use the below equations of motion in the NVT ensemble:   

�̇�" =
𝐩"
𝑚"

 (36) 
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where ci is the color charge of atom i and Fe is the external field. The chain length of the Nosé–Hoover 

thermostat was equal to 1 for non-equilibrium simulations. If the thermostat is also applied along the z-

axis, the effective external force will become Fe – αpi. To avoid deviation of the external force from 

the setting value Fe, we applied the thermostat on only the x-and y-axes. We used the velocity-Verlet 

integrator for the time evolution of the equation of motions. The concrete algorithm along the external 

field (z-axis) with timestep Δt can be written as: 

𝑝",J d𝑡 +
∆𝑡
2 f

← 𝑝"(𝑡) + H𝐹",J(𝑡) + 𝑐"𝐹2I
∆𝑡
2

 (39) 

𝑟",J(𝑡 + ∆𝑡) ← 𝑟"(𝑡) +
𝑝" F𝑡 +

∆𝑡
2 G

𝑚"
∆𝑡 

(40)  

𝑝",J(𝑡 + ∆𝑡) ← 𝑝" d𝑡 +
∆𝑡
2 f

+ H𝐹",J(𝑡 + ∆𝑡) + 𝑐"𝐹2I
∆𝑡
2
	 (41) 

The temperature as a function of time, controlled by a thermostat at 1200 K, is shown in Supplementary 

Figure 1. The temperature was controlled well.  

 

 
Supplementary Figure 1. Temperature as a function of time for a typical simulation of CCD-NEMD at 

1200 K. The blue line represents the 1 ps block averaged value.  

 

Supplementary Note 3.  Determination of diffusion coefficients in EMD 

The self-diffusion coefficient Dself, charge diffusion coefficient Dσ of Li ions, and conductivity were 

obtained using the Einstein relation: 
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𝑒0

2𝑑𝑡𝑉𝑘$𝑇
&𝑧"𝑧4〈[𝐱"(𝑡) − 𝐱"(0)] ⋅ q𝐱4(𝑡) − 𝐱4(0)r〉
",4

 (46) 

where d is the dimension of xi(t), t is time, NLi is the total number of Li-ions in the simulation cell, xi(t) 

is the position vector, and zi is the charge. Supplementary Figure 2 shows the five-sample averaged 

tracer and collective MSDs at 1200 K. The initial point of the diffusive regime was determined as the 

time tdiff, when the MSD reached 9.0 Å2, which is large compared to the distance between two 

neighboring Li site, which is about 2.8 Å, i.e., (2.8 A) 2. In addition, log(t’)-log(MSD) was also checked 

to determine whether tdiff is involved in the diffusive regime. The upper fitting bound was determined 

by tdiff × 1.5–4 because the MSD at a larger t had a larger variance and deviation)5. The statistical 

averages were computed from trajectories (140–560 ps; EMD, 100–160 ps; NEMD) tabulated in 

Supplementary Table 1.  

    We also investigated the size effect of the DFTMD of LGPS on the conductivity. The results are 

summarized in the Supplementary Table 2. Although the ab-plane conductivity in the smallest model 

is underestimated by about 30%, there are no severe difference to change the characteristics of the 

conduction significantly.  
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Supplementary Figure 2. (a) (b) Tracer and (c) (d) collective MSD of Li-ions as a function of time. The 

error bars are standard deviations of the five independent samples. 

 

Supplementary Table 1. Summary of the simulation times of the EMD and the NEMD. 

 

 

 

Supplementary Table 2. The size effect of the DFTMD of LGPS on the conductivity.  

 
 

Temperature Simulation time (ps) Number of samples Simulation time (ps) Number of samples Simulation time (ps) Number of samples
1400 160 5 90 5 100 3
1200 160 5 100 5 75 3
1100 160 5 75 5 100 3
1000 240 5 115 5 80 3
900 240 5 80 5 95 3
800 240 5 90 6 100 3
700 400 - 560 10 100 8 240 3
500 400 10 150 10

EMD NEMD, z direction NEMD, x direction

Lx (Å) Ly (Å) Lz (Å) σEMD (S cm-1) σNEMD (S cm-1) σ dilute (S cm-1) σEMD (S cm-1) σNEMD (S cm-1) σ dilute (S cm-1)  Li-ions atoms

8.719 8.719 12.6 7.5 ± 2.5 7.6 ± 0.9 2.3 ± 0.4 1.7 ± 0.9
(1.7 ± 0.8) 1.3 ± 0.1 0.90 ± 0.09 

(0.93 ± 0.13) 20 50

17.44 17.44 12.6 6.3 ± 1.8 6.7 ± 0.7 2.9 ± 0.2 2.5 ± 0.9 
(2.2 ± 0.7) 2.4 ± 0.2 1.3 ± 0.1 

(1.3 ± 0.1) 80 200

17.44 17.44 25.3 8.7 ± 1.5 7.7 ± 0.3 2.52 ± 0.09 1.7 ± 0.5 
(2.3 ± 1.3) 2.2 ± 0.2 1.30 ± 0.04 

(1.31 ± 0.04) 160 400

c -axis a -axis (ab -plane) Number of
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Supplementary Note 4.  Field-dependent Flux 
Supplementary Figure 3 shows the Li-ion flux along the c-axis at 500 K and the a-axis at 700 K in the 

Li10GeP2S12 system as a function of the external field strength Fe. Both linear regimes were identified 

between 0–0.02 eV. The maximum field strength Fem, which is sufficiently small to exhibit a linear 

response, is expressed as 𝐹2Q ∝ √𝐷6. Therefore, Fe = 0.02 eV Å-1 is small enough to calculate the 

conductivity along the c- and a-axes more than 500 K and 700 K, respectively. Note that 0.02 eV Å−1 

has been the typical value of some NEMD studies on Li-ion conductors7–9. 

 
Supplementary Figure 3. Li-ion flux along c-axis at (a) 500 K and a-axis at (b) 700 K as a function of 

the external field strength.  
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Supplementary Note 5.  Comparison between CCD-NEMD and CD-NEMD 

Supplementary Figure 4 shows the color displacements of CCD-NEMD and CD-NEMD at 500 K with 

Fe = 0.02 eV Å-1 along the c-axis. The slope of the color displacements is equal to the color fluxes: 

d
d𝑡
u&𝑐"[𝑧"(𝑡) − 𝑧"(0)]
"

v =&𝑐"𝑣",J(𝑡)
"

= 𝐽;(𝑡) (47) 

The slope of the color displacements of the CD-NEMD is smaller than that of CCD-NEMD because 

CD-NEMD does not include the ion–ion correlation term. The conductivity of CD-NEMD is consistent 

with the Nernst–Einstein approximation result for EMD (Supplementary Table 2) within a standard 

deviation.  

   Supplementary Figure 5 shows that the relationship between the color displacements and the averaged 

color charges in each conduction channel. The color flux occurs even if all the color charges in every 

channel do not have the same sign. 

     

 

 

Supplementary Figure 4. Color displacements of CCD-NEMD and CD-NEMD at 500 K with Fe = 0.02 

eV Å-1 along the c-axis. The dark lines show the averaged values of the five independent samples, which 

are indicated by the lighter lines.  

 

Supplementary Table 2. Comparison of the conductivities at 500 K between σEMD (EMD with Eq. (46)), 

σCCD-NEMD (CCD-NEMD with Eq.(8)), σCD-NEMD (CD-NEMD with Eq. (5) and Nernst–Einstein 

approximation of Eq. (30), and σdilute (EMD with Nernst–Einstein approximation).  
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1.3 ± 0.6 2.3 ± 0.7 0.35 ± 0.18 0.53 ± 0.18
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Supplementary Figure 5 Color displacements and absolute values of the averaged color charges within 
each conduction channel (Channel 1–4) obtained by five independent CD-NEMD calculations (Fe = 
0.02 eV Å-1 along the c-axis) at 500 K. The shaded area denotes the region with a large slope related to 
the color displacements.  

 

Supplementary Note 6.  CCD-NEMD on an oxide-type Li-ion solid electrolyte 

(Li7La3Zr2O12) 

We also performed CCD-NEMD simulations using a representative oxide-type Li-ion solid electrolyte, 

namely Li7La3Zr2O12 (LLZO), as shown in Supplementary Figure 6. The strength of the color field was 

0.02 eV Å-1, which was within the linear response region, as shown in Supplementary Figure 7. 

Supplementary Figure 8 shows the cumulative averages of σdilute, σEMD, and σNEMD at 1200 K as a 

function of time along the z-direction. The lines and error bars in Supplementary Figure 8(a) denote the 

average values and standard deviations of the five independent samples with different initial velocities, 

respectively. σNEMD and σEMD are in good agreement, which demonstrates that CCD-NEMD can 
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appropriately reflect the contributions of the ion–ion correlation. As shown in Supplementary Figure 

8(a) and S8(b), CCD-NEMD can calculate conductivities faster than EMD.  

 

Supplementary Figure 6. Equilibrated structure of 64 Li7La3Zr2O12 (26.264×26.264×26.264 Å3) at 1000 

K.  

 

 

Supplementary Figure 7. Ion flux along the z-axis at 1000 K as a function of the external field strength.  
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Supplementary Figure 8. Cumulative averaged conductivities (σdilute, σEMD, and σNEMD) and relative 

errors along the z-axis at 1000 K. 

 

Supplementary Note 7.  Interfacial self-diffusion coefficient of the Lennard–Jones binary 

component system 

We evaluated the position-dependent transport property in CD-NEMD. To validate this method, we 

constructed phase-separated binary Lennard–Jones (LJ) liquid systems, as shown in Supplementary 

Figure 9(a), and applied CD-NEMD (ci = (–1)i). The local flux and local self-diffusion coefficient 

parallel to the interface on each slab k were obtained using the equations:  

𝐽1,=R7S(𝑡)	 = & 𝑐"𝑣"(𝑡)
"∈1,=R7S

	 (48) 

𝐷1,=R7S ≈
𝑘$𝑇

〈𝑁1,=R7S〉
lim
K→%

〈𝐽1,=R7S(𝑡)〉
𝐹T

 (49) 

The position-dependent self-diffusion coefficients are presented in Supplementary Figure 9(b). The 

diffusivity increases close to the interfacial region. As the attractive interaction parameter ε12 between 

heterogeneous particles becomes smaller, the enhancement becomes larger. This interfacial 

enhancement originates from the weaker attractive interaction between heterogeneous particles than 

between identical particles in the model.10 It should be noted that the above formulation of CD-NEMD 

is applicable to CCD-NEMD, where the self-diffusion coefficient of Eq. (49) is replaced with Dσ in the 
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CCD-NEMD simulation of composite solid electrolytes. This indicates that CCD-NEMD could also be 

used to estimate the interfacial conductivity. 

 
Supplementary Figure 9. (a) Snapshot of an equilibrated structure and (b) position-dependent diffusivity 

of a Lennard–Jones binary component system.  

 

Model of the interfacial Lennard–Jones binary component system.  

The interaction between the LJ particles is the LJ 12-6 potential φ(r) with a cutoff radius of 7.65 Å: 

𝜙(𝑟) = 4ϵ"4 KF
𝜎"4
𝑟
G
A0
− F

𝜎"4
𝑟
G
U
L (50) 

where r is the distance between the atoms i and j. The parameters ε and σ between the same type of 

particles are ε11 = ε22 = 0.238 kcal mol-1 and σ11 = σ22 = 3.4 Å, which relate to the argon atom.11 To 

construct the liquid-liquid interfacial system, the interaction between the different types of atoms was 

scaled as ε12 = 0.2 ε11 and 0.6 ε11. The interfacial binary-component system consisted of N1 = N2 = 250 

particles in a simulation box of 18.2 × 18.2 × 72.8 Å3. The temperature was kept at 94.4 K. The system 

was equilibrated for 100 ps, and a production run was performed for 400 ps with Fe = 0.002 eV Å-1. 
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