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I. SUPPLEMENTARY METHODS

A. OPLS-AA Parameters

In order to generate force field parameters for both pentane and octane, the LigParGen [1,

2] server is used. Interactions between different species are defined using a geometric mixing

rule for the parameters. The pentane system, consisting of 70 molecules, and the octane

system consisting of 40 molecules, are placed around the edges of a box to begin. The fire

minimization scheme implemented in LAMMPS [3] is first performed, with a time step of

0.1 fs, with an energy and force tolerance of 1e-7 and 1e-9, respectively. Random velocities

are then drawn for all atoms for a Boltzmann velocity distribution with temperature 62.5K.

For the pentane liquid, using a timestep of 0.05 fs, 500,000 timesteps are run in the

isothermal-isobaric ensemble from a temperature of 62.5K to 250K, and from a pressure of

0 to 1 atmosphere. The damping parameters for the thermostate and barostat are set to

100 and 1,000 times the timestep, respectively.

Another isothermal-isobaric ensemble segment is performed, this time with a timestep

of 0.5 fs for 800,000 steps at constant temperature and pressure. Finally, 200,000 steps are

made with a 1 fs timestep at a constant temperature of 250K. The resulting equilibrated

structure is used as the starting point for all subsequent simulations, including constrained

dynamics, initial on-the-fly frames, and the starting point for all mapped simulations.

For the octane liquid, the first isothermal-isobaric stage is performed with a 0.01 fs

timestep for 1,000,000 steps, from a temperature of 25K to 300K, and from a pressure of 1

to 151 atmospheres. The damping parameters are the same as for pentane. In the second

isothermal-isobaric stage, a 0.5 fs timestep is used over 800,000 steps, from a temperature

300K to 250K, and from 151 to 1 atmosphere of pressure. A third isothermal-isobaric stage

is run with a 0.5 fs timestep for 200,000 steps at constant temperature and pressure. Finally,

an isothermal stage with a timestep of 1 fs is run for 200,000 steps at constant temperature.
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B. OPLS-UA Parameters

To compare our coarse grained models against a common baseline for n-alkane systems,

we run a simulation of the same pentane system with the parameter set of the OPLS United

Atom approach [4, 5]. In particular, the potential energy takes the form
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2 +

∑
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2

+
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The groupings in the OPLS-UA formalism chosen here are electrically neutral and give no

Coulomb contributions. The system is broken into two species, the CH3 ground and the

CH2 group. The longest values reported in [5] are for the butane groups, and we apply these

parameters (see Supplementary Tables I-IV) to the pentane system.

C. ASE On-the-Fly Parameters

The on-the-fly molecular dynamics loop is run with ASE [6]. The NPT ensemble is used

for the Nose-Hoover thermostat implementation, but with the barostat turned off and kept at

constant volume. A timestep of 1 fs is used, with a damping parameter for the thermostat

equal to 100 times the timestep. On-the-fly trajectories are performed for 100,000 steps

within ASE’s molecular dynamics engine prior to being mapped and run in LAMMPS.

D. Constrained Dynamics Parameters

After reconstructing the all-atom representation for them coarse grained representation

(as well as when collecting fixed training and test data for which no reconstruction is nec-

essary), the free degrees of freedom are allowed to evolve at a constant 250K temperature.

For the on-the-fly runs, we use a 0.5 fs timestep during constrained dynamics and find

that averaging forces over 10,000 frames sampled 200 steps apart is sufficient for mean-force

convergence (see Supplementary Figure 2). This trend can be verified both by looking at

the standard error of the mean of a selection of force components, as well as the marginal
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log likelihood of an SGP trained on a limited amount of data as a function of mean-force

sampling. Once sufficient sampling is reached, the model noise becomes dominant over the

data noise, and further constrained dynamics will not benefit the models performance.

E. Mapped Sparse Gaussian Process Simulations

Once the trained SGP’s are mapped, pentane and octane models are equilibrated in

LAMMPS with the learned force field for 250,000 steps and a timestep of 1 fs at constant

temperature. The damping parameter of the Nose-Hoover thremostat is set to 100 times

the timestep. Production runs to acquire radial distribution functions are run for 400,000

steps, sampling frames every 400 steps.

We demonstrate also the efficiency that is gained over all-atom simulations using ML

CG models. While we have used classical force fields in this work as our baseline all-atom

reference, this need not be the case. Because classical force fields are generally quite fast,

and not nearly as accurate as ML models, comparing the Gaussian process models to them

would not be a fair comparison. Instead, we demonstrate the efficiency of the single and two

species CG models with respect to an all-atom two species Gaussian process model of the

same system. We show this for the pentane systems, but the octane models follow the same

trend as their densities are highly similar. In Supplementary Figure 1, we can see clearly

the substantial gain in computational speed with coarse graining. In particular, the single

species models which have shown to be quite accurate are faster by a factor of 30-40.

F. Hyperparameter Selection

As in Ref. [7], we maximize the log marginal likelihood of the sparse Gaussian processes

in order to choose optimal hyperparameters. We optimize the likelihood with respect to the

kernel power, ξ, basis expansion parameters n and `, as well as the environment cutoff radius

for a pentane model (see Supplementary Figure 3). For consistency of comparison, we use

the optimized parameters for the two species model for all single species models. The octane

models use the same parameters. While the cutoff radius is optimized by the likelihood at

4.2 Å, we find better overall performance of each given model when using a cutoff of 4.5 Å.
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II. SUPPLEMENTARY DISCUSSION

A. Structure of n-alkane Chains

In the main text we explore the behavior of an ensemble of SGP models in the presence

of nearby local free energy minima. Supplementary Figure 4 motivates the study of pentane

by examining the end to end chain distance distribution of increasingly long n-alkane chains.

B. Model Stability with Larger Timesteps

The benefits of coarse graining are two fold. First and foremost, the reduction of the

number of degrees of freedom tracked throughout the simulation reduces the computational

cost of the simulation on a per step basis. In addition, removing fast degrees of freedom

allows for greater timesteps to be used to enhance sampling efficiency. Here we show the

stability of our models with respect to larger integration timesteps. We perform the analysis

for the pentane single-species liquid system, but the same conclusions hold for octane where

the densities and interactions are highly similar.

All-atom simulations of hydrocarbons would typically use timesteps between 0.5-1 fs. The

results presented in the main text for the coarse grained models are all obtained with a 1 fs

integration step in order to ensure fair comparison. Supplementary Figure 5 shows that in

fact, for timestep sizes between 2-5 fs, the sampling of the pentane models with CG models

remains stable, and a larger integration step could be used if desired. On the other hand, we

find that above 2 fs timesteps for the all atom model, simulations no longer remain stable.

Further, this argument is strengthened by considering the energy drift in NVE simulations,

shown in Supplementary Figure 6. Here, the 2 fs timestep all-atom simulation already begins

to show appreciable energy drift, while the CG models do not.

C. Transferability with Non-active Learning

In the case of direct models (i.e. those trained on the system they are intended to be

deployed on) for hydrocarbon liquids, the variety of sparse environments sampled in any

given simulation frame reduces the need for active learning in general. With a sufficient

number of training frames, a diverse set of sparse environments can efficiently be sampled.
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However, in the context of building transferable models from existing data sets, it is essential

that care is taken with regards to what new information is being added.

The goal is to minimize the overall amount of new data to be added. By matching the

number of training frames and sparse environments that are added to the existing training

sets via random sampling versus what was deemed optimal via active learning, there is

relatively little new data added about the new system compared to direct models. It is

therefore crucial that the data added be maximally informative to reduce unnecessary noise

in the data set.

This is particularly evident in Supplementary Figures 7 and 8. Here, we show the intra-

molecular distributions for single and two species models averaged over 40 model instances.

In the case of single species, a single additional training frame is added to reflect a similar

amount of data added by the active learning scheme. For two species models, we instead

add 15 frames of additional data. In all cases, 50 sparse environments are added per training

frame.

While the single-species ML CG model produces distributions that are overall quite good,

we note the spurious bond length and bond angle peaks picked up by the non-active learning

model. The models learned with the non-active approach are substantially worse in the case

of two species models, where the higher sensitivity and expressivity of the descriptors can

easily lead to model deterioration with insufficient training sets. Here, all distributions fail

to even qualitatively reproduce the all-atom distributions, underlining a stark deficiency of

random sampling for additional data compared to uncertainty-aware active learning.

D. Interaction Correlations in Octane

We further inspect the structural correlations of the octane system, characterized by the

set of dihedral angle values along the backbone. Similarly to pentane, the bond length and

angle distributions are unimodal (as seen in Supplementary Figures 7 and 8), and we do

not consider them in the correlations. However, there are many possible unique sets of

dihedral states. In particular, in Supplementary Figure 9 we show the relative sampling of

all unique sets of five dihedral angles along the octane backbone, categorized by whether

they are trans or gauche. Similar to the non-bonded interactions explored in Figure 5 of

the main text as well as Supplementary Figures 7 and 8), there is a noticeable discrepancy
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of the unadapted two species model relative to the all-atom ground truth compared to the

single species case. This discrepancy is alleviated upon adaptation of the two models. In

particular, both single and two species models reproduce structural distribution functions

with much higher fidelity when octane data is added to the training set. However, we note

difficulties of both the direct and adapted models at accurately capturing the correlations

of some structures.

Unlike the pentane system, the entire octane molecule does not lie within the cutoff radius

of any given atomic environment. As such, it is more challenging for the octane model to

identify and learn the interaction of dihedral pairs. Approximations of the PMF are known

to, in some cases, fall short in this regard. For example, Rudzinski et. al. identify this issue

with a similar system of hexane for a variety of CG mappings [8]. Addressing the ways in

which the approximations made in CG models fail remains of great importance for future

work. Such approximations include, but are not limited to, the choice of cutoff radius, basis

set sizes, and body-order of interactions. Regardless, we emphasize that the transferability

argument is not compromised by this complication, as it is clear in the data that the adapted

models approach the performance of the direct model.
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III. SUPPLEMENTARY FIGURES

Supplementary Figure 1. The number of timesteps per second is shown for single species CG, two

species CG, and two species all-atom models. These computations are all performed with a single

CPU on an Intel Icelake node. A custom compilation of LAMMPS using the flare pair style was

used to run mapped GP models.
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Supplementary Figure 2. The marginal likelihood (a), mean absolute force error on a test set

(b) and the average standard error of the mean of PMF derivatives, i.e. forces, (c) are shown as

a function of constrained dynamics sampling. The x-axis indicates the number of uncorrelated

frames in which data was averaged over to provide force labels to the corresponding model.
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Supplementary Figure 3. The four hyperparameters for the sparse Gaussian processes are optimized

by maximizing the log marginal likelihood. For each parameter sweep, the values are fixed at ξ = 2,

rcut = 4.5 Å, n = 5 and ` = 12 for those not being varied.

Supplementary Figure 4. The end-to-end chain distance distributions for n-alkanes from pentane

to dodecane. At longer chain distances, the bimodal distribution begins to disappear. This is the

result of many more dihedral energy minima along the chain.
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Supplementary Figure 5. Distributions are shown for single-species Gaussian process models of

pentane using various time steps. All models are the same as those in the main text, with the

mapped simulations using different integration steps.

Supplementary Figure 6. Energy drift for simulations performed in the NVE ensemble. All models

were run for 1.2 million time steps. The all-atom model used here is the OPLS model for efficiency,

rather than the Gaussian process.
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Supplementary Figure 7. The end-to-end chain length, bond length, bond angle, and dihedral angle

distributions are shown for averages of 40 single species models with and without active learning,

compared to the all-atom baseline, in the top left, top right, bottom left, and bottom right plots,

respectively.
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Supplementary Figure 8. The end-to-end chain length, bond length, bond angle, and dihedral angle

distributions are shown for averages of 40 two species models with and without active learning,

compared to the all-atom baseline, in the top left, top right, bottom left, and bottom right plots,

respectively.
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Supplementary Figure 9. Shown is the relative sampling of the unique sets of dihedral states for

octane. Each molecules has five dihedrals, which we categorize as being either trans (T) or gauche

(G). Due to the symmetry of the molecule, some states are redundant and not shown. a) the

relative sampling for single species GP models with direct, adapted (100k), adapted (50k) and

unadapted models shown. b) the relative sampling of dihedral states for the same model types but

with a two-species representation.
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IV. SUPPLEMENTARY TABLES

Atom Type α (CHα) σ (Å) ε (kcalmol )

1 3 3.905 0.175

2 2 3.905 0.118

Supplementary Table I. The OPLS United Atom vander-waals parameters used to simulate pentane.

Bond Type Atom 1 Atom 2 Kb (kcalmol ) r0 (Å)

1 2 1 260.0 1.526

2 2 2 260.0 1.526

Supplementary Table II. The OPLS United Atom bond parameters used to simulate pentane.

Angle Type Atom 1 Atom 2 Atom 3 kθ (kcalmol ) θ0 (Degrees)

1 1 2 2 63.0 112.4

2 2 2 2 63.0 112.4

Supplementary Table III. The OPLS United Atom bond angle parameters used to simulate pentane.

Dihedral Type Atom 1 Atom 2 Atom 3 Atom 4 V1 (kcalmol ) V2 (kcalmol ) V3 (kcalmol ) V4 (kcalmol )

1 1 2 2 2 0.0 0.0 2.0 0.0

Supplementary Table IV. The OPLS United Atom dihedral angle parameters used to simulate

pentane.
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