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ABSTRACT

This supplementary information contains details on: (i) Parameterization of atomistic simulations (Note 1), (ii) insights on
configurational entropy (Note 2), (iii) insight on compositional effects (Note 3), (iv) validation of molecular dynamics models
through DFT (Note 4).
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Note 1: Parameterization of molecular dynamics simulations
Bulk modulus
The performance of the MTP and SNAP potentials in modeling elasticity properties was benchmarked against DFT. The elastic
constant matrix, Ci jkl , was calculated for a set of alloy compositions, selected according to the grid formula Ax(BCD)1−x, where
x was incrementally increased from 12.5 at.% to 50 at.%. MD and DFT calculations determined the elastic constant matrix via
the relationship between stress and strain, σi j = Ci jkl : εkl . The simulations cells used in the MD calculations were identical
in size, shape, and number atoms to those used in the optimization calculations. DFT Ci jkl matrices were calculated using
randomly ordered 4×4×4 supercells containing 128 atoms and DFT simulation parameters similar to what used in the DOS
calculations. To account for finite ordering effects, each composition was modeled four times, each time using a differently
ordered DFT supercell. To compare potential performance, the Voigt-Reuss-Hill elastic moduli averages were calculated from
the Ci jkl matrix and plotted in Supplementary Figure 1. Moduli calculated via DFT represent the average modulus of the four
distinct supercells. Each MD potential exhibited different characteristics in its ability to replicate the DFT values, allowing for
several observations to be made. First, while each potential was able to capture the approximate trends of the DFT moduli
(outside of a few exceptions which will be discussed shortly), the MTP potential consistently under-predicted the magnitude of
the DFT moduli by ∼10-15 GPa. Conversely, while less consistent the SNAP potential tended to over-predict the DFT computed
values, however, it was closer to the DFT magnitude on more occasions relative to the MTP potential. Unfortunately, the SNAP
potential exhibited undesirable deviations from the DFT values in select composition ranges. Specifically, in compositions
rich in Ta (typically ≳ 32 at.%), the calculated elastic constants exhibited a high level of imprecision, causing the calculated
moduli to significantly deviate from the apparent trends forming at lower Ta concentrations. Because of this flaw, the MTP
potential was used instead to model the elastic constant matrix in the optimization bulk modulus calculations. While the overall
magnitude of the MTP moduli are too low, they’re trend and behavior as the composition is varied is remarkable stable, and
in every case precisely mimics the general trend of the DFT moduli, thus we believe the MTP potential should allow for the
true optimization of the elastic moduli. Likewise, because of the relative consistency of the calculated bulk moduli (via both
MTP-MD and DFT), the bulk modulus was chosen as the explicit objective for elastic optimization in this work.

Thermal Expansion
For thermal expansion (αL), calculations, the MTP and SNAP potential were benchmarked against rule of mixtures (ROM)
predictions based on experimentally measured lattice constants at 298 and 573 K1. In Supplementary Figure 2, the two ROM αL
predictions are plotted alongside the MTP and SNAP predictions of αL, which were determined by incrementally increasing the
temperature from 0 K to over 1200 K, and modeling the change in lattice constant through NPT ensemble calculations. Similarly,
to the Ci jkl calculations, the parameterization and size of the supercell in the MD calculations was identical the optimization αL
calculations. The MTP potential outperformed the SNAP potential (by predicting closer to the ROM predictions) in three of
the four compositions, while in the fourth (a Ta heavy composition), the ROM predictions lied almost exactly between the
MTP and SNAP predictions. Also of note, the MTP predictions near 200-400 K were noticeably more stable, showing greater
precision and consistency.

BCC Retention
Benchmarking the accuracy of the dynamic shock loading calculations was not possible as there is no relevant experimental
data in literature to compare with. Instead we report on our experience using each potential to determine BCC % retention. Our
decision to use the SNAP potential for shock calculations during optimization was based on two things. First, we developed the
SNAP potential specifically to model highly strained systems by including a compositionally robust sampling of uniaxially and
volumetrically strained systems in the DFT training data. (See McCarthy et al.2 for details of the SNAP potential training).
Secondly, in MD simulations informed by the MTP potential, we found that the shock wave failed to produce any meaningful
or measurable amount of permanent deformation. The shock wave would travel through the structure, momentarily deforming
atomic positions, however, the atoms would always return to a near perfectly pristine BCC state once the shock wave had
passed. We found this to be the case regardless of the simulation cell size, initial temperature of the of the system, or the speed
of the piston (observing the same behavior even up to 1200 m/s piston velocity).

As the size and shape of the supercell used to model shock deformation can have a significant effect on the final deformation
behavior, we show BCC% convergence as a function of supercell X and Y unit cell repetitions in Supplementary Figure 3. We
converged the simulation supercell size for two compositions, one high in Mo, expected to show little deformation, and one high
in Ti, expected to show a large amount of deformation. We found that simulation box size was effectively converged around 22
unit cell repetitions in the X and Y directions. Additionally, the BCC% values shown here were calculated as averages of three
simulations, and so the error bars indicate the standard deviation of the BCC% metric for a single composition modeled three
times with unique atomic orderings. Overall, we find generally good consistency and precision in the BCC% measurement,
indicating that during optimization we could model the BCC% objective using only a single shock calculation per composition.
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Supplementary Figure 1. Interatomic potential performance in elasticity calculations. The MTP and SNAP potential
are benchmarked against DFT calculations. The Ci jkl elastic constant matrix is obtained from finite difference calculations and
used to determine the Voigt-Reuss-Hill Bulk (B), shear (G), and Young’s (E) moduli (displayed by row). Each panel depicts the
change in B, G, and E, as the concentration of one elemental species in the alloy is incrementally changed, according to the
formula Ax(BCD)1−x, such that each column depicted the effects of one species variation.
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Supplementary Figure 2. Interatomic potential comparison in thermal expansion calculations. Thermal expansion
(αL), was calculated using the MTP and SNAP potentials over temperatures ranging from 0 K to over 1200 K, and
benchmarked against ROM αL predictions made using experimentally measured lattice constants at 298 and 573 K1. Each
panel depicts the MD and ROM αL predictions for selected alloy composition, in which the concentration of one element was
increased and the concentration another element (typically Ti) was decreased.
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Supplementary Figure 3. Shock column width convergence. The variation in BCC% retention after shock loading was
modeled as a function of the number of unit cell replications in the X and Y directions, perpendicular to the direction of the
shock wave movement. Two compositions were considered, one high in Mo and the other high in Ti, finding convergence
around 22 XY replications. Error bars indicate the standard deviation in BCC% for three separately modeled, uniquely ordered
random structures.
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Note 2: Insights on configurational entropy
Property correlations
In Supplementary Figure 4, we explore the relationships between B, αL, CP with configurational entropy Scon f . The configura-
tional entropy Scon f is an important design metric in HEAs, as it is directly related to the thermodynamic stability of ground
state phases. Typically, the higher the better, where traditional definitions of HEA classification require that Scon f >1.5R (where
R = 8.314 J/mol·K is the ideal gas constant)3. In the the four element design space MoNbTaTi, only the equiatomic (denoted by
the black triangles in Supplementary Figure 4) and near-equiatomic compositions come even close to this metric. Under these
definitions every compositional configuration explored in this work would fall within a range more typical of medium entropy
alloys (1−1.5R). However, more recently the definition of HEAs in relation to configurational disorder has come to take on
some fluidity, with anything > 1.0R generally able to be discussed as high-entropy4. Of the Pareto optimal alloy compositions
discovered in this work, Scon f typically falls between 9 and 10.5 J/mol·K, and can be considered high-entropy under this newer
criteria. Conversely, compositions that yield optimal property configurations typically lie far from the equiatomic region of
the design space (Supplementary Figure 4d), and so the improvement of property performance comes at the cost of slight
configurational destabilization.
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Supplementary Figure 4. Relationship between entropy and objective properties.The configurational entropy (Sconf) is
calculated for every modeled composition and plotted against their respective bulk modulus (B), coefficient of thermal
expansion (αL), heat capacity (CP), and BCC% retention. The properties of the equiatomic composition are denoted by upside
down arrows.
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Note 3: Insight on compositional effects
Where the previous compositional analyses were focused only on points within the Pareto optimal solution sets, the compo-
sitional effects derived here encompass the entire set of modeled points from both optimizations (A and B) in this work. In
Supplementary Figure 5 the effect of individual alloy component concentrations derived from optimization A are shown in the
top row (a-c) and from optimization B in the bottom row (d-f). Each line was obtained as a second order polynomial fit to
the raw elemental compositions plotted against each property. It should be noted that the relationships are plotted somewhat
unconventionally here, with the dependent material property on the normally independent X-axis as we believe it allows for
better visualization of the direct influence of individual species concentrations on an individual property. For example, in
panels a and d it is very clear that greater at.% of Mo is associated with improved B values, while in panel e, it is seen that a
low at.% of Ta is needed to obtain high CP values. The plot construction here also allows one to obtain the approximate alloy
composition needed to obtain a specific property value by simply drawing a vertical line at the desired value and taking the
species concentrations where they cross this line. The total composition of the alloy, while only approximate, is the combination
of each species value, and if tested should exhibit a property behavior replicating where the vertical line was drawn along the
X-axis.
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Supplementary Figure 5. Compositional breakdown of the entire performance space. Second order polynomial fits are
made to between the concentration of each species and the objective properties. The panels in the top row (a-c) show
concentration correlations for alloys modeled during optimization A, awhile panels in the bottom row show concentration
correlations for alloys modeled in optimization B.
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Note 4: Validation of molecular dynamics models through DFT
In an effort to provide some form of validation for the MD modeling used in this work, we have used DFT to calculate and
benchmark the bulk modulus and heat capacity for the four alloy compositions selected from regions B-I-IV of optimization
B and compared them with the respective MD based calculations. These are also compared with rule-of-mixtures (ROM)
predictions based on the experimental data5–8 (measured at the closest/most relevant temperature range we could find).

For these simulations, we used VASP along with the same parameter configuration employed for DOS calculations as
already described in the Methods section. For both B and CP calculations, a 3 × 3 × 4 supercell containing 72 atoms was
used along with a 3 × 3 × 4 gamma-centered k-point grid. For the B modulus, the elastic constant matrix Ci jkl was found
through the relationship between stress and strain calculated using the finite atom displacement methodology built into the
VASP program. For CP calculations, ab-initio molecular dynamics (AIMD) simulations were employed to model the alloys at
high temperatures from first principles. The CP was calculated for each alloy at 300 K following the same methodology used
for the MD calculations. Each AIMD simulation employed an NPT ensemble, that allowed the volume to relax at constant
temperature and pressure. Simulations were carried out for 5000 steps, at 3 fs per step, totalling 15 ps of simulation time. The
final energy (used in the CP calculation) was taken as the average of the last 2000 steps in the simulation.

Overall, we observe sizeable magnitude differences between the MD and DFT predictions, however, the relative trends
predicted for both B and CP moving from alloy B-I to alloy B-IV are remarkably consistent (as shown by the line plots above
the bar plots). Notably, both the MD and DFT results are in moderately good agreement with the trends of the ROM predictions.
The reason for the difference in magnitudes of the DFT and MD predictions is difficult to deduce, however, in the case of CP it
could potentially be related to limitations AIMD, namely small supercell sizes and short simulation times.
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Supplementary Figure 6. MD, DFT, and rule-of-mixtures comparison. The MD methods used in this work are
compared against DFT and rule-of-mixtures (ROM) predictions for the four alloys designated in regions I-IV of the
optimization B Pareto front. a shows the bulk modulus, and b shows the heat capacity. The bar plots show the true value of
each property and corresponds to the left axis while the lines, corresponding to the right axis, show the normalized values
depicting the relative trend exhibited by each method of calculation. Despite magnitude differences, the relative trends are
remarkably similar.

7/8



Acknowledgements
This work is supported in part by the Center for Integrated Nanotechnologies, an Office of Science user facility operated for the
U.S. Department of Energy. This article has been authored by an employee of National Technology & Engineering Solutions of
Sandia, LLC under Contract No. DE-NA0003525 with the U.S. Department of Energy (DOE). The employee owns all right, title
and interest in and to the article and is solely responsible for its contents. The United States Government retains and the publisher,
by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the published form of this article or allow others to do so, for United
States Government purposes. The DOE will provide public access to these results of federally sponsored research in accordance
with the DOE Public Access Plan https://www.energy.gov/downloads/doe-public-access-plan.

Supplementary References
[1] Touloukian, Y. S., Kirby, R., Taylor, R. & Desai, P. Thermal expansion: metallic elements and alloys (1975). URL

https://www.osti.gov/biblio/5439716.
[2] McCarthy, M. J., Startt, J., Dingreville, R., Thompson, A. P. & Wood, M. A. Atomic representations of local and global

chemistry in complex alloys. Preprint at: https://doi.org/10.48550/arXiv.2303.04311 (2023).
[3] Murty, B. S., Yeh, J.-W., Ranganathan, S. & Bhattacharjee, P. P. High-Entropy Alloys (Elsevier, 2019). URL https:

//doi.org/10.1016/C2013-0-14235-3.
[4] Yan, X., Liaw, P. K. & Zhang, Y. Order and disorder in amorphous and high-entropy materials. Metallurgical and

Materials Transactions A 52, 2111–2122 (2021). URL https://doi.org/10.1007/s11661-021-06250-4.
DOI 10.1007/s11661-021-06250-4.

[5] Featherston, F. H. & Neighbours, J. Elastic constants of tantalum, tungsten, and molybdenum. Physical Review 130, 1324
(1963). URL https://doi.org/10.1103/PhysRev.130.1324. DOI 10.1103/PhysRev.130.1324.

[6] Hubbell, W. & Brotzen, F. Elastic constants of niobium-molybdenum alloys in the temperature range -190 to +100
◦C. Journal of Applied Physics 43, 3306–3312 (1972). URL https://doi.org/10.1063/1.1661712. DOI
10.1063/1.1661712.

[7] Allard, S. Metals: Thermal and Mechanical Data (Elsevier, 2013).
[8] Chase, M. W. NIST–JANAF thermochemical tables 4th ed. Journal of Physical and Chemical Reference Data 25,

1069–1111 (1996).

8/8

https://www.energy.gov/downloads/doe-public-access-plan
https://www.osti.gov/biblio/5439716
https://doi.org/10.1016/C2013-0-14235-3
https://doi.org/10.1016/C2013-0-14235-3
https://doi.org/10.1007/s11661-021-06250-4
https://doi.org/10.1103/PhysRev.130.1324
https://doi.org/10.1063/1.1661712

	Note 1: Parameterization of molecular dynamics simulations
	Note 2: Insights on configurational entropy
	Note 3: Insight on compositional effects
	Note 4: Validation of molecular dynamics models through DFT
	Supplementary References

