Distinct Amorphization Resistance in High-entropy MAX-phases (Ti, *M*)₂AlC (*M*=Nb, Ta, V, Zr) Under *in situ* Irradiation

Hao Xiao^{*a,1*}, Shuang Zhao^{*a,1*}, Jun Zhang^{*b,1*}, Shijun Zhao^{*b*}, Youbing Li^{*c*}, Ke Chen^{*c*}, Liuxuan Cao^{*d*}, Yugang Wang^{*a*}, Oing Huang^{*c*}, Chenxu Wang^{*a*, *}

 ^a State Key Laboratory of Nuclear Physics and Technology, Center for Applied Physics and Technology, Peking University, Beijing 100871, China.
^b Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
^c Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo 315201, China
^d College of Energy, Xiamen University, Xiamen 361102, China

Supplementary Note 1. Phase contrast simulation of the fcc-phase

Supplementary Figure 1(a) shows the HRTEM micrograph of $(TiNbTa)_2AlC$ irradiated at a dose of 7.2 dpa (derived from a crystalline area in Fig. 3(d)), which exhibits an fcc-structure with ABCABC... stacking sequence. Supplementary Figure 1(b) shows the simulated phase contrast image along $[11\overline{2}0]$ zone axis of a random fcc- $(TiNbTa)_2AlC$ SQS supercell (solid-solution in cation sites, as shown in Supplementary Figure 1(c)) via the QSTEM program, the thickness and defocus are set as 4.5 nm and -61.3 nm, respectively. It is revealed that the simulation result is consistent with the experimental HRTEM micrograph. Phase-contrast simulation in $(TiNbTaVZr)_2AlC$ shows analogous results (not presented in the manuscript).

¹ These authors contributed equally to this work.

Supplementary Figure 1 (a) HRTEM micrograph of $(TiNbTa)_2AlC$ irradiated at a dose of 7.2 dpa, with an fcc-structure (crystalline area in Fig. 3(d)). The electron beam is along $[11\overline{2}0]$ direction and inset shows the corresponding FFT image. (b) The simulated phase contrast image along $[11\overline{2}0]$ zone axis (thickness and defocus set as 4.5 nm and -61.3 nm, respectively) of the fcc- $(TiNbTa)_2AlC$ supercell via the QSTEM program. (c) A 4×4×1 fcc-structure supercell model of $(TiNbTa)_2AlC$ used for the phase contrast simulation.

Supplementary Note 2. Proportion of the elemental components:

The proportion of the elemental components in (TiNbTa)₂AlC and (TiNbTaVZr)₂AlC is given in the Supplementary Table 1, which is cited from Ref 1¹. The proportions of the elemental components in the M-site of (TiNbTa)₂AlC and (TiNbTaVZr)₂AlC are close.

Supplementary Table 1: The elemental proportion of (TiNbTa)₂AlC and (TiNbTaVZr)₂AlC¹

	Elemental proportion (at.%)						
	Ti	Nb	Та	V	Zr	Al	С
(TiNbTa) ₂ AlC	7.97	8.50	7.90	-	-	11.54	64.09
(TiNbTaVZr) ₂ AlC	6.82	7.55	7.85	6.22	4.51	14.59	52.46

Supplementary References

1 Chen, L. *et al.* Multiprincipal Element M2FeC (M = Ti,V,Nb,Ta,Zr) MAX Phases with Synergistic Effect of Dielectric and Magnetic Loss. *Advanced Science* **10**, doi:10.1002/advs.202206877 (2023).