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HAMILTONIAN PARAMETERS

We extend the single particle parametrization presented in Ref. [1] to include corrections up to nearest neighbors
potentials and calculate electron-electron interactions (U and V ) including effects of screening of the crystal environ-
ment. The coulomb potential considered (Eq. 4) is presented in Ref. [2] and briefly discussed in section Envelope
Integrals.

We begin with an atomistic Hamiltonian consisting of kinetic energy K̂ and all core potentials
∑

n V̂n. Given

that we are interested in the matrix elements 〈j|Ĥ|i〉, we are going to exploit its functional form and rewrite it as
Ĥ = Ĥi + Ĥ ′ with the single donor hamiltonian Ĥi = K̂ + V̂i consisting in kinetic energy and core potential for the i
donor and Ĥ ′ the perturbation potential due to all other cores. This arrangement of terms is very useful since we are
spanning the Hilbert space with donor (dopant) orbitals, Ĥi|i〉 = −E0 |i〉 where E0 is the single donor binding energy.
We are going to consider Ĥi and restrict Ĥ ′ contribution to nearest neighbor donors neglecting all other terms–this
is an extension of the procedure described in Ref. [1]. Given this, the expression for the hopping will be,

tij = 〈j|Ĥi|i〉+ 〈j|Ĥ ′|i〉 (1a)

≈ −E0S(R) + 〈j|V̂j |i〉 (1b)

= Tij(R)Θv(R) (1c)

Θv =
1

3
[cos (k0Rx) + cos (k0Ry) + cos (k0Rz)] (1d)

where, R = |R| = |Rij | is the interdonor distance. The hopping tij will be a function of E0, the overlap of orbitals i
and j, S(R) = 〈j|i〉, and a correction due to the core potential of j. Solving each term the final expression will be
the product of the oscillatory part Θv and a sum of envelopes integrals, Tij .

In a similar way, the onsite energy expression,

εi = 〈i|Ĥi|i〉+ 〈i|Ĥ ′|i〉 ≈ −E0 +
∑

j=i±1
Ej , (2)

contemplates E0, and corrections due to the two nearest neighbors core potential a function of envelopes only, Ej .
Electron-electron terms are calculated by the formal definition,

Vijkl =

∫
d3r1

∫
d3r2Ψ∗i (r1)Ψ∗j (r2)V (r21) Ψk(r2)Ψl(r1), (3)

but the model is restricted to Viiii = U (Hubbard) and Vjiij = V (Direct), the dominant terms. All integrals are
defined only by the envelopes.

All terms, Ej , Tij , U and V , are presented in section Envelope Integrals.

ENVELOPE INTEGRALS

We consider in this work a complete potential, among electron-electron and electron-core, incorporating screening,

V (r) = ± e2

4πr

(
1

εSi
+

1

ε∗
e−r/r

∗
)
, (4)

where 1/ε∗ = (1/ε0 − 1/εSi), εSi (ε0) Si (vacuum) static dielectric constant respectively, and r∗ is the screening
constant. This potential consists in two parts, (a) a standard bare point charge (∝ 1

r ) part and (b) a screened point



2

charge term (∝ e−r/r∗

r ). All results presented here hold for envelopes as defined in the main text, i.e., for an electron

1, pinned to a donor A with position vectors r1 and RA respectively, F (r1,A) =
(
πa∗3

)−1/2
exp (−r1,A/a∗) where

r1,A = |r1 −RA| as the electron 1 relative position to donor A. Coordinates RA and RB correspond to donors
A and B, and r1 and r2 to electrons 1 and 2, respectively. R = |RB −RA| is the interdonor and r12 = |r2 − r1|
the interelectron distances. We make use of convenient set of dimensionless constants: w = R/a∗, m = R/2r∗,
w+ = (w +m), w− = (w −m), making expressions more compact.

The bare point charge and overlap integrals can be easily performed with a convenient change to prolate spheroidal
coordinates–or spherical coordinates if applicable [3–5],

SAB = 〈F (r1,B)|F (r1,A)〉 =

(
1 + w +

w2

3

)
e−w

IAA = 〈F (r1,A)| 1

r1,B
|F (r1,A)〉 =

1

R

[
1− (1 + w) e−2w

]
IAB = 〈F (r1,B)| 1

r1,B
|F (r1,A)〉 =

1

R

(
w + w2

)
e−w

IAAAA = 〈F (r2,A)F (r1,A)| 1

r12
|F (r1,A)F (r2,A)〉 =

1

asc

5

8

IABBA = 〈F (r2,A)F (r1,B)| 1

r12
|F (r1,B)F (r2,A)〉 =

1

R

[
1−

(
1 +

11

8
w +

3

4
w2 +

1

6
w3

)
e−2w

]
Although the same change of coordinates make equivalent integrals with a screened potential performable, an

increase in complexity make these integrals not so straightforward neither easily found in literature, results are
presented below,

I∗AA = 〈F (r1,A)|e
−r1,B/r∗

r1,B
|F (r1,A)〉 =

1

R

w3

w2
+w

2
−

[
we−2m −

(
w + w2 −m2

)
e−2w

]
I∗AB = 〈F (r1,B)|e

−r1,B/r∗

r1,B
|F (r1,A)〉 =

1

R

w3

w2
+

e−w
[
1 +

w

m
+

w

2m2

(
e−2m − 1

)]
I∗AAAA = 〈F (r2,A)F (r1,A)|e

−r12/r∗

r12
|F (r1,A)F (r2,A)〉 =

1

asc

1

k2+k
2
−

(
k+k−

2
− 4 +

64

k2+

)
I∗ABBA = 〈F (r2,A)F (r1,B)|e

−r12/r∗

r12
|F (r1,B)F (r2,A)〉 =

1

R

w3

24w4
+w

4
−

(
24w5e−2m + Pde

−2w)
here Pd is a polynomial of w and m (as shown below). To highlight that the Hubbard integrals (for a given a∗ and
r∗ parameters) does not depend on R, we express it as a function of k± = (a∗ ± 2r∗) /r∗. In the direct term,

Pd = −24w4(w + w+w−)− w2
+w

2
−
[
6w2 (1 + 2w) + w+w−

(
3 + 6w + 4w2

)]
.

HAMILTONIAN PARAMETERS: EXPLICIT EXPRESSIONS

We present expressions for hamiltonian parameters as a function of envelope integrals in this section EA (onsite),
TAB (hopping), UA (Hubbard) and VAB (direct) terms,

EA = − e2

4πεSi
IAA −

e2

4πεsc
I∗AA

TAB = −E0SAB −
e2

4πεSi
IAB −

e2

4πεsc
I∗AB

UA =
e2

4πεSi
IAAAA +

e2

4πεsc
I∗AAAA

VAB =
e2

4πεSi
IABBA +

e2

4πεsc
I∗ABBA

where e is the electron charge and E0 is the single donor binding energy.



3

EXPLORING ELECTRONIC PHASES BY CHANGES IN INTERDONOR SEPARATION

Different donor-donor distances lead to Hamiltonian parameters that span the phase diagram of spin and charged
ordered states, including the bond-order phase. In Fig. 1, we see that for distances 2.69nm up to 3.46nm, the BOW
state is achievable.
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FIG. 1. Extended Hubbard 1D phase diagram at half filling as in Ref. [6]. Spheres show allowed position for P donors in Si
along [110] direction. The numbers in nm correspond to interdonor distance R0, beginning by R0 = 1.92nm, with black arrows
pointing direction of increasing R0.

CORRELATIONS: BEHAVIOR AT EXTREME TEMPERATURES

We present, for comparison, results for Cj (Fig. 2) and Sj (Fig. 3). In all case, no correlation signature can be
observed for T=300K. For T=0, Cj shows a very short-range correlation relation, while Sj presents correlation length
bigger than chain size. The periodic boundary condition, presented in the main text, implies in correlations in site 8
to be equal to correlations in site 2, for example.

CORRELATIONS: BOUNDARY CONDITIONS

Our periodic boundary conditions were chosen for definiteness. We also have simulations with open boundary
conditions, which we added to the supplemental material. The obvious consequence is the appearance of chain-end
excited states, which account for the minor differences illustrated in Sj results shown in Fig. 4. These results do not
change any of our conclusions.
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Charge-Charge Correlation
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FIG. 2. Calculated charge-charge correlations for extreme temperatures. The low-temperature limit corresponds to T = 0K,
while for the high temperature limit we take arbitrarily T = 300K, which is not physical meaningful (see text). Each box shows
Cj (see color code) as a function of interdonor distance (R0) and position along the chain (d). As expected (a)T=0K shows
maximum correlations and (b) T=300K shows no signature of correlation.
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FIG. 3. Calculated SzSz correlations for extreme temperatures. The low-temperature limit corresponds to T = 0K, while for
the high temperature limit we take arbitrarily T = 300K, which is not physical meaningful (see text). Each box shows Sj (see
color code) as a function of interdonor distance (R0) and position along the chain (d). As expected (a)T=0K shows maximum
correlations and (b) T=300K shows no signature of correlation.
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FIG. 4. Calculated SzSz correlations for extreme temperatures, R0 and site. The low-temperature limit corresponds to T = 0K,
while for the high temperature limit we take arbitrarily T = 300K, which is not physical meaningful (see text). In all cases we
compare periodic and open boundary conditions. Note that differences in the boundary conditions do not change significantly
the calculated correlations and such changes do not affect our conclusions.


