Supplementary Information

In this Supplementary Information, we clarify how the security proof by Lim et al. [S1] can be plugged into
the argument given in Methods to determine a secure key length under the presence of the pattern effect. We
also modify the key length formula by Lim et al. [S1] to accommodate fluctuations in the pulse intensities. We
note that, as pointed out in Ref. [S2], the key rate formula given in Ref. [S1] is not strictly secure for the protocol
assumed in Ref. [S1]. Here we assume a different protocol in which the quantum communication ends after a
predetermined number of pulses have been sent from Alice to Bob, and until then the basis choices ¢4 and xp
are kept secret. In this protocol, the valid data sizes such as the sifted key length become variables instead of
predetermined values. For this type of protocols, the key rate formula given in Ref. [S1] is secure. Security
arguments for protocols with a predetermined sifted key length were given in Refs. [S2, S3], which lead to different
key rate formulas.

Application of the security proof in Ref. [S1]

In addition to the notations used in Methods, we define three sequences included in A as follows.
e d: a sequence whose element d; € {0, 1} is 1 when the i-th pulse is detected by Bob.
e bg: a sequence whose element bg; € {0,1} represents Bob’s bit value when d; = 1.

e e: asequence whose element e; € {0, 1} represents a bit error ba ; & bp ; between Alice and Bob when d; = 1.

Forx=Y,Z and a = S, D, V, define

Nyan(anA) = |{i|la;=a, n;=n, z;=2p; =2, d; = 1}| (1)

Myon(an A) == |[{ila,=a, nj=n, o, =zp;=x, d; =1, e; = 1} (2)
Nea(a,A) = Y Npan(an,A), No(A):=) Nyan(anA), (3)
Mm,a(aa A) = Z Mz,a,n(a» n, A), MI(A) = Z Mz,a,n (aa n, A)a (4)
Sen(n,A) =

> Nuan(an,A) (5)

Vgn(n, A)

> M,an(amn,A) (6)

Let f(a,n) = paexp(—pa)pn/n!, f(n) =3, fla,n), and f(a|n) = f(a,n)/f(n). Let E(-) be the expectation over
a according to the conditional distribution Pr(a|n,A). Then we have

E(Nzan) = f(aln)sen(0,A), E(Myan) = f(aln)vg,(n, A). (7)
Lim et al. used Hoeffding’s inequality
Pr(My,p > E(My,p) — Aln,A) > 1 — exp(—2A%/My), (8)
which implies that the inequality
E(My,p) < M;ED = My p + 6(My, e3) 9)
holds with a probability no smaller than 1 — e, where
3(M, €) := +/(M/2)In(1/e). (10)

They introduced eleven other inequalities,

E(My,y) > My == My,y —6(My,e2) (11)
E(Ngq) < N;fa = Ngo+I(Ny,e1) (z=Y,Z;a=5,D,V) (12)
E(Npa) > Ni,i=Npa—0(Nper) (x=Y,Za=D,V). (13)



As pointed out in Refs. [S4, S5], one may also use a Chernoff bound for a sum of independent variables instead
of Eq. (8), leading to tighter inequalities. Based on the asymmetric decoy-state analysis proposed in [S6], they
combined the 12 inequalities with Eq. (7) to derive the bounds on vy,1, s; 0, and s, 1 as

vy,1 < U}q,l(M;/r,DvM;,V) (14)
Sz,0 2 Si,o(N:,DvN;V) (x=Y,2) (15)
sen > sEa (NS s N o, Nop, Ny, Noy) (e =Y, 2), (16)

where the explicit forms of the functions on the right-hand sides are given in [S1]. Inequalities (14) - (16) can be
regarded as a set of conditions on (a,n, A), and hence we can write them as (a,n, A) € I'. From the union bound,
Pr((a,n,A) €T") > 1 — ¢, with ¢, = 10e; + 2e2. This corresponds to the statement (a) in Methods.

Lim et al. then proved the statement (b) with €, = 9¢ + €0, with a final key length

2
l(a,A) = Lsé,o + 5%,1 - 5%,1}1(?{7%) — Agc — logy 76J7 (17)

cor

where Ag¢ is the cost of the error correction, and qﬁg is defined as

U ’U}g,l U}gl L L
¢Z =7 +716 7 5v,1:521 | » (18)
5y,1 Sy,1
(c+d)(1—b)b crd 1
b,c,d) = 1 — . 19
v(a,b,¢,d) \/ cdin2 22\ ed(1 - byba? (19)

Applying the argument in Methods, it follows that the protocol with PS and AKD under the pattern effect is
2(€q + €p)-secure with a final key length

Z l(aﬂ',PS’A‘n’,PS). (20)
we{even, odd}
Key length formula under intensity fluctuations

Here we consider the case where the mean photon number p, of each pulse is not precisely known and may be
varied from pulse to pulse. We assume that we know the upper and lower bounds on p,, namely,

py < pa < pg (a=8,D,V). (21)

An argument to cover such a situation was given in Ref. [S7], but our analysis here is different and tighter.
In the following, we assume that 1 > ,ug, ué > u% + u‘l}, ué > ,ug,

Uy2 _ (,L)2 ps
N )i O iy (22)
(1g) ets

and further,

L _ U
kY < M. (23)
Hs

These assumptions are usually met if the fluctuations are small. The values of f(a,n) are bounded as

fHa,n) < fla,n) < fY(a,n) (24)
f5(a,0) = paexp(—py ), fY(a,0) = pa exp(—u) (25)

FE(a,n) = paexp(—pl) (ph)"/nl, fY(a,n) = paexp(—pd ) (ud)"/nt (n > 1). (26)



The difference from the ideal case lies in Eq. (7), which must be replaced by inequalities involving the known values
f¥(a,n) and fY(a,n). Then we can derive modified formulas for v{/,, s%, and s., appearing in Eqgs. (14)-(16).

We first determine le(MYD7 My, v)- We have, for all n,

MOl ) _ L (SDO) Y Y,

FE(D,0) ~ fU(V,0)  nlf(n) \FE(D,0)"P ™ FU(V;0

This leads to

EMy,pn) EMyyvy) >0
fH(D,0) fewv0) —

In general, for g]U >& > £jL >0, a; >0, and arél — axél — a3¢l > 0, we have bounds

a&f — axld —a3fl 1§ —aséo —asés _ ar&l — axtd — asé¥
el +¢dd T G+&b+E T Vel ek

Since (D, 1)/fH(D,0) - fU(V,1)/fV(V,0) > pb — u} > 0, we have
JDI VL (fL(D,m_fU(v,l)) 1

fED,0)  fU(V,0) T~ \fH(D,0)  fYU(V,0)) 7HY
holds with
= U8 + FHD, 1) + UV
Hence,
E(Myp) EMyy)  E(Myp,) EMyvi) <fL(D71) U 1)) Vy;1
fED,0)  fU(V,0) T fE(D,0)  fY(V,0) T \fH(D,0) fU(V,0)) TV
and

-1 U L
Iz + % =
ULU L e“D Ueu'v (& DMY,D e VMY,V
< _
Uy 1 ”Y1 = MD —Hyv—T ol D oy :

In a similar way we can determine s (Nw p» N, y)- For n > 1, we have

FDn)  F(Vin) 1 [ f(D) .y f(V,D)
FE(D,1) (fL(D,l)MD ™ ) =0
FU(

UV nlf(n)
Since fL(V,0)/fY(V,1) — D,0)/f*(D,1) > 0, we have

E(Noew)  E(Nep) _ E(Navo)  E(Napo)
fUV.A) T FEDY) T fU(VL)  FE(D )

holds with 7LV = fE(S,0) + fE(D,0) + fY(V,0), and

L\ "t LY N Ui N+
. o [ e#v  eto ppe"v N,y pyett N L
82,0 SwO = To MD —Hv— T - :
e

IN

<fU(VaO) fL(D,O)) Sz,0
v D)

D pv PD
Finally, we determine s% (Nz 5 Nx p» V. s NF vV, ). Define

Wh — 1y
n

Hs

Kp 1=

where k5 > ko > 0. Since a1 — 71 > (a7 — g ) (a+ B) = a — " + aB(a" 2 — gn72) >

a>pB>0and a+ 3 <1, we have k,—1 > K, (n > 2). We then obtain, for n > 2,

v f(Sin) _ f(Dln)  fVIn)  mopg — pp + 1y ps (55

"2YL(S,0)  fUD,0) | E(V,00 T alf(n) nlf(n)

— Kyn) > 0.

(27)

(28)

(29)

(30)

(31)

(32)

(34)

(37)

a™ — " for

(38)



For a, 8,7 > 0 that satisfy afY(S,0) < 8fY(D,0) and BfY(D,0) > vfX(V,0),

o - o - BfY
W F(S10)— BHDIO) 4 4f(V]0) = CLE.0 = BID0) £ 9/ (V,0) | af(8,0) = BfY(D,0) +7/(V,0)

f(8,0)+ f(D,0) + f(V,0) = f(S5,0) + fY(D,0) + f(V,0)
> af(S,0) — ﬂfU(Dv()) —|—’ny(‘/'70) > afL(Sa 0) — ﬂfU(DaO) +7fL(V>O) (39)
—f(S,0)+ fU(D0) + fE(V,0) T fE(S,0)+ fU(D,0) + fE(V,0)
Hence, combined with Eq. (22), we have
v f(510) — f(Dlo)  f(V]0) Ky
" FE,0) 7U(D0) T EV0) T A o
Since fL(D,1)/fY(D,0) — ¥ fY(S,1)/fL(S,0) — fY(V,1)/fE(V,0) > 0 from Eq. (23), it holds that
SN O (RS (L N O L NPT 81 U "
2 FE(S,0) © fUD,0)  fE(V,0) T\ TP FE(S,0) C fU(D,0)  fE(V,0)) AfUE
and
_KUE(NLS) N E(Nyp) E(N.v) _ (—KU fE(s,1) N YD, 1) R, 1)) Su,1 Kb 20 (12)
2 fE(S,0) T fU(D,0)  fE(V,0) T 2 fE(S,0) © fU(D,0)  fE(V,0)) AfUE UL

We thus obtain

—1 U L U
U L U L ws N Iz - wy Nt
L LUL U €S y et L€' v Szo  ¢SN.g e'oN, p VN y
> sk = kS ph— + 1= — pb—r - + -
Sz,1 Z Sp1 =T Ko tbg on 12%5) ol Nve 2 Ka UL .

PD bv
(43)

The final secure key length is still given by Egs. (17)—(19) as in the nonfluctuating case, except that the
parameters s o, 5% 1, vy.;, and sy, are defined by Egs. (33), (36), and (43). The numerical calculation for Figure
3 in the main text was done by choosing € = €; = €3 = 1071/21 and €., = 27128, which ensures that the final
concatenated key after AKD of length (20) is 2 x (1071 4 27128)secure. We chose the observed sifted key length
to be Nz =1 x 108, and chose the other lengths proportionally as

NZpaDam

Y Ap— o _
psDsz +ppDpz + pvDvz

(44)

,a

and M, o = Ny oCaz-
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