
1

Supplementary Information

In this Supplementary Information, we clarify how the security proof by Lim et al. [S1] can be plugged into
the argument given in Methods to determine a secure key length under the presence of the pattern effect. We
also modify the key length formula by Lim et al. [S1] to accommodate fluctuations in the pulse intensities. We
note that, as pointed out in Ref. [S2], the key rate formula given in Ref. [S1] is not strictly secure for the protocol
assumed in Ref. [S1]. Here we assume a different protocol in which the quantum communication ends after a
predetermined number of pulses have been sent from Alice to Bob, and until then the basis choices xA and xB

are kept secret. In this protocol, the valid data sizes such as the sifted key length become variables instead of
predetermined values. For this type of protocols, the key rate formula given in Ref. [S1] is secure. Security
arguments for protocols with a predetermined sifted key length were given in Refs. [S2, S3], which lead to different
key rate formulas.

Application of the security proof in Ref. [S1]

In addition to the notations used in Methods, we define three sequences included in Λ as follows.

• d: a sequence whose element di ∈ {0, 1} is 1 when the i-th pulse is detected by Bob.

• bB : a sequence whose element bB,i ∈ {0, 1} represents Bob’s bit value when di = 1.

• e: a sequence whose element ei ∈ {0, 1} represents a bit error bA,i⊕bB,i between Alice and Bob when di = 1.

For x = Y, Z and a = S,D, V , define

Nx,a,n(a,n,Λ) := |{i | ai = a, ni = n, xi = xB,i = x, di = 1}| (1)

Mx,a,n(a,n,Λ) := |{i | ai = a, ni = n, xi = xB,i = x, di = 1, ei = 1}| (2)

Nx,a(a,Λ) :=
∑
n

Nx,a,n(a,n,Λ), Nx(Λ) :=
∑
n,a

Nx,a,n(a,n,Λ), (3)

Mx,a(a,Λ) :=
∑
n

Mx,a,n(a,n,Λ), Mx(Λ) :=
∑
n,a

Mx,a,n(a,n,Λ), (4)

sx,n(n,Λ) :=
∑
a

Nx,a,n(a,n,Λ) (5)

vx,n(n,Λ) :=
∑
a

Mx,a,n(a,n,Λ) (6)

Let f(a, n) = pa exp(−µa)µ
n
a/n!, f(n) =

∑
a f(a, n), and f(a|n) = f(a, n)/f(n). Let E(·) be the expectation over

a according to the conditional distribution Pr(a|n,Λ). Then we have

E(Nx,a,n) = f(a|n)sx,n(n,Λ), E(Mx,a,n) = f(a|n)vx,n(n,Λ). (7)

Lim et al. used Hoeffding’s inequality

Pr(MY,D ≥ E(MY,D)−∆|n,Λ) ≥ 1− exp(−2∆2/MY ), (8)

which implies that the inequality

E(MY,D) ≤ M+
Y,D := MY,D + δ(MY , ϵ2) (9)

holds with a probability no smaller than 1− ϵ2, where

δ(M, ϵ) :=
√

(M/2) ln(1/ϵ). (10)

They introduced eleven other inequalities,

E(MY,V ) ≥ M−
Y,V := MY,V − δ(MY , ϵ2) (11)

E(Nx,a) ≤ N+
x,a := Nx,a + δ(Nx, ϵ1) (x = Y, Z; a = S,D, V ) (12)

E(Nx,a) ≥ N−
x,a := Nx,a − δ(Nx, ϵ1) (x = Y, Z; a = D,V ). (13)
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As pointed out in Refs. [S4, S5], one may also use a Chernoff bound for a sum of independent variables instead
of Eq. (8), leading to tighter inequalities. Based on the asymmetric decoy-state analysis proposed in [S6], they
combined the 12 inequalities with Eq. (7) to derive the bounds on vY,1, sx,0, and sx,1 as

vY,1 ≤ vUY,1(M
+
Y,D,M−

Y,V ) (14)

sx,0 ≥ sLx,0(N
+
x,D, N−

x,V ) (x = Y, Z) (15)

sx,1 ≥ sLx,1(N
+
x,S , N

+
x,D, N−

x,D, N+
x,V , N

−
x,V ) (x = Y, Z), (16)

where the explicit forms of the functions on the right-hand sides are given in [S1]. Inequalities (14) - (16) can be
regarded as a set of conditions on (a,n,Λ), and hence we can write them as (a,n,Λ) ∈ Γ. From the union bound,
Pr((a,n,Λ) ∈ Γ) ≥ 1− ϵa with ϵa = 10ϵ1 + 2ϵ2. This corresponds to the statement (a) in Methods.
Lim et al. then proved the statement (b) with ϵb = 9ϵ+ ϵcor with a final key length

l(a,Λ) = ⌊sLZ,0 + sLZ,1 − sLZ,1h(ϕ
U
Z )− λEC − log2

2

ϵcorϵ6
⌋, (17)

where λEC is the cost of the error correction, and ϕU
Z is defined as

ϕU
Z :=

vUY,1
sLY,1

+ γ

(
ϵ,
vUY,1
sLY,1

, sLY,1, s
L
Z,1

)
, (18)

γ(a, b, c, d) =

√
(c+ d)(1− b)b

cd ln 2
log2

(
c+ d

cd(1− b)b

1

a2

)
. (19)

Applying the argument in Methods, it follows that the protocol with PS and AKD under the pattern effect is
2(ϵa + ϵb)-secure with a final key length ∑

π∈{even, odd}

l(aπ,PS,Λπ,PS). (20)

Key length formula under intensity fluctuations

Here we consider the case where the mean photon number µa of each pulse is not precisely known and may be
varied from pulse to pulse. We assume that we know the upper and lower bounds on µa, namely,

µL
a ≤ µa ≤ µU

a (a = S,D, V ). (21)

An argument to cover such a situation was given in Ref. [S7], but our analysis here is different and tighter.
In the following, we assume that 1 ≥ µU

S , µ
L
S ≥ µU

D + µL
V , µ

L
D ≥ µU

V ,

κU
2 :=

(µU
D)2 − (µL

V )
2

(µL
S)

2
≤ eµ

L
S

eµ
U
S

, (22)

and further,

κU
2 ≤ µL

D − µU
V

µU
S

. (23)

These assumptions are usually met if the fluctuations are small. The values of f(a, n) are bounded as

fL(a, n) ≤ f(a, n) ≤ fU (a, n) (24)

fL(a, 0) = pa exp(−µU
a ), fU (a, 0) = pa exp(−µL

a ) (25)

fL(a, n) = pa exp(−µL
a )(µ

L
a )

n/n!, fU (a, n) = pa exp(−µU
a )(µ

U
a )

n/n! (n ≥ 1). (26)
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The difference from the ideal case lies in Eq. (7), which must be replaced by inequalities involving the known values
fL(a, n) and fU (a, n). Then we can derive modified formulas for vUY,1, s

L
x,0, and sLx,1 appearing in Eqs. (14)-(16).

We first determine vUY,1(M
+
Y,D,M−

Y,V ). We have, for all n,

f(D|n)
fL(D, 0)

− f(V |n)
fU (V, 0)

=
1

n!f(n)

(
f(D, 0)

fL(D, 0)
µn
D − f(V, 0)

fU (V, 0)
µn
V

)
≥ 0. (27)

This leads to

E(MY,D,n)

fL(D, 0)
− E(MY,V,n)

fU (V, 0)
≥ 0. (28)

In general, for ξUj ≥ ξj ≥ ξLj ≥ 0, aj ≥ 0, and a1ξ
L
1 − a2ξ

U
2 − a3ξ

U
3 ≥ 0, we have bounds

a1ξ
L
1 − a2ξ

U
2 − a3ξ

U
3

ξL1 + ξU2 + ξU3
≤ a1ξ1 − a2ξ2 − a3ξ3

ξ1 + ξ2 + ξ3
≤ a1ξ

U
1 − a2ξ

L
2 − a3ξ

L
3

ξU1 + ξL2 + ξL3
. (29)

Since fL(D, 1)/fL(D, 0)− fU (V, 1)/fU (V, 0) ≥ µL
D − µU

V ≥ 0, we have

f(D|1)
fL(D, 0)

− f(V |1)
fU (V, 0)

≥
(
fL(D, 1)

fL(D, 0)
− fU (V, 1)

fU (V, 0)

)
1

τULU
1

(30)

holds with

τULU
1 := fU (S, 1) + fL(D, 1) + fU (V, 1) (31)

Hence,

E(MY,D)

fL(D, 0)
− E(MY,V )

fU (V, 0)
≥ E(MY,D,1)

fL(D, 0)
− E(MY,V,1)

fU (V, 0)
≥
(
fL(D, 1)

fL(D, 0)
− fU (V, 1)

fU (V, 0)

)
vY,1
τULU
1

(32)

and

vY,1 ≤ vUY,1 := τULU
1

(
µL
D

eµ
U
D

eµ
L
D

− µU
V

eµ
L
V

eµ
U
V

)−1(
eµ

U
DM+

Y,D

pD
−

eµ
L
V M−

Y,V

pV

)
. (33)

In a similar way we can determine sLx,0(N
+
x,D, N−

x,V ). For n ≥ 1, we have

f(D|n)
fL(D, 1)

− f(V |n)
fU (V, 1)

=
1

n!f(n)

(
f(D, 1)

fL(D, 1)
µn−1
D − f(V, 1)

fU (V, 1)
µn−1
V

)
≥ 0. (34)

Since fL(V, 0)/fU (V, 1)− fU (D, 0)/fL(D, 1) ≥ 0, we have

E(Nx,V )

fU (V, 1)
− E(Nx,D)

fL(D, 1)
≤ E(Nx,V,0)

fU (V, 1)
− E(Nx,D,0)

fL(D, 1)
≤
(
fU (V, 0)

fU (V, 1)
− fL(D, 0)

fL(D, 1)

)
sx,0
τLLU
0

(35)

holds with τLLU
0 := fL(S, 0) + fL(D, 0) + fU (V, 0), and

sx,0 ≥ sLx,0 := τLLU
0

(
µL
D

eµ
U
V

eµ
L
V

− µU
V

eµ
L
D

eµ
U
D

)−1(
µL
Deµ

U
V N−

x,V

pV
−

µU
V e

µL
DN+

x,D

pD

)
. (36)

Finally, we determine sLx,1(N
+
x,S , N

+
x,D, N−

x,D, N+
x,V , N

−
x,V ). Define

κn :=
µn
D − µn

V

µn
S

(37)

where κU
2 ≥ κ2 ≥ 0. Since αn−1 − βn−1 ≥ (αn−1 − βn−1)(α + β) = αn − βn + αβ(αn−2 − βn−2) ≥ αn − βn for

α ≥ β ≥ 0 and α+ β ≤ 1, we have κn−1 ≥ κn (n ≥ 2). We then obtain, for n ≥ 2,

κU
2

f(S|n)
fL(S, 0)

− f(D|n)
fU (D, 0)

+
f(V |n)
fL(V, 0)

≥ κ2µ
n
S − µn

D + µn
V

n!f(n)
=

µn
S

n!f(n)
(κ2 − κn) ≥ 0. (38)
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For α, β, γ > 0 that satisfy αfU (S, 0) ≤ βfU (D, 0) and βfU (D, 0) ≥ γfL(V, 0),

αf(S|0)− βf(D|0) + γf(V |0) = αf(S, 0)− βf(D, 0) + γf(V, 0)

f(S, 0) + f(D, 0) + f(V, 0)
≥ αf(S, 0)− βfU (D, 0) + γf(V, 0)

f(S, 0) + fU (D, 0) + f(V, 0)

≥ αf(S, 0)− βfU (D, 0) + γfL(V, 0)

f(S, 0) + fU (D, 0) + fL(V, 0)
≥ αfL(S, 0)− βfU (D, 0) + γfL(V, 0)

fL(S, 0) + fU (D, 0) + fL(V, 0)
. (39)

Hence, combined with Eq. (22), we have

κU
2

f(S|0)
fL(S, 0)

− f(D|0)
fU (D, 0)

+
f(V |0)
fL(V, 0)

≥ κU
2

τLUL
0

. (40)

Since fL(D, 1)/fU (D, 0)− κU
2 f

U (S, 1)/fL(S, 0)− fU (V, 1)/fL(V, 0) ≥ 0 from Eq. (23), it holds that

−κU
2

f(S|1)
fL(S, 0)

+
f(D|1)
fU (D, 0)

− f(V |1)
fL(V, 0)

≤
(
−κU

2

fL(S, 1)

fL(S, 0)
+

fU (D, 1)

fU (D, 0)
− fL(V, 1)

fL(V, 0)

)
1

τLUL
1

, (41)

and

−κU
2

E(Nx,S)

fL(S, 0)
+

E(Nx,D)

fU (D, 0)
− E(Nx,V )

fL(V, 0)
≤
(
−κU

2

fL(S, 1)

fL(S, 0)
+

fU (D, 1)

fU (D, 0)
− fL(V, 1)

fL(V, 0)

)
sx,1
τLUL
1

− κU
2 sx,0
τLUL
0

. (42)

We thus obtain

sx,1 ≥ sLx.1 := τLUL
1

(
−κU

2 µ
L
S

eµ
U
S

eµ
L
S

+ µU
D

eµ
L
D

eµ
U
D

− µL
V

eµ
U
V

eµ
L
V

)−1 [
κU
2

(
sLx,0
τLUL
0

−
eµ

U
S N+

x,S

pS

)
+

eµ
L
DN−

x,D

pD
−

eµ
U
V N+

x,V

pV

]
.

(43)

The final secure key length is still given by Eqs. (17)–(19) as in the nonfluctuating case, except that the
parameters sLZ,0, s

L
Z,1, v

U
Y,1, and sLY,1 are defined by Eqs. (33), (36), and (43). The numerical calculation for Figure

3 in the main text was done by choosing ϵ = ϵ1 = ϵ2 = 10−11/21 and ϵcor = 2−128, which ensures that the final
concatenated key after AKD of length (20) is 2× (10−11 +2−128)-secure. We chose the observed sifted key length
to be NZ = 1× 108, and chose the other lengths proportionally as

Nx,a =
NZpaD̃ax

pSD̃SZ + pDD̃DZ + pV D̃VZ

(44)

and Mx,a = Nx,aeax.
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