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1) Ramsey sequence 

We recall the expression of the evolution operator for the nuclear spin when it is under the 

influence of a monochromatic pulse with the pulsation pq of a |𝑝⟩ ↔ |𝑞⟩ Rabi oscillation with a 

phase shift 𝜑:  

R𝜑
|𝑝⟩,|𝑞⟩(θ) = 𝑒𝑥𝑝 [ 𝑖 𝜃 (cos 𝜑 𝝈𝑥

|𝑝⟩,|𝑞⟩
+ sin𝜑 𝝈𝑦

|𝑝⟩,|𝑞⟩
) /2] (1) 

Given a state |𝑝⟩, the two paths of an interferometer are built by creating a quantum superposition 

with the partner state |𝑞⟩ of a |𝑝⟩ ↔ |𝑞⟩ Rabi oscillation. This is merely achieved by applying a 

π/2 pulse of pulsation ω𝑝𝑞 during the time  = (𝜋/2) ω𝑝𝑞⁄ : 

|𝑝⟩  →  R𝜑
|𝑝⟩,|𝑞⟩(π/2)|𝑝⟩ =  

|𝑝⟩−𝑖 𝑒𝑖𝜑 |𝑞⟩

√2
  (2) 



 

The states |𝑝⟩ and |𝑞⟩ can be manipulated separately by microwave pulses of distinct pulsations 

what will feed them with independent phases 𝜑p and 𝜑q: 

|𝑝⟩−𝑖 𝑒𝑖𝜑 |𝑞⟩

√2
 →   

𝑒𝑖𝜑𝑝  |𝑝⟩−𝑖 𝑒𝑖𝜑 𝑒𝑖𝜑𝑞|𝑞⟩

√2
  (3) 

 

At any instant of a manipulation the signals of the two arms of the interferometer can be merged 

back via the application of the same π/2 pulse: 

R𝜑
|𝑝⟩,|𝑞⟩(π/2)

𝑒𝑖𝜑𝑝  |𝑝⟩−𝑖 𝑒𝑖𝜑 𝑒𝑖𝜑𝑞|𝑞⟩

√2
=  

(𝑒𝑖𝜑𝑝−𝑒𝑖𝜑𝑞) |𝑝⟩−𝑖 𝑒𝑖(𝜑−𝜑𝑝−𝜑𝑞) (𝑒−𝑖𝜑𝑝−𝑒−𝑖𝜑𝑞)|𝑞⟩

2
    (4) 

 

In this final state the probability of being in the state |𝑝⟩ and the one of being in the state |𝑞⟩ are 

respectively given by  

cos2 (
𝜑𝑝−𝜑𝑞

2
)    and   sin2 (

𝜑𝑝−𝜑𝑞

2
)  (5) 

 

which reveals the difference in the phases separately accumulated by the two states from the time 

at which the first π/2 pulse was applied up to the time at which the second π/2 pulse was started. 

 

 

2) Geometric phase 

Considering a nuclear spin |𝐼⟩ evolving, with a Hamiltonian H, in its Hilbert space of dimensions 

2I+1 and their associated fiber bundle of dimension one. The phase of a spin state, defined as the 

argument of its inner product, is affected both by the evolution in the Hilbert space (dynamic 

phase) and by the continuous connection in between each fiber “traveled” by the spin during the 

dynamic (geometric phase). 

As a consequence, when a spin describes a closed path in its Hilbert space, depending on the 

geometry of this path along the fibers, the initial and the final state can differ from a geometric 

phase factor. The expression of this phase accumulated on a circuit C is30:  

𝛾𝐺(𝐶) = 𝑖 ∮ ⟨𝐼(𝑅)|
𝜕

𝜕𝑅
𝐼(𝑅)⟩ . 𝑑𝑅

 

𝐶
  (6) 

To create spin trajectory, it is convenient to use rotation on its associated Hilbert space. We 

derive the general expression of the inner product in the integral considering first a rotation of 

angle θ of generator Iy followed by a rotation of angle φ of generator Iz: 



⟨𝐼(𝑅)|
𝜕

𝜕𝑅
𝐼(𝑅)⟩ = ⟨𝐼| exp(𝑖θ𝐼𝑦) exp(𝑖φ𝐼𝑧)

𝜕

𝜕θ
exp(−𝑖φ𝐼𝑧) exp(−𝑖θ𝐼𝑦) |𝐼⟩ . 𝜕θ +

⟨𝐼| exp(𝑖θ𝐼𝑦) exp(𝑖φ𝐼𝑧)
𝜕

sin𝜃𝜕𝜑
exp(−𝑖φ𝐼𝑧) exp(−𝑖θ𝐼𝑦) |𝐼⟩ . sin 𝜃 𝜕φ = ⟨𝐼|−i𝐼𝑦|𝐼⟩. 𝜕θ +

 ⟨𝐼| exp(𝑖θ𝐼𝑦)
−𝑖𝐽𝑧

sin𝜃
exp(−𝑖θ𝐼𝑦) |𝐼⟩ . sin 𝜃 𝜕φ   (7) 

Because 𝐼y is off-diagonal, the first term is equal to zero. Using commutation relation, we obtain 

finally the expression:  

   ⟨𝐼(𝑅)|
𝜕

𝜕𝑅
𝐼(𝑅)⟩ =  ⟨𝐼| exp(𝑖θ𝐼𝑦)

−𝑖𝐼𝑧

sin𝜃
exp(−𝑖θ𝐼𝑦) |𝐼⟩ . sin 𝜃 𝜕φ =

⟨𝐼|
−𝑖 (𝐽𝑧 cos𝜃+𝐽𝑥 sin𝜃)

sin𝜃
|𝐼⟩ . sin 𝜃 𝜕φ = −𝑖 𝐼 cos 𝜃  dφ  (8) 

 

In all the protocol we present, the circuit C is the following: 

∮ = ∫  
0

𝜃=𝜋
∫  
𝜑′

𝜑=0
∫  
𝜋

𝜃=0

 

𝐶
   (9) 

giving the final expression of the geometric phase:  

𝛾𝐺 = 2𝐼𝜑   (10) 

When we drive only one transition, it is equivalent to measure the phase accumulated by a spin 

½, giving the expression 𝛾𝐺 = 𝜑. When we drive simultaneously two transitions, it is equivalent 

to measure the phase accumulated by a spin 1, giving the expression 𝛾𝐺 = 2𝜑.  

 

3) iSWAP quantum gate  

 

We display the comparison in between the theoretical and the experimental evolution of the 

different state populations as the function of the pulse duration. 



 

Figure. 1SM. Experimental (a-b) and theoretical (c-d) evolution of each state population as the 

function of the pulse duration for the two iSWAP phase measurement.   

 

4) 3-state coherence time measurement 

 

A complete derivation of the interaction of a multi-level system with a multi-frequency pulse is 

detailed in supplementary material of Ref. 12. For a 3-state (of respective eigen-energy 휀0, 휀1  

and  휀2) 2-frequency pulse, associated with Rabi pulsation 𝜔1 and 𝜔2 between the state 0 and 1 



and states 1 and 2 respectively. The expression of the Hamiltonian in the generalized rotating 

frame is the following:  

 

𝐻𝑔.𝑟.𝑓 = ħ

(

 
 
0

𝜔1

2
0

𝜔1

2
𝛿1

𝜔2

2

0
𝜔2

2
𝛿2
)

 
 

    (11) 

 

 

with 𝛿1 = (휀1 − 휀0) ħ⁄ − 𝜔1  and 𝛿2 = (휀2 − 휀1) ħ⁄ − 𝜔2 . In our case, to simplify the dynamic, 

we decide to drive both resonance such that 𝜔1 = 𝜔2 = 𝜔 and that 𝛿2 = 0, leading to the 

Hamiltonian:  

 

𝐻 =
ħ

2
(
0 𝜔 0
𝜔 2𝛿 𝜔
0 𝜔 0

)   (12) 

 

For a d-level system, a Hadamard gate creates a coherent superposition of all the states of the 

system:  

𝑈𝐻𝑎𝑑|𝛹𝑖⟩ =
1

√𝑑
∑ |𝑛⟩𝑑−1
𝑛=0 = |𝛹𝑠⟩  (13) 

 

An efficient way of implementing this gate is to create a resonant condition in between the initial 

state and the superposed state: 

⟨𝛹𝑠|𝐻|𝛹𝑠⟩ = ⟨𝛹𝑖|𝐻|𝛹𝑖⟩    (14) 

 

After derivation, choosing | − 1/2⟩ as an initial state, this condition fixes the relation in between 

𝛿 and 𝜔: 𝜔 = 𝛿 

 



Because of the resonant condition, the full system oscillates in between the initial state and the 

superposed state. As a consequence, starting from state | − 1/2⟩, after a half period (T/2=
𝜋√3

3Ω
), 

the system is fully in the superposed state:  

 

𝑈𝐻𝑎𝑑|𝛹𝑖⟩ = exp (−𝑖𝐻
𝜋√3

3𝜔
) . (

0
1
0
) =

1

√3
(
1
1
1
)  (15) 

 

Then the system is let under free evolution, meaning that the Hamiltonian is:  

 

𝐻𝑊 =
ħ

2
(
0 0 0
0 2𝜔 0
0 0 0

)   (16) 

 

During a time τ: 

 

𝑈𝑊. 𝑈𝐻𝑎𝑑|𝛹𝑖⟩
1

√3
exp(−𝑖𝐻𝑊τ). (

1
1
1
) =  

1

√3
(
1
𝑒𝑖𝜔τ

1
)  (17) 

 

Finally the second Hadamard gate is implemented, which results in the state: 

 

𝑈𝐻𝑎𝑑 . 𝑈𝑊. 𝑈𝐻𝑎𝑑|𝛹𝑖⟩ =
1

√3
exp (−𝑖𝐻

𝜋√3

3𝜔
) . (

1
𝑒𝑖𝜔τ

1
) =  

1

3
(
𝑒𝑖𝜔τ − 1
𝑒𝑖𝜔τ + 2
𝑒𝑖𝜔τ − 1

)  (18) 


