
Supplementary material

A. Experimental setup

The full measurement setup is shown in Fig. S1. The device was placed in a dilution refrigerator at a base temperature
of 20 mK, and the transmission measurements were performed using a Vector Network Analyzer (VNA). An additional
microwave source was used for two-tone measurements, while a global magnetic field was applied via an external
superconducting coil. Both the coil and the sample were held inside a mu-metal magnetic shield which is coated on
the inside with a light absorber made out of epoxy loaded with silicon and carbon powder. The output line included
two isolators at 20 mK, a HEMT amplifier at 4 K and a room temperature amplifier. The input line is attenuated at
various stages, including a home-made filter that prevents stray-radiations from reaching the sample. We adopted a
coaxial geometry with a dissipative dielectric (reference RS-4050 from resin systems company). The bandwidth of the
measurement setup goes from 2.5 GHz to 13 GHz.
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FIG. S1. Experimental setup.

B. Chain dispersion relation

In this section we explain how we experimentally obtained the dispersion relation of the chain, and how we used it to
determine the model parameters LJ,min, Cg and CJ that characterize the chain. (See Methods - Sample fabrication and
parameters in the main text.) The experimental data in Fig. S2a (reproduced from Fig. 2b in main text) was obtained
by first tuning the external magnetic field to a point where ΦT = Φ0/2 so that EJ,T(ΦT) = 0. (Green dashed line in
the inset to Fig. S2a.) This leads to vanishingly low transmon frequency. As a result, the transmon does not contribute
any degrees of freedom that can hybridize with the bare modes of the chain. In order to realize a good fit, one needs
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to measure the spectrum in a wide frequency band (0.1 GHz to 20 GHz). One is however limited by the bandwidth of
the setup (2.5 GHz to 13 GHz). This difficulty can be overcome by performing a two-tone measurement[1–3], taking
advantage of the fact that the array is not perfectly linear. As a consequence, when applying a microwave tone at
a given resonance of the chain, the other resonant frequencies are shifted by the cross Kerr effect. With the Vector
Network Analyzer (VNA), we proceed by measuring the transmission of the system at a fixed frequency ωVNA = ω1

where ω1 matches a given resonance frequency of the circuit. Then with a microwave source we apply a second tone at
a variable frequency ωMW. Whenever ωMW equals any other resonance frequency of the circuit, ω1 shifts to ω̃1 due to
the cross Kerr effect, so that ωVNA 6= ω̃1, which leads to a dip in transmission. The value of ωMW at these dips provides
all the resonances of the system. Because we measure at a constant frequency ωVNA inside the setup bandwidth, we
are not limited by the frequency range of our measurement setup anymore. A typical two-tone measurement is shown
in Fig. S2b, where we fit each dip separately with a Lorentzian. The center frequencies obtained from these fits are
the experimental points in Fig. S2a for the eigenmodes of the chain.

FIG. S2. Extraction of the individual chain modes. a Dispersion relation of the chain, reproduced from Fig. 2b in main
text. The inset shows a colourscale plot of the transmission amplitude as function of ΦT and probe frequency, with a green line
indicating the fixed flux value employed to determine the dispersion relation of the uncoupled chain. b Two tone measurement
of the modes of the array. The frequency trace is along the green line in panel a. The inset shows a lorentzian fit of one of
the dips. The measurement was taken with PVNA = −10 dBm and PMW = 10 dBm at room temperature. The frequency of the
VNA was set to ωVNA = 5.1692 GHz.

In order to fit the experimental data for the chain modes, we assume that the left end of the chain is open when
ΦT = 0.5 Φ0 (EJ,T = 0). We also take the right end of the chain to be grounded. Given that the chain SQUIDS are
designed to have a Josephson energy several thousand times their charging energy (EJ/EC = 8400), we can model
the Josephson junctions in the chain as linear inductors with inductance LJ(ΦC) = ϕ2

0/EJ(ΦC), with ϕ0 = ~/2e the
reduced flux quantum. The theoretical dispersion relation can be obtained applying Kirchoff’s laws to one chain cell
of length a. (See the circuit diagram in Fig. 1a in the main text.) Denoting the flux at node j as Φj , we obtain

1

LJ(ΦC)
(Φj−1 − Φj) + CJ

(
Φ̈j−1 − Φ̈j

)
− 1

LJ(ΦC)
(Φj − Φj+1)− CJ

(
Φ̈j − Φ̈j+1

)
− CgΦ̈j = 0. (S1)

Now if we use as ansatz a plane waves Φj = A exp i (ωt− κja) + B exp i (−ωt+ κja) and solve for ω we obtain the
dispersion relation for a bare chain

ω (κ) =
1√

LJ(ΦC)CJ

√
1− cos (κa)

1− cos (κa) +
Cg

2CJ

. (S2)

The boundary conditions at site 0 (vacuum) and at site N (grounded) read

∂Φj
∂(ja)

∣∣∣∣
j=0

= 0, (S3)

Φ̇(N) = 0, (S4)

which restricts the values of κa to

κa =

(
n− 1

2

)
π

N
n = 1, 2, . . . , N. (S5)
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Since the areas of chain SQUID loops are much smaller than that of the transmon SQUID loop, at ΦT = Φ0/2 we
can tune the flux ΦC through each chain SQUID to a multiple of Φ0, so that the chain SQUID inductance is minimal,
i.e. LJ(ΦC) = LJ,min, without appreciably changing the transmon flux ΦT from its value Φ0/2. (See Eq. (3) in the
Methods section of the main text.) Using Eq. (S2) with the κ values from Eq. (S5), we fit the experimental data in
Fig. S2a (orange curve), thus fixing the minimal Josephson inductance LJ,min and the capacitance to ground Cg. We
obtain the Josephson self-capacitance CJ using the empirical formula[4]

CJ = 45 fF/µm2 × junction area. (S6)

The error for CJ is just the error we obtain for the measurement of the Josephson junction’s area using a Scanning
Electron Microscope. The error for LJ,min and Cg are the values where the deviation between the experiment and the
fit was below 5 %.

C. Additional phase shift data

In this section we present a further selection of relative phase shift data δφn obtained for various (ΦT,ΦC) combina-
tion. This is only a small subset of the full data set, and the agreement between theory and experiment exhibited here
is representative of the full data set. Results presented here complement Fig. 4a of the main text. The parameters
used to obtain the theory curves are the ones of Table S1.

FIG. S3. Consistency of the theoretical model for several transmon and chain fluxes. The various panels show the
relative phase shift δφn of the discrete chain modes as a function of mode frequency ωn for different transmon fluxes ΦT and
chain fluxes ΦC. The solid lines are fits using Eq. (14) of the main text with the parameters of the circuit kept fixed.



4

D. Transmon qubit capacitances estimation

In order to obtain the capacitances listed in Table S1 (reproduced from the main text) we use EM simulation
software (Sonnet). This software solves Maxwell’s equations in three dimensions for the specified design of our device
and gives the scattering parameters of the system as a function of frequency. We simulate two parts of the design
independently, the interdigital capacitors and the SQUID of the transmon qubit.

Chain parameters
LJ,min (0.33± 0.02) nH
Cg (0.13± 0.01) fF
CJ (259± 14) fF
N 4700
d (asymmetry) 0.25

Transmon qubit parameters
Cg,T2 (33± 1) fF
Cg,T (48± 2) fF
Cc (119± 2) fF
Csh (6.9± 0.1) fF
CJ,T (5.2± 0.3) fF
EJ,T,max/h (10.2± 0.4)GHz
EC,T/h (2.4± 0.1)GHz

TABLE S1. Sample parameters.

1. Interdigital capacitors

Since we are only interested in modelling the capacitors of the transmon, we remove the chain from the simulation
and replace the Josephson junction of the transmon by a linear inductor, Ltest. We place two ports at both ends of
the design, and set the characteristic impedance of the port on the left to Zleft and for the port on the right to Zright.

From the EM simulation we obtain the transmission of the system, S21, as a function of frequency. We fit the
prediction of the linear model of the qubit to this. This model consists of the capacitance network shown in Fig. S4 in
red. The transmission of this system is given by Eq. (S7)[5] where A, B, C and D are the ABCD matrix elements[6]
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FIG. S4. Model for the linear transmon coupling. a Real capacitor design.b Lumped element model used in the EM
simulations.

for the capacitance network plus the linear inductor.

S21 =
2
√
ZleftZright

AZright +B + CZleftZright +DZleft
. (S7)

In theory Ltest, Zleft, Zright do not affect the obtained capacitances and can be chosen arbitrarily. However, due to
the fact that the lumped element model is an idealization, we observed a small shift of the capacitances as a function
of Ltest. (This shift was not observed as a function of Zleft or Zright). To minimize the effect of this shift, we set
Ltest = 22 nH which gives a resonance frequency close to ωT.
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We perform two simulations. In the first one we set Zleft = Zright = 50 Ω. Due to the low impedance of the ports, we
can neglect Cg,T2 and we therefore fit only Cc, Cg,T,0 and Csh,0. Then we perform a second simulation with Zleft = 50 Ω
and Zright = 3000 Ω. Now we fit only Cg,T2 keeping the other capacitances constant. In this way we obtain all the
capacitances in Fig. S4 independently. Note that the self-capacitance of the junction CJ,T cannot be simulated and
is therefore obtained from Eq. (S6). The errors are obtained as the maximum range where the difference between
simulation and model is smaller than 10 %. The two fits are shown in Fig. S5.
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FIG. S5. Extraction of the coupling capacitances. Fit of the obtained S21 parameter to a linear model with Zright = 50 Ω
(left panel a) and Zright = 3000 Ω (right panel b).

2. Stray capacitances from the transmon SQUID

The transmon qubit has a SQUID with a large loop (∼ 55 µm× 1.2 µm). Due to its large size, the capacitances
associated to this SQUID are not negligible. In Fig. S6a the SQUID design with the different capacitances is given.
The lumped element model used for simulating the system is shown in Fig. S6b.
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FIG. S6. Internal capacitance model for the transmon. a Real design of the SQUID of the transmon qubit. In the inset
the shunting capacitance Csh,S and test inductance Ltest are shown. b Lumped element model used to simulate the capacitances
of the system.

We follow the same procedure as before. Given the small number of fitting parameters (Csh,S and Cg,S) we can
perform a single fit with Zleft = 50 Ω and Zright = 3000 Ω. The result of the fit is shown in Fig. S7 with the obtained
capacitance values. The SQUID increases both the shunting capacitance and the ground capacitance of the transmon
qubit.
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Csh,S = 2.5 ± 0.1 fF
Cg,S = 4.7 ± 0.3 fF

FIG. S7. Extraction of the internal capacitances. SQUID capacitances estimation. Simulated transmission (blue circles)
and fit from the lumped element model, orange solid line. The simulation was performed setting Zleft = 50 Ω and Zright = 3000 Ω.

E. How does the transmon decay rate depends on the impedance of the environment?

Before quantitatively modeling the system, in this section we try to gain a qualitative understanding of how the
transmon decay rate ΓT depends on the characteristic impedance of the chain. Since we are only aiming for a qualitative
description, we treat the transmon SQUID loop as an LC circuit, ignoring its non-linearity. We retain the capacitive
couplings Cc, that couple the transmon to the chain and the 50 Ω transmission line. We drop the ground capacitances
Cg,T and Cg,T2 that shunt the chain at high frequencies, thus idealizing to the situation where the chain produces
an optimal broadening of the transmon resonance. We consider an infinite chain. Since we are not interested here in
modeling frequency dependent transport through the system, but only in the effect the chain has on the transmon,
we replace the complicated frequency dependent impedance of the chain Zchain(ω) with its constant characteristic
impedance R =

√
LJ/Cg. We replace the 50 Ω (low impedance) transmission lines by ground connections. These

assumptions produce the simple linear circuit depicted in Fig. S8.

Csh
Cc Cc

LJ,T

FIG. S8. Toy model of the whole circuit. Simplified lumped element model used to qualitatively understand the link
between the transmon decay rate and the impedance of the environment.

Within this linear model, the resonance frequency ωT and decay rate ΓT of the transmon are obtained as respectively
the real and imaginary parts of the relevant pole of the frequency dependent impedance between A and B in the circuit
diagram. This impedance is given by

ZAB(ω) =
iLJ,Tω(2 + iCcRω)

(2 + iRCcω)(1− LJ,TCshω2)− LJ,TCcω2
(S8)

We have to note here that we have oversimplified the model, which now predicts an overdamped regime at small Csh.
In the real device, overdamping is prevented by the sizable capacitances Cg,T and Cg,T2, which we have dropped. A
quick fix, is to use a value for Csh that is comparable to Cg,T and Cg,T2 (several tens of fF), rather than its actual
value of 4.4 fF. The behavior of the resonance frequency is easy to understand. At small R, one effectively has an LC
circuit with capacitance Csh + Cc/2 and resonance frequency ωT = 1/

√
LJ,T(Csh + Cc/2), while at large R, one has

an isolated SQUID loop with resonance frequency ωT = 1/
√
LJ,TCsh.



7

101 102 103 104 105

R (Ω)

0.01

0.05

0.10

0.50

Γ
T
 (G

Hz
)

Full solution
C 2

cR/8(Csh +Cc/2)2LJ,T

1/2CshR

FIG. S9. Bath engineered dissipation from the toy model. Evolution of the transmon decay rate ΓT versus the value of
the resistance R, as described in the simplified circuit of Fig. S8.

In Fig. S9 we present the behavior of ΓT vs. R for Cc = 119 fF (its actual value) and Csh = 80 fF, chosen to give
rough quantitative agreement with the experimental results we present in the Fig. 4 of the main text, although the
qualitative behavior does not change if we change Csh moderately. At small R, the behavior of the decay rate ΓT is

ΓT =
C2
cR

8(Csh + Cc/2)2LJ,T
(S9)

(proportional to R) while at large R, it is given by

ΓT =
1

2CshR
(S10)

(proportional to 1/R). A good estimate of the value R∗ that maximizes ΓT is obtained by equating the small and
large R asymptotic expressions for ΓT. This yields

R∗ =

(
1 +

2Csh

Cc

)
ZT,simp (S11)

where ZT,simp =
√
LJ,T/Csh is the characteristic impedance of the transmon, in the simplified circuit of Fig. S8.

Thus the largest coupling (as measured by ΓT) is obtained when the characteristic impedances of the transmon and
chain match up to factors of order one, a result that is familiar in microwave engineering. At this optimal chain
impedance, the decay rate ΓT is proportional to ωT with a proportionality constant that is a function of Cc/Csh.
This constant can reach values of order one, implying ultra-strong coupling is attainable. In our actual device, we find
ΓT to be a decreasing function of LJ , in the LJ window to which we have access, suggesting that the lowest chain
impedance that we can reach, is larger than the optimal value R∗. When we compare the characteristic impedances
ZT = ~/(2e)2

√
2EC,T/EJ,T ' 760 Ω (transmon) and ZC =

√
LJ/Cg ' 1590 Ω (chain) of the actual device, we see that

indeed ZC > ZT. Note that here we took a realistic estimate for the transmon impedance, that includes the effect of
the capacitances Cg,T and Cg,T2 which were dropped in our qualitative model. Had we naively taken ZT =

√
LJ,T/Csh

we would have obtained ZT = 1990 Ω, which though still close to the chain impedance, might have lead us to expect
to observe a maximal value for ΓT as we sweep the LJ window to which we have access.

F. Dealing with the transmon nonlinearity

The results in Fig. 3 in the main text confirm that the transmon qubit is a non-linear quantum circuit element that
is strongly coupled to the chain. Here we review a standard way to deal with this anharmonicity.[7] The method is
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known as the self-consistent harmonic approximation (SCHA) because the anharmonic term is replaced by a harmonic
one whose magnitude is determined self-consistently, via the variational principle. We also determine the regime of
validity of the approximations we introduce. Let us consider the complete Hamiltonian of the device, neglecting only
the weak non-linearity in the chain elements:

H =
EC,T

2
n̂2
T−EJ,T cos(ϕ̂T) +

(2e)2

2

N∑
jl=1

n̂j

[
Ĉ
−1
]
j,l

n̂l +
EJ
2

N∑
j=1

(
ϕ̂j+1− ϕ̂j

)2
+ n̂T

N∑
j=1

νj n̂j . (S12)

Here we found it convenient to define an operator ϕ̂N+1 ≡ 0 which is not an extra degree of freedom, but simply the
zero operator. To shorten notation we don’t indicate the ΦT dependence of EJ,T or the ΦC dependence of EJ explicitly
here. Were it not for the term −EJ,T cos(ϕ̂T), the quantum system described by the Hamiltonian in Eq. (S12) (Eq. 8
in the main text) would have been equivalent to a set of coupled harmonic oscillators, and therefore straightforward
to solve. The term −EJ,T cos(ϕ̂T), not being quadratic in ϕ̂T, produces an interacting many-body problem. The
strategy will be to replace the transmon terms in H with more tractable, yet accurate counterparts. For this purpose
our starting point is to consider the Hamiltonian H in the limit where the inductances LJ between chain nodes go
to infinity (EJ → 0), so that the charge on each chain island is conserved, and we can treat n̂j , j ∈ {1; . . . ; N}
as ordinary numbers. Since the transmon then does not couple to any dynamical degrees of freedom, we refer it as
isolated. The conserved chain charges contribute to the offset charge for n̂T. We will abuse notation slightly and still
denote the transmon’s charge degree of freedom, which now incorporates this additional offset, by n̂T. The isolated
transmon Hamiltonian, in which reference to the conserved charges n̂α, α ∈ {1; . . . ; N} has been eliminated, reads

HT =
EC,T

2
n̂2
T +EJ,T[1− cos(ϕ̂T)]. (S13)

Due to charge being quantized in units of 2e, the state space of HT is restricted to states |ψ〉 for which

ei2π n̂T |ψ〉 = e−i2πnT |ψ〉 , (S14)

where the offset charge nT (an ordinary number) contains contributions from the total transmon charge, the charge
on each chain island, and from gate charges. We denote the eigenbasis of n̂T by |ν〉, i.e.

n̂T |ν〉 = ν |ν〉 . (S15)

Owing to (S14), ν is quantized such that

ν + nT ∈ Z. (S16)

The matrix elements of HT in the |ν〉 basis read

〈ν|HT |ν′〉 =
EC,Tν

2

2
δν,ν′ +

EJ,T
2

(δν,ν′+1 + δν,ν′−1) . (S17)

The problem is equivalent to that of a charge e particle of mass E−1
C,T confined to a ring of circumference 2π that

is threaded by a flux of nT times the flux quantum Φ0 = h/2e. The phase observable ϕ̂T plays the role of the
position coordinate, and the particle has an electrostatic potential energy EJ,T(1 − cos ϕ̂T). This system is easily
solved numerically. In Figure S10 the low energy spectrum is plotted as a function of the offset charge nT, for three
EC,T/EJ,T ratios. States with energies sufficiently less than the height 2EJ,T of the cosine well are insensitive to the
offset charge nT. This is easy to understand in the equivalent picture of the particle confined to a ring: Sensitivity to
the flux inside the ring requires the interference of paths with different winding numbers around the ring. However, at
energies below 2EJ,T, paths with non-zero winding number are exponentially suppressed by the tunneling amplitude
to go through the cosine barrier. States with energy & 2EJ,T on the other hand are sensitive to the offset charge nT.
As nT varies form 0 to 1/2 (half a Cooper pair), each of these energies sweep through an interval (or band) of width
comparable to the spacing between levels. In the equivalent picture of a particle on a ring, this is a manifestation of
the Aharonov Bohm effect. In a real experiment, the offset charge nT is subject to environmental noise. Performing
spectroscopy on the levels sensitive to nT will therefore produce a noisy signal in which the extracted level energy
“jumps around” inside the band through which the energy sweeps as nT is varied.

When we reduce LJ from infinity to its actual value, thus coupling the transmon to dynamical degrees of freedom
in the chain, a numerically exact solution is no longer possible, given the large size of the Hilbert space. An obvious
approximation scheme for states with energies below 2EJ,T is the following. For these states, the phase observable
ϕ̂T is unlikely to make excursions over the top of the cosine barrier (phase slips) at ϕT = ±π. For such states it
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FIG. S10. Isolated transmon spectrum as a function on the offset charge nT. Left panel: EJ,T/EC,T = 1/2. Middle
panel: EJ,T/EC,T = 1. Right panel: EJ,T/EC,T = 2. In each case a dashed line indicates the energy 2EJ,T, maximum potential
energy.

should therefore be permissible to replace the ring to which the particle is confined with the whole real line, and the
cosine potential with a parabola. Note that this approximation ignores the restriction (S14), responsible for charge
quantization. For states with energies � EJ,T, the phase is confined very close to the minimum at ϕ = 0 of the
cosine potential, and the replacement EJ,T(1− cos ϕ̂0)→ EJ,T ϕ̂

2
0 /2 is legitimate. This leads to a harmonic spectrum

ωn =
√
EC,TEJ,T(n+1/2). However, the quadratic approximation can be improved to have a larger regime of validity,

in the following way. We approximate the eigenstates of the isolated transmon as those of the parent Hamiltonian

HP =
EC,T

2
n̂2
T +

ES
2
ϕ̂2
T, (S18)

where the parameter ES is optimized according to some criterium in order to give the best possible agreement with the
exact solution. Here we use the criterion that the energy ES should be chosen to minimize 〈HT〉 where the expectation
value is taken with respect to the ground state of HP . For given ES , the eigenstates and energies of HP are

|n〉 =
(B†)n√
n!
|0〉 , E(0)

n = ωT(n+ 1/2), n = 0, 1, 2, . . . , ωT =
√
EC,TES , (S19)

where

B |0〉 = 0, B = λ n̂T +i ϕ̂T /2λ, λ =
1√
2

(
EC,T
ES

)1/4

. (S20)

Expressed in terms of the bosonic opertors B and B†, and manipulated into normal ordered form, the full transmon
Hamiltonian reads

HT =ωT

[
B†B +

1

2

]
+ EJ,T

{
1− e−λ

2/2

2

[
eλB

†
e−λB + e−λB

†
eλB

]}

+
ES
2
λ2
[
(B†)2 +B2 − 2(B†B + 1)

]
. (S21)

The expectation value 〈0|HT |0〉 evaluates to

〈0|HT |0〉 =
ωT
4

+ EJ,T

(
1− e−λ

2/2
)

=

√
EC,TES

4
+ EJ,T

[
1− e−

√
EC,T/ES/4

]
. (S22)

The minimal value for 〈0|HT |0〉 is produced by ES satisfying the equation

ES = EJ,Te
−
√
EC,T/ES/4, (S23)
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which can also be written as an equation

ωT =
√
EJ,TEC,Te

−EC,T/8ωT , (S24)

determining the transmon frequency ωT. We note that in principle, the approximation can be further improved by
treating HP with the optimized value (S23) for ES as the zero’th order approximation and treating HT − HP as
a small perturbation. In general, the leading corrections in such a perturbation expansion are of first order in λ2.
However, for the ground and first excited states, it is one order higher, i.e. λ4. Thus, the approximation HT ' HP is
particularly accurate for the ground and first excited states of the transmon, which given the probe power and plasma
frequency of the chain, are the ones we are interested in, in the experiment. The assumed smallness of λ allows us to

FIG. S11. From the transmon to the Cooper pair box. Excitation energy ωT from the ground state to the first excited
state of the isolated transmon. The shaded area respresents the range of values obtained for the exact result when the offset
charge nT is swept through [0, 1/2]. The solid black line represents the fully self-consistent result (S24) while the dashed line
represents the simple approximation (S26) .

solve approximately the self-consistency equation (S23) to get

ES = EJ,T −
1

4

√
EC,TEJ,T +O (EC,T) , (S25)

which gives an excitation energy

ωT =
√
EC,TEJ,T − EC,T/8 +O

(
E2
C,T√

EC,TEJ,T

)
. (S26)

In Figure S11 we compare the results (S24) and (S26) to the exact excitation energy of the isolated transmon, and find
that in the regime where sensitivity to the offset charge nT is weak, i.e. EJ,T/EC,T & 1, the approximation (S26) is
indistinguishable from the more sophisticated (S24). Now we turn to the case EJ > 0 where the transmon is coupled
to the dynamical degrees of freedom in the chain. We take the same approach as before. In principle, it is possible
to generalize the previous calculation in the following way. When EJ > 0, we may choose ES so that it minimizes
〈0|H |0〉, where H is the full Hamiltonian in (Eq. 4 in the main text)

H =
(2e)2

2
~̂n
T

Ĉ
−1 ~̂n− 1

2
~̂ϕ
T

Ĵ ~̂ϕ− EJ,T cos (ϕ̂R− ϕ̂L) , (S27)

and |0〉 is the ground state of the parent Hamiltonian that is obtained from H by making the replacement EJ,T(1−
cos ϕ̂T) → ES ϕ̂

2
T /2. We have implemented this approach, but find that it yields an insignificant improvement upon

the simpler approach of simply taking ES = EJ,T −
√
EJ,TEC,T/4, at least in the one photon sector, and for the

parameters of the current device.
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G. Analytical formula for the Scattering Phase Shift

In the section Methods - Analytical formula for the Scattering Phase Shift we presented a formula (Eq. 11) for the
phase shift φ(ω,ΦT,ΦC) of a mode with frequency ω of the full system at transmon flux ΦT and chain flux ΦC:

tanφ(ω,ΦT,ΦC) =
Cg − 2Ceff(ΦT, ω)√
Cg(Cg + 4CJ)

1√(
ωp(ΦC)

ω

)2

− 1

. (S28)

Here we give the derivation. We work in the thermodynamic limit where N →∞. This means that both matrices Ĉ

and Ĵ (Eqs. (S32) and (S33)) become semi-infinite. Furthermore, the approximation discussed in the previous section
eliminates the anharmonic term in H, and introduces four new non-zero matrix elements in Ĵ, namely

ĴL,L = ĴR,R = ES (ΦT) , (S29)

ĴR,L = ĴL,R = −ES (ΦT) . (S30)

Making the flux-dependence of ES explicit, we have from Eq. (S25)

ES (ΦT) = EJ,T (ΦT)−
√
EJ,T (ΦT)EC,T/4, (S31)

with EJ,T (ΦT) = EJ,T,max |cos (πΦT/Φ0)|. Explicitly the matrices Ĉ and Ĵ then read (see Eqs. (6) and (7) in the
main text)

Ĉ =


C0 −Csh,T 0 0 0 0 · · ·
−Csh,T C0 −Cc 0 0 0 · · ·

0 −Cc C1 −CJ 0 0 · · ·
0 0 −CJ CΣ −CJ 0 · · ·
...

...
...

. . . . . . . . . · · ·

 (S32)

Ĵ =
ϕ2

0

LJ (ΦC)


0 0 0 0 0 0 · · ·
0 0 0 0 0 0 · · ·
0 0 1 −1 0 0 · · ·
0 0 −1 2 −1 0 · · ·
...

...
...

. . . . . . . . . · · ·

+ ES(ΦT)


1 −1 0 0 0 0 · · ·
−1 1 0 0 0 0 · · ·
0 0 0 0 0 0 · · ·
0 0 0 0 0 0 · · ·
...

...
...

...
...

...
. . .

 (S33)

We now have a fully linear system. The phase shifts in Eq. (S28) are obtained by solving the classical equations of
motion. We start by defining a vector with the superconducting phases in each island ~πT = (ϕL, ϕR, ϕ1, ϕ2, · · · , ϕN ).
The equations of motion for the mode at frequency ω are given by

Ĵ (ΦT,ΦC)~πω = (~ω)2 Ĉ

(2e)2
~πω. (S34)

The solution to the part of Eq. (S34) involving degrees of freedom in the chain can be taken as

ϕj = N(ω) cos [jκ(ω,ΦC)a− φ(ω,ΦT,ΦC)] with j = 1, 2, 3, 4 . . . (S35)

Here a is the length of the unit cell of the array, N(ω) a frequency dependent amplitude and κ(ω,ΦC) is the wave
number of a wave that propagates in the chain with angular frequency ω. It can be obtained from the dispersion
relation in Eq. (S2),

κ(ω,ΦC) =
2

a
arccot

√√√√(4CJ
Cg

+ 1

)[(
ωp(ΦC)

ω

)2

− 1

]
, (S36)

where ωp(ΦC) = 1/
√
LJ(ΦC) (CJ + Cg/4) is the plasma frequency of the chain. The phase shift φ(ω,ΦT,ΦC) in

Eq. (S35) is determined by the components of Eq. (S34) involving the transmon islands. They read

ES (ΦT) (ϕL − ϕR) =
(~ω)2

(2e)
2 (C0ϕL − Csh,TϕR) , (S37)

ES (ΦT) (ϕR − ϕL) =
(~ω)2

(2e)
2 (−Csh,TϕL − C0ϕR − Ccϕ1) , (S38)

ES (ΦT) (ϕ1 − ϕ2) =
(~ω)2

(2e)
2 (−Csh,TϕR − C1ϕ1 − CJϕ2) . (S39)
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Using Eq. (S37) and Eq. (S38) we eliminate ϕL and solve for ϕR in terms of ϕ1 to obtain

ϕR =
Cc

[
(~ω)2

(2e)2 C0 − ES(ΦT)
]

(C0 − Csh,T)
[
(C0 + Csh,T) (~ω)2

(2e)2 C0 − 2ES(ΦT)
]ϕ1. (S40)

Substituting this into Eq. (S39) and using Eq. (S36) for κ(ω,ΦC) we obtain

Cg

2 [1− cosκ(ω,ΦC)a]
(ϕ1 − ϕ2) = Ceff(ΦT, ω)ϕ1, (S41)

with

Ceff(ΦT, ω) = C1 − CJ −
C2
c

[
(~ω)2

(2e)2 C0 − ES(ΦT)
]

(C0 − Csh,T)
[
(C0 + Csh,T) (~ω)2

(2e)2 C0 − 2ES(ΦT)
] . (S42)

Using the mode definition in Eq. (S35) for ϕ1 and ϕ2 in Eq. (S41) leads to

tanφ(ω,ΦT,ΦC) =

[
1− 2Ceff(ΦT, ω)

Cg

]
tan

κ(ω,ΦC)a

2
. (S43)

Finally, using again the expression in Eq. (S36) for κ(ω,ΦC) we obtain the expression for the phase shift φ as a
function of the system parameters.

tanφ(ω,ΦT,ΦC) =

[
1− 2Ceff(ΦT, ω)

Cg

]√
Cg

Cg + 4CJ

1√(
ωp(ΦC)

ω

)2

− 1

. (S44)

H. Link between the scattering phase shift and the relative frequency shift

In the main text we defined the relative frequency shift δφn in terms of the discrete mode frequencies of the full
system (transmon plus finite chain of N nodes) at respective transmon fluxes ΦT and Φ0/2. We repeat the definition
here:

δφn(ΦT,ΦC) = π
ωn(Φ0/2,ΦC)− ωn(ΦT,ΦC)

ωn(Φ0/2,ΦC)− ωn−1(Φ0/2,ΦC)
. (S45)

Here we relate this to the relative scattering phase shift δφ(ω,ΦT,ΦC) for the infinite system (see Eq. 14 in the Methods
section of the main text) by showing that

δφn(ΦT,ΦC) = δφ(ωn(ΦT,ΦC),ΦT,ΦC) +O(N−1). (S46)

For conveniece we assume that island N + 1 is grounded. (The precise boundary condition becomes immaterial in the
N → ∞ limit.) Had the chain been open to the left of node 1, the eigenmodes would have been ϕj ∝ cos

(
κ0
naj
)
,

j ∈ 1, 2, 3, . . . , N with wave numbers given by κ0
n = (n − 1/2)π/Na with n ∈ 1, 2, 3, . . . , N . In the presence of the

transmon to the left of chain node 1, the eigenmodes inside the chain change to cos (κnaj − φn). Here φn is the
additional phase introduced by the transmon. Now the κn depend on φn too. Assuming the boundary conditions that
the nodes to the left of transmon island L and to the right of chain island N are grounded, they are given by

κna =

(
n− 1

2

)
π

N
+
φn
N

= κ0
na+

φn
N
. (S47)

The modes of the system follow a dispersion relation ωn (ΦT,ΦC) = ω(ΦC, κn). The notation must be understood
as follows: ωn(x, y) and ω(x, y) denote distinct functions. The two arguments of the former refer to respectively the
flux in a transmon and in a chain SQUID, and for given fluxes, the function assumes the value of the frequency
of system mode n. The first argument of the latter function ω(x, y) refers to the flux in a chain SQUID, while the
second argument refers to the unquantized wave number of a mode in the infinite chain. The function evaluates to
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the frequency corresponding to the given wave number (which does not depend on the transmon flux). For sufficiently
large N we can expand the dispersion relation around κ0

na

ωn (ΦT,ΦC) = ω
(
ΦC, κ

0
n

)
+
φn (ΦT,ΦC)

N

∂ω(ΦC, κ)

∂ (κa)

∣∣∣∣
κ=κ0

n

, (S48)

with corrections of order N−2. The dependence on the transmon and chain fluxes is included. Similarly, we can expand
ωn−1 (ΦT,ΦC) around κ0

na to obtain

ωn−1 (ΦT,ΦC) = ωn (ΦT,ΦC)− π

N

∂ω(ΦC, κ)

∂ (κa)

∣∣∣∣
κ=κ0

n

. (S49)

Here we made use of the fact that φn − φn−1 = O
(
N−1

)
. Therefore we can set φn−1 = φn introducing an error of

O
(
N−2

)
which can be ignored for large N . We can now obtain the terms in Eq. (S45),

ωn (Φ0/2,ΦC) = ω
(
ΦC, κ

0
n

)
+
φn (Φ0/2,ΦC)

N

∂ω(ΦC, κ)

∂ (κa)

∣∣∣∣
κ=κ0

n

(S50)

ωn (ΦT,ΦC) = ω
(
ΦC, κ

0
n

)
+
φn (ΦT,ΦC)

N

∂ω(ΦC, κ)

∂ (κa)

∣∣∣∣
κ=κ0

n

(S51)

ωn−1 (Φ0/2,ΦC) = ωn (Φ0/2,ΦC)− π

N

∂ω(ΦC, κ)

∂ (κa)

∣∣∣∣
κ=κ0

n

. (S52)

Substituting this into Eq. (S45), and noting that φn (ΦT,ΦC) = φ (ωn(ΦT,ΦC),ΦT,ΦC), we obtain Eq. (S46).

I. Relation between the Phase Shift and the impurity response function

To elaborate the link between the local impurity response function and the phase shift induced by the transmon
qubit, we define three spectral densities

A1(ω) =
2ES(ΦT)

ωT
Re
∫ ∞

0

dt

2π
eiωt 〈[ϕ̂T(t), ϕ̂T(0)]〉 , (S53)

A2(ω) = −Im
∫ ∞

0

dt

2π
eiωt 〈[ϕ̂T(t), n̂T(0)]〉 , (S54)

A3(ω) =
2ωT

ES(ΦT)
Re
∫ ∞

0

dt

2π
eiωt 〈[n̂T(t), n̂T(0)]〉 , (S55)

corresponding to the phase-phase, phase-charge and charge-charge response of the transmon up to constant prefactors.
In order to calculate these spectral densities we turn to the quantum mechanical problem (In the previous section, we
could compute the phase shift by solving the classical equations of motion). With each mode ω we associate cannonical
bosonic operators bω and b†ω. These are related to the charge operator n̂j and phase operator ϕ̂j for each of the islands
as

ϕ̂j =
−i√

2

∫ ωp(ΦC)

0

dωϕj(ω)
(
bω − b†ω

)
, (S56)

n̂j =
1√
2

∫ ωp(ΦC)

0

dω

ω

∑
l=L,R,1,2,···

Ĵ(ΦT,ΦC)j,lϕl(ω)
(
bω + b†ω

)
, (S57)

where the profile ϕj(ω) is normalized such that∑
j=L,R,1,2,···

ϕj(ω) Ĵ(ΦT,ΦC)j,lϕl(ω
′) = ωδ(ω − ω′). (S58)

The normalization constant in Eq. (S35) is thus set to

Nω =

√
~ω

πEJ(ΦC)[1− cosκ(ω,ΦC)]

∂κ(ω,ΦC)

∂ω
. (S59)
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From the definition of n̂T and ϕ̂T (see the text below Eq. 7 in the Methods section of the main text) follows

n̂T = (n̂R− n̂L)/2 =
1√
2

∫ ωp(ΦC)

0

dω
ES(ΦC)

ω
[ϕR(ω)− ϕL(ω)]

(
bω + b†ω

)
, (S60)

ϕ̂T = ϕ̂R− ϕ̂L =
−i√

2

∫ ωp(ΦC)

0

dω [ϕR(ω)− ϕL(ω)]
(
bω − b†ω

)
. (S61)

Explicitly, we find:

ϕR(ω)− ϕL(ω) = Nω
Ccω

2/(2e)2

(C0 + Csh,T)ω2/(2e)2 − 2ES(ΦT)
cosφ(ω,ΦT,ΦC). (S62)

In the Heisenberg picture bω(t) = eiωtbω and b†ω(t) = e−iωtb†ω. Using this to calculate the spectral densities Aj(ω) for
ω > 0 we obtain

A1(ω) =
ES(ΦT)

ωT
[ϕR(ω)− ϕL(ω)]

2
, (S63)

A2(ω) =
ES(ΦT)

ω
[ϕR(ω)− ϕL(ω)]

2
, (S64)

A3(ω) =
ES(ΦT)ωT

ω2
[ϕR(ω)− ϕL(ω)]

2 (S65)

Now we compare the three correlation functions with the frequency derivative of δφ(ω,ΦT,ΦC) = φ(ω,ΦT,ΦC) −
φ(ω,Φ0/2,ΦC) with φ(ω,ΦT,ΦC) given in Eq. (S28). In Fig. S12 we plot the four curves. We see that the four curves
overlap around the transmon frequency ωT. This means that the width and the center frequency obtained from the
scattering phase shift are good estimations of the real width ΓT and frequency ωT of the transmon.

FIG. S12. Connection between phase shifts and qubit dissipation. Comparison between the three correlation functions
and the energy derivative of the phase shift.

J. Breakdown of the rotating wave approximation

In this section, we investigate the applicability of the rotating wave approximation (RWA), a common technique for
analysing the light-matter interaction at sufficiently weak coupling. The regime in which the light-matter coupling is
so large that this approximation becomes inaccurate, is referred to as ultra-strong coupling. We will find that indeed,
the RWA leads to errors of a few percent for our device.
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To set up the RWA, we have to identify the harmonic oscillator basis that diagonalizes the (finite) chain part of the
Hamiltonain. For this purpose, it is convenient to define N ×N matrices Ĉ−1

chain and L̂−1
chain with entries

[Ĉ−1
chain]jk = [Ĉ−1]jk, [L̂−1

chain]jk = [Ĵ ]jk/ϕ
2
0, j, k = 1, 2, . . . , N, (S66)

i.e. Ĉ−1
chain and ϕ2

0L̂
−1
chain are the lower right N × N blocks of respectively the inverse of the full (N + 2) × (N + 2)

capacitance matrix Ĉ, and of the full (N + 2)× (N + 2) Josephson matrix Ĵ . We then define an N ×N matrix Π̂chain

and a positive definite diagonal matrix ω̂chain such that the columns of Π̂chain contain the eigenvectors of Ĉ−1
chainL̂

−1
chain

while the diagonal entries of (ω̂chain)2 are the corresponding eigenvalues, i.e.

Ĉ−1
chainL̂

−1
chainΠ̂chain = Π̂chain(ω̂chain)2. (S67)

Since the eigenvalues are real, we can and will choose the entries of Π̂chain to be real as well. This definition determines
each column of Π̂chain up to a normalization constant. We fix these constants by demanding that

ϕ2
0

∑
jk

[L̂−1
chain]jk[Π̂chain]jl[Π̂chain]kl = ~[ωchain]l, (S68)

where [ωchain]l is the l’th diagonal entry of ω̂chain. We also define a matrix

Ξ̂chain = ϕ2
0L̂
−1
chainΠ̂chainω̂

−1
chain/~. (S69)

It is easy to verify that the row l of Ξ̂T
chain contains the left-eigenvector of Ĉ−1

chainL̂
−1
chain that is associated with eigenvector

([ωchain]l)
2. As a result Ξ̂T

chainΠ̂chain is guaranteed to be a diagonal matrix. Furthermore, due to the normalization
condition (S68) we chose for Π̂chain, the diagonal entries of Ξ̂T

chainΠ̂chain are all equal to unity. Thus

Ξ̂T
chain = Π̂−1

chain. (S70)

We now define N operators

b̂chain,k =
1√
2

N∑
j=1

{
n̂j [Π̂chain]jk + iϕ̂j [Ξ̂chain]jk

}
. (S71)

Owing to (S70) and the fact that [n̂j , ϕ̂k] = iδj,k, the operators b̂chain,k, k = 1, 2, . . . , N are bosonic annihilation
operators, i.e. [̂bchain,j , b̂chain,k] = 0 and [̂bchain,j , b̂

†
chain,k] = δj,k. Furthermore, for the chain part of the Hamiltonian

we obtain

Hchain =
1

2

N∑
j,k=1

{
(2e)2[Ĉ−1

chain]jkn̂j n̂k + ϕ2
0[L̂−1

chain]jkϕ̂kϕ̂j

}

= ~
N∑
j=1

[ωchain]j

(
b̂†chain,j b̂chain,j −

1

2

)
. (S72)

For the term in the Hamiltonian that couples the transmon to the chain, we find

Hcoupling = n̂T

N∑
j=1

νj n̂j

=
1√
2
n̂T

N∑
k=1

gk

(
b̂chain,k + b̂†chain,k

)
(S73)

where

gk =

N∑
j=1

νj [Ξ̂chain]jk. (S74)
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A standard way to proceed from here is to truncate the full Hilbert space of the transmon to the subspace spanned by
two lowest energy eigenstates |0T〉 and |1T〉 of the isolated transmon Hamiltonian (S13). This leads to a Hamiltonian
of the Jaynes-Cummings type, ubiquitous in Quantum Optics. At sufficiently weak coupling, the expectation is that
this should be accurate for studying the situation where a near-resonant excitation from the chain induces a transition
between the ground and first excited states of the transmon. The operator n̂T is replaced by

n̂T ' 〈0T| n̂T |1T〉 {|0T〉 〈1T|+ |1T〉 〈0T|} , (S75)

where we’ve chosen the overall phases of |0T〉 and |1T〉 such that 〈0T| n̂T |1T〉 is real.
Alternatively, a more controlled way to proceed is to make the self-consistent harmonic approximation (SCHA)

(see Sec. F), which we have shown to be well-justified, and to express n̂T in terms of the resulting bosonic transmon
operators [see Eq. (S20)], i.e.

n̂T =
1√
2

(
EC,T

ES

)1/4

(B +B†). (S76)

After the SCHA, the Hamiltonian becomes quadratic, and no further approximations are required. We will however
still consider the effect of making the RWA on this quadratic Hamiltonian, in order to asses whether or not the
assumptions underpinning the RWA are valid in our device.

The RWA approximation now involves dropping the transmon-chain coupling terms in which the transmon (in
the unperturbed basis) is excited while a boson is emitted into the chain, or the transmon is de-exited while a
boson is absorbed from the chain. We adopt the standard nomenclature and refer to the dropped terms as “counter-
rotating” (based on their time-dependence in the Dirac picture). Depending on whether this approximation is made
in conjunction with truncating the transmon Hilbert space or with the SCHA, we either obtain an RWA Hamiltonian

HRWA,1 = (E1,T − E0,T) |1T〉 〈1T|+
N∑
n=1

~[ωchain]nb̂
†
chain,nb̂chain,n

+
1√
2
〈0T| n̂T |1T〉

N∑
k=1

gk

(
|0T〉 〈1T| b̂chain,k + |1T〉 〈0T| b̂†chain,k

)
, (S77)

or

HRWA,2 = ωTB
†B +

N∑
n=1

~[ωchain]nb̂
†
chain,nb̂chain,n +

1

2

(
EC,T

ES

)1/4 N∑
k=1

gk

(
B†b̂chain,k + b̂†chain,kB

)
. (S78)

For both Hamiltonians, the ground state is trivial: the transmon is in its unperturbed ground state, and there are no
bosonic excitations in the chain. We measure energy relative to this ground state. Both Hamiltonians leave invariant
the subspace spanned by states in which there are no bosons in the chain, while the transmon is in its unperturbed
first excited state, or there is one boson in the chain while the transmon is in its unperturbed ground state. The
excited states relevant for spectroscopy at low driving power are found by diagonalizing the RWA Hamiltonians in
this subspace.

In Figure S13 we compare the relative frequency shift (Eq. 1 in the main text) predicted by HRWA,1 and HRWA,2

to the analytical SCHA formula (Eq. 14 in the main text) derived for an infinite chain. We have also computed
SCHA results for the finite chain of 4700 islands, and found that they lie on top of the infinite chain curves. We omit
them from the figure to avoid clutter. We note that HRWA,1 and HRWA,2 give very similar results. This is consistent
with our claim that at low energies, the SCHA Hamiltonian from which HRWA,2 derives, is a good approximation
to the full Hamiltonian from which HRWA,1 is derived. We ascribe the small difference between results for HRWA,1

and HRWA,2 to the truncation by hand in HRWA,1 of the transmon Hilbert space to two states. (No such by-hand
truncation was required in HRWA,2.) If we fit an arctan line shape (Eq. 18 in the main text) to the SCHA curves in
the figure, we find that the transmon resonance occurs at a frequency within about 0.01 GHz from h−1 times the
energy difference between the ground and first excited states of the isolated transmon. Using the same procedure on
the relative frequency shift predicted by either HRWA,1 or HRWA,2 on the other hand, gives a resonance frequency that
is ∼ 0.1 GHz higher than h−1 times the ground to first excitation energy of the isolated transmon. We conclude that
the RWA approximation is not quantitatively accurate, producing an error of between 2% and 5% for the transmon
resonance frequency. This signals that our device indeed operates in the ultra-strong light-matter coupling regime.
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transmon SQUID are shown.
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