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SUPPLEMENTARY NOTE 1. ENTANGLEMENT GENERATION RATE AS A FUNCTION OF X,Y

The rate plots in Fig. 3 in the main paper are only in the X = Y direction. Fig. 1 plots the rate as a function of
X, Y which captures the behavior in all directions. The differences between different curves is similar across different
directions, but there is an enhancement of the rate along the X = Y direction because of the presence of multiple
paths of similar length between Alice and Bob. This is visible in the contour plot Fig. 1(d).

Supplementary Figure 1. Entanglement generation rate as a function of the Alice-Bob separation along X and Y (on a square
grid) and(p, q); (a) Rg(p, q) is the rate attained by a global-knowledge-based protocol we propose where each node, in each time
step, knows whether any link in the entire network succeeded or failed to establish entanglement. For the case of q = 1, Rg is
distance independent when p is greater than the bond percolation threshold (0.5 for the square lattice) and decays exponentially

if it is below the threshold. (b) R(UB)(0.6) is the distance-independent Pirandola rate upper bound for p = 0.6, achieving which
requires perfect quantum processing at repeater nodes. Rg(0.6, 1) is also distance independent, and within a factor 3.6 of

R(UB)(0.6). With q < 1, e.g., Rg(0.6, 0.9), the rate decays exponentially with distance. R
(UB)
opt is an upper bound on the rate

attainable with global-knowledge by any protocol. (c) Rloc is attained by a protocol we propose where each node, in each
time step, only needs to know the link state of neighboring edges. The rate-distance scaling exponent of Rloc is clearly worse
than Rg, but is significantly superior to that of a linear repeater chain along the shortest path, Rlin, demonstrating multi-path
routing advantage even with local link-state knowledge. (d) Contour plot of the entanglement generation rate with the local
rule when p = 0.6 and q = 0.9. Although the Alice to Bob distance along the network links is X + Y , there is a noticeable
enhancement in the rate along the X = Y direction because of more Alice-Bob paths of similar length.
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Supplementary Figure 2. Network used to prove the lower bound on entanglement generation rate with our local routing rule
which shows that scaling of the rate with Alice-Bob manhattan distance for our rule is better than the scaling of the rate along
a linear repeater chain along the shortest path between Alice-Bob.

SUPPLEMENTARY NOTE 2. MULTIPATH RATE ADVANTAGE

A. Analytical lower bound on the rate achieved by the local routing rule

In this subsection, we derive an analytical lower bound on the entanglement generation rate attained by our local
routing rule (using the L2 norm as the distance metric), with the objective of demonstrating multi-path routing
advantage, i.e., the rate-vs.-distance scaling attained by our local rule is strictly better than that attained by a linear
repeater chain along the shortest path between Alice and Bob.

Consider routing entanglement between Alice and Bob located at (X,Y ) and (X + n, Y ) respectively, i.e., n hops
apart along the X dimension of the square lattice. We will evaluate a lower bound on Rloc by only evaluating the rate
contributions from paths in which all the (external) links belong to the set of black dashed links shown in Fig. 2. The
choice of internal links made at repeater nodes proceed as usual per our local rule. As a result, there are instances in
which our local rule routes entanglement through paths comprising not just the black links, resulting in flows that do
not contribute to our rate lower bound.

We will refer to Fig. 2 for the ensuing discussion. Recall that external links succeed (are ‘up’) with probability p
and fail (are ‘down’) with probability 1 − p, whereas internal links succeed with probability q. Consider P (A↔ v),
the probability that there is a path between Alice A and repeater v that uses only black links. P (A↔ v) includes
the probability of making the required internal links to create a path between A and v, but not the probability of
any internal links at the end points A or v. It is easy to see that in any given time step, there can be no more than

one edge-disjoint path between A and v along the black dashed links, since link 8 must be part of the path. Let l
(
l̃
)

be the event that the external link l is up (down). Further, note that at any given time step, of all the possible (0,
1 or 2) internal links attempted by our local rule at a repeater node, only one internal link, if successful, contributes
to A↔ v. Let l−m be the event that the internal link attempted at a repeater node to connect external links l and
m is successful. If links 1 and 8 are both up, node u attempts to connect those two links based on our local rule,
regardless of the other links. If links 2, 3, 4 and 8 are up, but 1, 5, 6, 7 and 9 are down, u attempts to connect 4 and
8, z attempts to connect 3 and 4 and y attempts to connect 2 and 3. Considering these two possibilities, we have

P (A↔ v) > Pr(1, 8, 1-8)

+ Pr(2, 3, 4, 8, 1̃, 5̃, 6̃, 7̃, 9̃, 2-3, 3-4, 4-8)

=
[
p+ p3(1− p)5q2

]
pq

= p′pq, (1)

where p′ = p+ p3(1− p)5q2 > p.
P (v ↔ x) is the probability that there is a path between v and x that uses only black links (the probability of

internal link successes at the end points v and x are not included). P (v ↔ x) and P (A↔ v) are not independent
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events because they both involve link 9. P (v ↔ x|A ↔ v) is the probability that there exists a path along black
dashed lines between v and X given that a path along black dashed lines exists between A and v. We now show that
P (v ↔ x|A↔ v) > P (v ↔ x).

P (v ↔ x|A↔ v) = P (v ↔ x|A↔ v, 9)Pr(9|A↔ v) +

P
(
v ↔ x|A↔ v, 9̃

)
Pr
(

9̃|A↔ v
)

= P (v ↔ x|9)Pr(9|A↔ v) +

P
(
v ↔ x|9̃

)
Pr
(

9̃|A↔ v
)

= P (v ↔ x|9)
(

1− Pr
(

9̃|A↔ v
))

+

P
(
v ↔ x|9̃

)
Pr
(

9̃|A↔ v
)

= Pr
(

9̃|A↔ v
)
×(

P
(
v ↔ x|9̃

)
− P (v ↔ x|9)

)
+P (v ↔ x|9) (2)

where P (v ↔ x|A↔ v, 9) = P (v ↔ x|9) and P
(
v ↔ x|A↔ v, 9̃

)
= P

(
v ↔ x|9̃

)
because link 9 being up or down is

the only probabilistic event that influences both P (A↔ v) and P (v ↔ x). Further,

P (v ↔ x) = P (v ↔ x|9)Pr(9) + P
(
v ↔ x|9̃

)
Pr
(

9̃
)

= P (v ↔ x|9)
(

1− Pr
(

9̃
))

+

P
(
v ↔ x|9̃

)
Pr
(

9̃
)

= Pr
(

9̃
)(

P
(
v ↔ x|9̃

)
− P (v ↔ x|9)

)
+P (v ↔ x|9). (3)

Comparing 2 and 3, Pr
(

9̃|A↔ v
)

= Pr
(

9̃
)

Pr
(
A↔ v|9̃

)
/Pr (A↔ v) > Pr

(
9̃
)

because Pr
(
A↔ v|9̃

)
>

Pr (A↔ v) following equation 1. Similarly,
(
P
(
v ↔ x|9̃

)
− P (v ↔ x|9)

)
> 0. Hence, P (v ↔ x|A↔ v) > P (v ↔ x).

From Fig. 2, we can see that in order to get a path along black dashed lines from A to x, there must be a path
along black dashed lines from A to v and from v to x, and the internal link at v must succeed. Therefore,

P (A↔ x) = P (A↔ v)qP (v ↔ x|A↔ v)

> P (A↔ v)P (v ↔ x)q

= (P (A↔ v))
2
q

= (p′pq)2q, (4)

where we use symmetry between A ↔ v and v ↔ x in the third line. Repeating this for all repeaters between Alice
and Bob, it is easy to see that

Rloc > P (A↔ B) > p′dn/2epbn/2cqn−1 (5)

≥
(√

p′p
)n

qn−1

=
[(√

p′p
)
q
]n
q−1

= (pq)
βn
q−1,
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Supplementary Figure 3. f(p, q)/pq quantifies the improvement in the scaling of Rloc(p, q) with respect to Rlin(p, q) with respect
to the Alice-Bob Manhattan distance, n. f(p, q)/pq increases as p is reduced in [1, pc] but changing q has a negligible effect.

where dn/2e is the smallest integer greater than or equal to n/2 and bn/2c is the largest integer smaller than or equal
to n/2. The second inequality uses the fact that p′ > p and n > 0. β = log

[(√
p′p
)
q
]
/ log [pq] < 1 because p < p′ < 1

and q < 1.

Therefore, since Rloc > (pq)
βn
q−1 with β < 1 and Rlin = (pq)

n
q−1, the exponent in the scaling with n is smaller in

Rloc compared to Rlin, i.e. the rate-vs.-distance scaling is better with multi-path routing. Using a similar reasoning,
it is easy to see that the same is true even when Alice and Bob are at located at different Y coordinates. It should
be noted that the lower bound we derive here is not meant to be tight (see Section SUPPLEMENTARY NOTE 2 B
for a full numerical evaluation of the exponents for Rloc and Rlin). The only purpose of this subsection was to prove
that the rate-vs.-distance scaling for entanglement routing strictly benefits from multi-path routing.

B. Numerical Evaluation

The goal this subsection is to quantify the improvement in the rate-vs.-distance exponent achieved by our local
rule over that of a linear chain along the shortest path, for all possible pairs of values of p and q. Fig. 1(c) shows
this improvement, i.e., that of Rloc(p, q) compared to Rlin(p, q), for p = 0.6 and q = 0.9. Clearly, Rlin(p, q) =
(pq)n(p)/q ∼ (1/q)[pq]n, where n is the Manhattan distance between Alice and Bob. We have numerically verified
that Rloc(p, q) ∼ g(p, q)[f(p, q)]n for n large. We hence quantify the rate improvement by numerically evaluating the
ratio f(p, q)/(pq) exhaustively for all (p, q) ∈ [0, 1] × [0, 1], using Monte Carlo simulations. The results are shown in
Fig. 3, for configurations of Alice and Bob located along 45◦ with respect to the grid axes. We see that f(p, q)/pq
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Supplementary Figure 4. Entanglement generation rates with different distance metrics. RL1 and RL2 are evaluated using
the L1 and L2 norms respectively. The distance metric for Ri1 (iteration 1) is calculated using RL1 , and Ri2 (iteration 2) is
calculated using Ri1. Ri2 and RL1 are nearly indistinguishable as they coincide.

increases as p decreases in [pc, 1], but changing q has a negligible effect on this ratio.

SUPPLEMENTARY NOTE 3. DISTANCE METRIC FOR THE LOCAL ROUTING RULE USING L1

NORM AND RECURSION

Our entanglement routing protocol with local link-state information uses the ‘distance’ of neighboring repeater
stations from Alice and Bob to decide which memories at a repeater should undergo entanglement swap attempts.
The results presented in the paper use the L2 norm as the distance metric. While the L2 norm can be easily calculated
for the square grid, it may not be easily generalizable for other (e.g., non-planar) topologies. Further, even though
we do not prove the rate optimality of our local link-state routing protocol, given a network topology, it is not clear
whether or not the L2 norm is the optimal distance metric to be used in our protocol.

In order to adapt our algorithm for arbitrary network topologies, and also to find a near-optimal distance metric
for our algorithm, we employ the following numerical recursive method. Our evaluation begins with calculating
RL1(n1,n2), the entanglement generation rate achieved when our local rule is used to route entanglement between
nodes n1 and n2, using the L1 norm as the distance metric. In Fig. 4, we plot RL1(n1,n2) as a function of (X,Y ),
where X and Y are the distance (in hops) between n1 and n2 along the horizontal and vertical dimensions of the
square grid, respectively. The rate-distance scaling exponent for RL1 is worse than that of RL2 , the rate attained by
our protocol, using the L2 norm as the distance metric. Next, for every repeater node n, we define distances dA and
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dB to Alice A and Bob B respectively, with respect to the following new distance metric (let us name this metric i1):
dA := 1/RL1(n,A) and dB := 1/RL1(n,B). We then calculate Ri1(n1,n2), the entanglement generation rate achieved
when our local rule is used with the i1 distance metric to route entanglement between every pair of nodes n1 and n2.
In Fig. 4, we plot Ri1(n1,n2) as a function of (X,Y ). We see that the rate-distance scaling achieved by Ri1 is even
lower than that of RL1 . However, when we go through the second iteration of the algorithm—i.e., define distance
metric i2, under which dA = 1/Ri1(n,A) and dB = 1/Ri1(n,B), and use our local rule to evaluate Ri2(n1,n2) as
a function of (X,Y )—we find that the resulting rate Ri2 is almost the same (visually indistinguishable in the plot)
as RL2 , the rate we obtained directly when using the L2 norm as the distance metric. This suggests that: (a) for
the square grid (and presumably for any planar network topology) the L2 norm metric might be near-optimal for use
within our local rule, and that (b) for any given network topology, one could potentially pre-compute the optimal
distance metric by a recursive strategy on the given topology using the L1 norm as the starting point. However, there
are instances where our local rule does not give the rate-optimal local routing rule. As an example, when p = 1 and
q = 1, it is possible to find four disjoint paths without any link-state knowledge (the links are all deterministic) and
the optimal rate is four ebits/cycle for any location of Alice and Bob. However, the fact that we are trying to route
every flow through the best possible path without any coordination between different flows leads to collisions, which
results in a rate that is below the optimal rate of four ebits/cycle. Finding the rate-optimal local routing rule across
different parameter values is left for future research.
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