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I. SUPPLEMENTARY NOTES

A. Isometric Quantum Generator

Closed quantum systems follow a unitary evolution.
The evolution of an open quantum system, i.e. a quantum
system that interacts with an environment, evolves
according to an isometry instead of a unitary [1].
In general, every isometry can be described by a

unitary that acts on a larger system. In other words, an
isometry is given by a partial trace of a unitary quantum
state evolution. The dynamics of an open quantum
systems, and thus also a quantum generator acting as
an isometry, can be implemented with additional ancilla
qubits. Depending on the setting, the use of an isometric
quantum generator can be advantageous to learn random
distributions.

B. Multivariate Historical Data for Portfolio

Optimization

The qGAN scheme can also be used to learn and load
multivariate random distributions. Here,we present the
learning and loading of a distribution underlying the
�rst two principle components of multivariate, constant
maturity treasury rates of US government bonds. Note
that the trained quantum channel can be used within
the discussed QAE algorithm to evaluate, for instance,
the fair price of a portfolio of government bonds, see [2].
The following results are computed with a quantum

simulation. The training data set X consists of more
than 5, 000 samples, whereby data samples smaller than
the 5%−percentile and bigger than the 95%−percentile
have been discarded to reduce the number of required
qubits for a reasonable representation of the distribution.
The optimization scheme uses data batches of size 1, 200
and is run for 20, 000 training epochs.
Furthermore, we use depth k ∈ { 2, 3, 6 }, unitary

quantum generators that act on n = 6 qubits, i.e. 3 qubits
per dimension (principle component). The input state
|ψin〉 is prepared as a multivariate uniform distribution
and the generator parameters θ are initialized with
random draws from a uniform distribution on the interval
[−δ,+δ] with δ = 10−1.

∗ ouf@zurich.ibm.com

Here, the classical discriminator is composed of a 512−
node input layer, a 256− node hidden-layer, and a single-
node output layer. Equivalently to the discriminator
described in the main text, the hidden layers apply linear
transformations followed by Leaky ReLU functions [3]
and the output layer employs a linear transformation
followed by a sigmoid function. The evolution of the
relative entropy between the generated and the real
probability distribution is shown in Fig. 1.

Supplementary Figure 1 Relative entropy progress for a
multivariate random distribution. The
progress of the relative entropy between
the quantum generator and the
multivariate random distribution
underlying the training data is shown for
quantum generators with depth
k ∈ { 2, 3, 6 }.

II. SUPPLEMENTARY METHODS

A. Practical Initialization of a Normal Distribution

As proven in [4], a normal distribution can be
e�ciently loaded into a quantum state. However,
the suggested loading method requires the use of
involved quantum arithmetic techniques. Considering
the illustrative examples from the main text, it is
su�cient to load an approximate normal distribution
as the initialization state. This can be achieved by
�tting the parameters of a 3-qubit variational quantum
circuit with depth 1 with a least squares loss function.
More speci�cally, we minimize the distance between the
measurement probabilities piζ of the circuit output and
the probability density function of a discretized normal
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distribution qi

min
ζ

∑
i

∥∥piζ − qi∥∥2 . (1)

The circuit used for training is depicted in Fig. 2. Note
that this approach does not scale, particularly not for
higher-dimensional distributions. The sole purpose of
this approach is to generate shallow testing circuits.
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Supplementary Figure 2 Variational quantum circuit for
approximate loading of a normal
distribution. To reduce the number of
gates required for initialization with a
normal state, we use the illustrated
circuit to load an approximate
discretized normal distribution.

We trained the circuit parameters ζln to approximate
a normal distribution with the mean and the standard
deviation of the data samples drawn from each a log-
normal distribution with µ = 1 and σ = 1,

ζln = [0.3580, 1.0903, 1.5255, 1.3651, 1.4932,−0.9092] ,

ζtr to approximate a triangular distribution with lower
limit l = 0, upper limit u = 7 and µ = 2,

ζtr = [1.5343, 1.6183, 0.8559,−0.4041, 0.4953, 1.2238]

and ζbm to approximate a bimodal distribution consisting
of two superimposed Gaussian distributions with µ1 =
0.5, σ1 = 1 respectively µ2 = 3.5, σ2 = 0.5,

ζbm = [0.4683, 0.8200, 1.4512, 1.1875, 1.3883,−0.8418] ,

whereby the least square errors are of the order 10−4.

B. Analytic Gradients of a Variational Quantum

Circuit

Compared to gradient-free optimization, gradient-
based optimization methods have the potential to
improve convergence rates, e.g. in a convex vicinity of
local optima [5]. We now discuss a method to calculate
analytic gradients [6�10] for the variational circuit layout
illustrated in the main text.

Applying our n−qubit generator to the input state
gives

|gθ〉 = Gθ |ψin〉

=

k∏
p=1

(
n⊗
q=1

(RY (θq,p))Uent

)
n⊗
q=1

(
RY

(
θq,0
))
|ψin〉

=

2n−1∑
j=0

√
pjθ |j〉 .

(2)

We measure |gθ〉 m times to obtain data samples
gl, l ∈ { 1, . . . ,m } which can take 2n di�erent values.
The generator loss function for a data batch of size m
reads

LG (φ,θ) = − 1

m

m∑
l=1

log
(
Dφ

(
gl
))
, (3)

or equivalently,

LG (φ,θ) = −
2n−1∑
j=0

pjθ log
(
Dφ

(
gj
))
, (4)

with

pjθ = | 〈j|gθ〉 |2. (5)

Updating the parameters θ with gradient based
methods requires the evaluation of

∂LG (φ,θ)

∂θi,l
= −

m∑
j=1

∂pjθ
∂θi,l

log
(
Dφ

(
gj
))

. (6)

According to [8], Eq. (6) can be evaluated by

∂pjθ
∂θi,l

=
1

2

(
pj
θi,l
+

− pj
θi,l
−

)
, (7)

with θi,l± = θi,l ± π
2 ei,l and ei,l denoting the (i, l)-unit

vector of the respective parameter space.

C. Statistical Measures

Two di�erent statistical measures are utilized to
evaluate the performance of the qGAN. Both measures
are de�ned as a distance of two (empirical) probability
distributions P and Q.
The Kolmogorov-Smirnov statistic [11, 12] is based

on the (empirical) cumulative distribution functions
P (X ≤ x) and Q (X ≤ x) and is given by

DKS (P ||Q) =
x∈X
sup |P (X ≤ x)−Q (X ≤ x) |. (8)

The statistic can be used as a goodness-of-�t test.
Given the null-hypothesis P (x) = Q (x), we draw
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s = 500 samples from both distributions and choose
a con�dence level (1 − α) with α = 0.05. The null-
hypothesis is accepted if

DKS (P‖Q) ≤

√
ln 2

α

s
= 0.0859. (9)

Another measure that can be used to characterize the
closeness of (empirical) discrete probability distributions
P (x) and Q (x) is the relative entropy, also called
Kullback-Leibler divergence [1, 13]. This entropy-related
measure is given by

DRE (P ||Q) =
∑
x∈X

P (x) log

(
P (x)

Q (x)

)
. (10)

The relative entropy represents a non-negative quantity,
i.e. DRE (P ||Q) ≥ 0, where DRE (P ||Q) = 0 holds if
P (x) = Q (x) , for all values of x.

D. Quantum Amplitude Estimation

Given a quantum channel

A |0〉⊗n+1
=
√
1− a |ψ0〉 |0〉+

√
a |ψ1〉 |1〉 , (11)

where |ψ0〉, |ψ1〉 denote n-qubit states, the QAE
algorithm [14], illustrated in Fig. 3, enables the e�cient
evaluation of the amplitude a. The algorithm requires m
additional evaluation qubits that control the applications
of an operator Q = −AS0A†Sψ0 where S0 = I⊗n+1 −
2 |0〉 〈0|⊗n+1

and Sψ0 = I⊗n+1 − 2 |ψ0〉 〈ψ0| ⊗ |0〉 〈0|.
The error in the outcome - ignoring higher terms - can

be bounded by π
2m . Considering that 2m is the number

of quantum samples used for the estimate evaluation,
this error scaling is quadratically better than the classical
Monte Carlo simulation.
To use QAE for the pricing of European options,

we need to construct and implement a suitable oracle
A. First, we load the uncertainty distribution that
represents the spot price ST of the underlying asset at the

option's maturity T into a quantum state
∑2n−1
i=0

√
pi |i〉.

It should be noted that small errors in this state
preparation only lead to small errors in the �nal result.
Then, we add an ancilla qubit |0〉 and use a comparator
circuit which applies an X gate to the ancilla if i > K,
i.e.

|i〉 |0〉 7→
{
|i〉 |0〉 , if i ≤ K
|i〉 |1〉 , if i > K,

(12)

where K denotes the strike price. Now, the state reads

K∑
i=0

√
pi |i〉 |0〉+

2n−1∑
i=K+1

√
pi |i〉 |1〉 . (13)

Finally, we control the mapping of the payo� function
to the amplitude of another ancilla qubit |0〉 with

(m− 1) |0〉 H •

F†
m

... . .
. ...

(j) |0〉 H •
... . .

. ...

(0) |0〉 H •

|0〉n
A Q20 Q2j Q2m−1

|0〉
· · · · · ·

Supplementary Figure 3 Quantum Amplitude Estimation. The
illustrated quantum circuit corresponds
to the Quantum Amplitude Estimation
algorithm with the inverse Quantum
Fourier Transform [1] being denoted by

F†m.

the comparison ancilla. This construction implements
channel A and approximates the quantum state

A |0〉⊗n+1
=

K∑
i=0

√
pi |i〉 |0〉 |0〉+

2n−1∑
i=K+1

√
pi |i〉 |1〉

(√
1− f(i) |0〉+

√
f(i) |1〉

)
,

(14)

with f(i) = i−K
2n−K−1 . For practical reasons, we avoid

the involved implementation of the exact linear objective
rotation given in Eq. (14) by applying the approximation
scheme introduced in [2].
Eventually, the probability of measuring |1〉 in the last

ancilla is equal to

P[|1〉] = 1

2n −K − 1

2n−1∑
i=K+1

pi(i−K) (15)

=
1

2n −K − 1
E[max{0, ST −K}]. (16)

We can see from comparing Eq. (11) and Eq. (14) that
P[|1〉] = a. It follows that we can use QAE to e�ciently
evaluate E[max{0, ST −K}] = P[|1〉](2n −K − 1).

E. Hardware E�cient Circuit Implementation

Due to the connectivity layout of the IBM Q
Boeblingen chip, shown in Fig. 4, any subset of three
qubits - we use qubits 0, 1, 2 - has linear connectivity
only. Thus, the implementation of the entanglement
block presented in the main text requires the use of
SWAP gates, as shown in Fig. 5(a).
The implementation of CZ ◦ SWAP with the gate

set currently available for IBM Q backends requires the
use of 4 CX gates, i.e. 3 for the SWAP and 1 for the
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Supplementary Figure 4 IBM Q Boeblingen. The �gure illustrates
the connectivity of the IBM Q
Boeblingen 20 superconducting qubit
chip, as well as the qubits used for the
qGAN training.

CZ. However, we can reduce the number of required CX
gates, see Fig. 5(b). As shown in [15], the action of circuit
(a) is equivalent to the action of circuit (b), which only
utilizes 2 CX gates. During the training, circuit (b) maps
the measurement of q1 (q2) on bit c2 (c1) to compensate
for the second SWAP in circuit (a). However, when
using the generator circuit for data loading in another
algorithm, such as QAE, an actual SWAP gate must be

implemented.

(a)

(b)

Supplementary Figure 5 Hardware e�cient quantum generator
implementation. The action of the
illustrated circuits is equivalent. Since
the quantum circuit at the bottom
requires fewer CX gates, it is the
favorable implementation choice for
training a qGAN with actual quantum
hardware. Notably, the lower circuit
projects the measurement of qubit q1
(q2) on bit c2 (c1).
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