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Supplementary Information  

 

Supplementary Note 1. Electron temperature and intra-qubit tunnel coupling calibration  

 Electron temperature, and the tunnel coupling strength of the left double quantum dot 

are measured using the standard lock-in technique. dVrf/dV2 is observed by modulating V2 gate 

voltage with 337Hz frequency. With proper adjustment of dot-reservoir tunnel rates less than 1 

MHz and setting minimal modulation amplitude, the electron temperature Te ~ 230mK is 

determined by fitting the heterodyne detected single electron transition line to the equation
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, which is the derivative of the typical 

Fermi-Dirac distribution (Supplementary Fig. 1a). Here 0.035   is the lever-arm of the V1 

gate obtained from the Coulomb diamond measurement, kB is the Boltzmann constant, and

offset
A and 

offset
V  are the dVrf/dV2 offset and the offset V1 voltage in the dVrf/dV2 – V1 plot, 

respectively. The intra-qubit tunnel coupling strength tc was obtained in the similar manner, by 

sweeping the gate voltage through the inter-dot transition line in the stability diagram for 

example shown in Fig. 1c of the main text. The broadening is fitted using the same equation 

described above, with the broadening width 2tc instead of kBT where the tc represents the tunnel 

coupling strength. The resultant 2tc/h is 16 GHz where h is the Plank’s constant.   
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Supplementary Figure 1. System parameter calibration. a. Electron temperature 

measurement. b. tunnel coupling strength measurement using the heterodyne detection scheme. 

Typical lock-in measurement was performed to obtain the broadening of the single electron 

transition due to thermal broadening and the intra-qubit tunneling. Electron temperature Te ~ 

230 mK, and tunnel coupling tc /h ~ 8GHz were obtained from the fitting. When obtaining b. 

both V1, and V2 were swept through the inter-dot transition line in Fig. 1c, but only the V1 gate 

voltage is shown in the x-axis.    

 

 

 

Supplementary Note 2. Correlated double sampling (CDS) 

 By resampling the demodulated rf-signal with the boxcar integrator, we enable the 

real-time single-shot event counting without the use of field-programmable gate arrays (FPGA) 

programming. As shown in Supplementary Fig. 2, the boxcar integrator subtracts the 100 ns-

averaged baseline signal from the gate signal which are separated by 5 s  in the time domain 

to yield a pseudo-time derivative signal of the single-shot trace with 200 kHz sampling rate. 

CDS converts the falling (rising) edge to the positive (negative) peak and the peaks are detected 

by the external photon counter (Stanford Research Systems SR400) as shown in Supplementary 

Fig. 2a. This allows the separate detection of tunneling in / out event in real-time without post-

processing which may reduce the experimental overhead in the analysis step. By counting the 

tunneling out events, we have observed the coherent singlet-triplet qubit (ST0 qubit) 

oscillations in the energy selective tunneling (EST) readout point in the main text. For single-

shot readout, the boxcar integrator is operated with average number set to 1 (no averaging).  

 When averaged, however, the CDS technique can also be utilized to observe short-

lived T0 signal for Pauli Spin Blockade (PSB) readout, which enable measurement bandwidth 

of 33MHz in time averaged manner (see also the inset to Fig. 1c in the main text). By setting 

the ~ 0.1 s gate window right after the spin-mixing pulse comes back to the PSB region, and 

the ~ 0.1 s baseline gate window before the next pulse start as shown in Supplementary Fig. 

2b, the demodulated signal is effectively sampled for short time where the portion of the T0 

signal is sufficiently large to be observed with sufficient periodic average.  



 

Supplementary Figure 2. Correlated double sampling schematics. a. Correlated double 

sampling for tunneling out / in event detection. Boxcar integrator resamples the bare 

demodulated rf signal by subtracting the ~ 100 ns averaged baseline (B) signal from the gate 

(G) signal every 5 s . This resampling process converts the falling edge signal of the rf signal 

to a positive peak with removing dc background and produces pulse signal robust to 

background drift. b. CDS scheme for short T0 signal detection in PSB readout. Pulse mixes the 

S and T0 states in the operation (O) sequence, and when returning to the readout (R) step, the 

T0 quickly relaxes to (2,0) charge state under large magnetic field difference. The boxcar 

integrator in this case is operated in averaging mode where sampled signal G of the rf-signal 

for short period time after the pulse sequence are subtracted by the B signal and averaged about 

5000 times to increase signal to noise ratio.   

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Note 3. Right qubit measurement fidelity 

 

Supplementary Figure 3. Right qubit readout fidelity analysis. a. Tunneling out rate of the 

right qubit QR at the EST readout point. Tunneling out events were recorded as a function of 

the tunneling time, and the exponential fit to the curve yields out ~ 25 s  . b. Relaxation time 

measurement near EST readout point. The decay of the coherent oscillation is observed along 

the waiting time   near the EST readout point. T1 ~ 192 s is extracted from the fit. c. 

Experimental, and simulated rf single-shot traces of the QR with the  -pulse applied. d. 

Tunneling detection infidelity calculated from the CDS peak amplitude histogram shown in the 

inset. Minimum total error (ET + EN) of 28.2% corresponding to ET ~ 19%, and EN ~ 9.2% are 

estimated at the optimal threshold.  

 

 

 

 

 

 

 

 



Supplementary Note 4. Magnetic field simulation 

 

Supplementary Figure 4. Simulation of the magnetic field around the QDs. The total 

magnetic field strength around the quantum dots in our device (see Supplementary Fig. 8) is 

simulated using the boundary integral method with RADIA1,2 package. Green dots indicate the 

quantum dot positions. The fast / /B oscillations shown in Fig. 3 in the main text is up to 

500MHz corresponding to / /B  of 100 mT, and we ascribe this higher-than-expected- / /B  

to the displacement of the electrons from the expected positions by the confining potential in 

the few electron regime.    

 

Supplementary Note 5. Measurement fidelity analysis 

 We have taken the thermal tunneling events into consideration for the fidelity analysis 

and describe the analysis protocol in detail here. We first define two parameters 1 , and   

where 1 corresponds to the probability for the ground (S) state to tunnel out to the reservoir 

within a measurement window, and   corresponds to the false initialization probability 

following the Pla. et al.3. Regarding the false initialization we assume the following for three 

triplet states – T0, T+, and T-. 

1) Probabilities for the electron to falsely initialize to different triplet states are all equal to / 3 . 

2) The relaxation time is equal for all T0, T+, and T- state. 

3) T+ (1,1), and T- (1,1) states do not evolve to other states during the Larmor oscillation phase.   

It should be noted that while the false initialization to T0 state contribute to the visibility loss 

while the false initialization to T+ or T- states would result in overall shift of the Larmor 

oscillation because the T+ or T- will not undergo coherent mixing process during the evolution 

time. We introduce an additional parameter, 2 to account for the double-tunneling probability 

of the ground state within a single measurement window. For example, in the case that a T0 

state first tunnels out to the reservoir and initialize to the S state in a measurement phase, there 

still exist non-zero probability for the S state to tunnel out within the measurement window, 

and 2  represents the corresponding probability. It is thus natural to define the total double 

tunneling probability as 2 2( (1 ) )P       which covers the double-tunneling probability 

of the false initialized triplet states and the reinitialized S state after a single tunneling event.  



 

Supplementary Figure 5. Pulse sequence for Larmor oscillation measurement. The 

Larmor oscillations of QL and QR are measured by first sweeping the pulse parameter, the free 

evolution time 
jt , and repeating the measurement over 2000 times to average traces. N 

different pulses corresponding to N different evolution time are all recorded in the arbitrary 

waveform generator (AWG) before measurements to enable the rapid hardware triggered 

sweep of the pulse parameter.  

In the Larmor experiment in Supplementary Fig. 3a, 3d of the main text, we obtain the 

oscillation by averaging single-shot traces using the pulse sequence shown in Supplementary 

Fig. 5. As we regard the spin state is at the excited (T0) state if there is at least one tunneling 

event within a measurement window, we first define the 
j / /( , )P t B  as the probability for at 

least one tunneling to occur within a single measurement window at the evolution time 
jt  

( 1 j N  , j  is integer) under the magnetic field difference / /B . It should be noted that 

j / /( , )P t B  must be derived recursively since the tunneling event at the jth shot affects the 

tunneling probability of the (j+1)th shot. The relation between the
j 1 / /( , )P t B  , and 

j / /( , )P t B  

is as follows.  
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under the magnetic field difference / /B  when the initial state is the singlet state, and (1- r ) 

is the relaxation probability of the T0 state within the measurement window which is given by 
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 where M is the length of the measurement window, T1 is the 

spin-relaxation time, and out  is the tunneling-out time.   

However, recursively obtained / /P( , )t B  cannot yet fully account for the 

experimentally obtained Larmor curve. We additionally define tunneling detection fidelity TT

( NT ) which is the fidelity to correctly tell there is a (no) tunneling event when there is a (no) 

peak in the signal. Here TT  and NT  are determined by the signal to noise ratio (SNR) of the 

measurement setup, and the detailed description on how to obtain the tunneling detection 

fidelities is given below. With / /P( , )t B , TT , and NT , the experimental Larmor curve can be 

fully modeled. / /A( , )t B , the average number of the tunneling events detected by the photon 

counter, has the following relation with the / /P( , )t B .  

/ / / / 2 T / / NA( , ) P( , )(1 ) (1 P( , ))(1 )t B t B P T t B T                      - (2) 

Assuming that 
/ /B suffers from the Gaussian noise, we perform the Gaussian weighted sum 

of / /A( , )t B curves as below within the 5-sigma range.  
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Here ( , , )G x    is the Gaussian distribution centered at  with the standard deviation .  

By setting 1 , 2 ,  , ,and / /B as the fitting parameters we perform the least squares fitting of 

the 
/ /A( , )t B to the experimental Larmor curve. Below we describe the protocol for obtaining 

the tunneling detection infidelities.  

Typical measurement fidelities are acquired by obtaining the histograms of the time-

resolved signals of qubit ground and excited states, and finding the adequate threshold which 

yields the highest visibility4–6. The obtained measurement fidelities not only suffer from the 

imperfect tunneling detection, but also from the spin-relaxation or thermal tunneling events, 

implying that the TT , and NT cannot be solely obtained experimentally. We first numerically 

simulate6 the traces with the experimental parameters including the offset rf-voltage, amplitude 

of the tunneling peaks, tunneling in/out time, spin-relaxation (T1) time, and sampling rate 

(Parameters are denoted in the Supplementary Table 1.). The thermal tunneling events are 

added to the signals in according to the thermal tunneling parameters 1 , 2  and , which 

then undergo through the numerical noise and low pass filter to yield a realistic signal. Then 

the amplitude of the noise filter is varied to match the experimentally obtained histogram of 

the rf-signal as in Fig. 2d, and the optimal noise amplitude is chosen. With the noise amplitude, 



we numerically generate the ‘ideal’ signals of triplets and singlets without the thermal tunneling 

events, or spin-relaxation to solely evaluate the tunneling detection fidelity of the electrical 

measurement setup. As we have utilized the CDS technique as described in Supplementary 

Note 2, corresponding boxcar filter is applied to the numerical signals, and the histograms of 

the boxcar-filtered signals are acquired to perform a typical integration for tunneling detection 

fidelity calculation4–6. We have plotted the tunneling detection infidelity TE ( NE ) where 

T T1E T  ( N N1E T  ) in the Fig.2e and Supplementary Fig. 3d. The tunneling detection 

fidelities 
T op( )T V , and 

N op( )T V  at the optimal threshold which yields the lowest 

tot op T op N op( ) ( ) ( )E V E V E V   are utilized for the Larmor curve fitting described above. 

 

To sum up, the whole process is done as follows.  

1) Put the initial guesses of parameters to perform Larmor curve fitting, and obtain 

the 1 , 2 ,and   

2) Use the obtained thermal tunneling parameters for rf-histogram fitting to acquire 

the optimal noise amplitude.  

3) Generate ideal traces of the T0, and S states with the noise amplitude from 2), and 

calculate TT , and NT  

4) Use TT , and NT for Larmor curve fitting, and obtain 1 , 2 , and .  

5) Iteratively obtain the optimal TT , NT , 1 , 2 , and  . 

 

We now turn to discuss the total measurement fidelity. If there exist thermal tunneling 

events irrelevant with the spin dynamics, it is difficult to tell whether the tunneling peak occurs 

due to the thermal effect or not upon acquiring a single-shot trace. Thereby the total 

measurement fidelity should now be obtained by taking 1 , 2 , and   into account. Let us 

define 
0TF ( SF ) as the T0 (S) measurement fidelity, and 

0 0T S T S( ) 1 ( )R R F F  as the 

measurement infidelity. We first evaluate SR  by categorizing the cases which can detract the 

S measurement fidelity.    

X1: No tunneling occurs ( 11  ), photon counter ‘beeps’ due to electrical noise ( NE )   

X2: A single tunneling occurs ( 1 ), photon counter detects the tunneling ( T1 E ) 

X3: A single tunneling occurs ( 1 ), the tunneling is not detected ( TE ) but the photon 

counter ‘beeps’ due to electrical noise ( NE ) 

X4: Double tunneling occurs ( 1 2P ), first tunneling is not detected ( TE ), and the 

second tunneling is detected ( T1 E ) 

X5: Double tunneling occurs ( 1 2P ), both tunneling events are not detected ( 2

TE ), but 

photon counter ‘beeps’ due to electrical noise ( NE ) 



As X1 ~ X5 are independent, mutually exclusive, S 1 2 3 4 5(X ) (X ) (X ) (X ) (X )R P P P P P    

holds. i.e.  
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Cases for the T0 measurement infidelity can be similarly categorized with the relaxation process 

considered, as follows. 

Y: T0 relaxes within the measurement time (1 r ), photon counter detects no tunneling 

( S1 R ) 

Z1: T0 does not relax within the measurement time ( r ), the tunneling is not detected 

( TE ), no additional tunneling occurs ( 21 P ), counter detects no signal ( N1 E ) 

Z2: T0 does not relax within the measurement time ( r ), double-tunneling occurs ( 2P ), 

both tunneling events are not detected ( 2

TE ) 

Y, Z1, Z2 are all independent, and mutually exclusive leading to
0T 1 2(Y) (Z ) (Z )R P P P   . 

i.e. 
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Finally, the total measurement fidelity 0S T

meas

( )
1

2

R R
F


   with the spin-relaxation, 

thermal tunneling events, and the tunneling detection infidelity of the setup is calculated as 

90±1.3% (80.3±1 %) corresponding to visibility(
0S T 1F F  ) of 80±2.6 % (60.6±2 %) for QL 

(QR). Also, from the Larmor curve fitting we obtain the 
/ /B fluctuation of  ~15.71 MHz 

(15.73 MHz) corresponding to *

2T  ~ 14.33 ns (14.31 ns) for QL (QR). We assume that ~ 3% 

disagreement of the QR visibility is due to the uncertainty in measured relaxation time. 

 

 

 

 

 

 

 

 

 

 



 

 

Input QL QR 

out ( s ) –:Tunneling-out time of the triplet states 16 25.5 

in ( s ) : Tunneling-in time of the singlet state 117 130.5 

T1 ( s ) : Relaxation time of the triplet states 337 192 

Meas. Time ( s )  150 200 

Sampling rate (MHz) 14 14 

CDS freq. (kHz) 200 50 

CDS gate width ( s ) 0.1 4 

Output   

1  : False tunneling-out probability of the singlet 

state 

0.081 0.092 

2  : Double tunneling-out probability 0.08 0.089 

  : False initialization probability 0.12 0.069 

 (MHz) : Std. deviation of the / /B  distribution 15.71 15.73 

TE  : Tunneling detection infidelity  0.05 0.19 

NE  : No-tunneling detection infidelity 0.055 0.092 

0TR : T0 measurement infidelity  0.077 0.232 

SR  : S measurement infidelity 0.128 0.162 

measF  : Total measurement fidelity 90±1.3% 80.3±1 % 

Supplementary Table 1. Input and output parameters of the analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Note 6. Expected fidelity with direct peak detection    

 

Supplementary Figure 6. Error simulation for direct peak detection scheme. a. (b.) The 

tunneling detection infidelity calculated from the rf-histogram in the inset. The histograms are 

constructed by sampling the peak values for QL (QR) single-shot traces without the spin 

relaxation, and thermal tunneling events to evaluate the tunneling detection infidelities without 

the CDS. For QL, the tunneling detection infidelities are below 0.00001% while for QR 

infidelities of TE ~ 2 % , and NE ~ 2 % are obtained at the optimal threshold. 

 The measurement fidelity and visibility are calculated for the direct peak detection 

scheme to explicitly show that the use of FPGA rather than CDS technique may extend the 

measurement fidelity and visibility with the same experimental parameters. Following the A. 

Morello et al.6, single-shot traces were first simulated with the experimental parameters, and 

instead of passing through additional numerical CDS filter, the peak value (the minimum value) 

from each rf single-shot trace is sampled from 15,000 traces to construct the histogram shown 

in the insets of Supplementary Fig. 6a. and 6b. Because the short peaks or the full signal 

contrast cannot be perfectly detected with the CDS due to its limited bandwidth, the tunneling 

detection fidelities are naturally higher for the FPGA case. With the same out , T1, 1  , 2 , 

and  , the measurement fidelity of QL (QR) is estimated as 94 % (88.8 %). We claim that the 

fidelities can further be higher if the FPGA-based readout is applied because the large peak 

separation would allow faster single-shot measurements with faster tunneling rates which 

would result in less relaxation due to lower out /T1. 

 

 

 

 

 

 

 



Supplementary Note 7. Leakage error analysis due to Landau-Zener transition 

 We estimate the Landau-Zener transition probability during the fast ramp time by 

solving the time-dependent Schrodinger equation with the typical ST0 qubit Hamiltonian7. We 

put the measured parameters such as the tunnel coupling strength, pulse rise time, pulse 

amplitude, and the magnetic field differences into the numerical simulation, and obtained the 

time trace of (2,0)S along the evolution time up to 10 ns. As the decoherence of the system is 

not considered in the simulation, the resultant trace (Supplementary Fig. 7) exhibits non-

decaying oscillatory behavior in the 0 ~ 3% range which averages to 1.7%. We therefore 

conclude that the leakage probability and its effect to the visibility is not significant.  

 

Supplementary Figure 7. The (2,0)S probability along the free evolution time. Time 

evolution of the (2,0)S state probability under the typical ST0 qubit Hamiltonian is numerically 

obtained by putting the experimental parameters. The simulation yields 1.7% (2,0)S average 

occupation probability during the qubit manipulation time.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Note 8. Measurement setup 

 A rf-single electron transistor (rf-set) sensor is operated to detect the charge states of 

the ST0 qubits in our device. For the rf-reflectometry, impedance matching tank circuit as 

shown in Supplementary Fig. 8 is attached to the rf-ohmic contact of the device, and the 100 

pF capacitor is connected in series to the other ohmic contact (depicted on the micromagnet) 

to serve as a rf-ground. With the inductor value L = 1500 nH and the parasitic capacitance Cp 

= 1.4 pF of the circuit board, the resonance frequency is about 110MHz, and the impedance 

matching occurs at rf-set sensor resistance approximately 0.5 h/e2 where h is Plank’s constant 

and e is the electron charge. A commercial high frequency lock-in amplifier (Zurich Instrument, 

UHFLI) is used as the carrier generator, rf demodulator for the homodyne detection, and further 

signal processing such as gated integration and timing marker generation. Carrier power of -

40dBm power is generated at room temperature and attenuated through the attenuators and the 

directional coupler by -50 dB in the input line. The reflected signal is first amplified by 25 dB 

with commercial cryogenic amplifier (Caltech Microwave Research Group, CITLF2), and 

further amplified by 50 dB at room temperature using a home-made low-noise rf amplifier. 

Demodulated signal is acquired with a data acquisition card (National Instruments, NI USB-

9215A) for raster scanning and also boxcar-averaged with the gated integrator module in the 

UHFLI for the correlated double sampling described above. For single-shot readout, the CDS 

output is counted with a high-speed commercial photon counter (Stanford Research Systems, 

SR400 dual gated photon counter). A commercial multichannel scalar (Stanford Research 

Systems, SR430 multichannel scaler & average) is also used for time correlated pulse counting 

for tunneling rate calibration.     

 



   

Supplementary Figure 8. The measurement setup for radio frequency (rf)-reflectometry, 

and the signal block diagram. Impedance matching tank-circuit (L~1500 nH, Cp ~ 1.4pF) is 

attached to the rf-set sensor Ohmic contact for homodyne detection. Orange (green) line 

indicates the input (reflected) signal. Reflected signal is demodulated and processed for single-

shot event counting as shown in the block diagram.  
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