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SUPPLEMENTARY NOTE I: VARIANCE BOUNDS

In the text of the main article, we reviewed the standard approach to upper bounding

the number of measurements (M) required to measure the energy of a Hamiltonian (H) to

within a desired target precision ε [1, 2]. This bound is calculated in a straightforward way

from the qubit representation that is obtained by making the Jordan-Wigner transformation

on a second quantized representation of the fermionic states, by expressing H as the sum of

Pauli strings (products of single-qubit Pauli operators) P` acting on the qubit representation

of the state. Then we have

Mq ≤
(∑

` |ω`|
ε

)2

, where H =
∑
`

ω`P`. (1)

More generally, if the Hamiltonian is expressed as a linear combination H =
∑

` ω`O`, one

can work out the optimal way of distributing independent measurements between these

terms and the overall number of measurements required for the resulting estimator to attain

a target precision. We refer the reader to Ref. 2 for more details and simply recall the

expression here,

M =

(∑
` |ω`|σ`
ε

)2

. (2)

The notation is the same as above, except that σ` is the positive square root of the vari-

ance of the operator O`. The upper bound of Supplementary Eq. (1) is derived by noting

that the variance of a Pauli operator measurement is at most one and by performing the

appropriate substitutions. Our primary concern here is to show how the calculation of such

a bound for fermionic Hamiltonians depends in a subtle manner on the representation of

the Hamiltonian. We have denoted the bounds above Mq, to refer to their evaluation in the

qubit representation of the Hamiltonian.

When calculating an upper bound of this type for a quantum chemical Hamiltonian,

H =
∑
pq

hpqa
†
paq +

∑
pqrs

hpqrsa
†
pa
†
qaras, (3)

it might seem natural to work directly with the coefficients hpq and hpqrs and the fermionic

representation rather than performing the Jordan-Wigner transformation to the qubit rep-

resentation. Provided that one is careful to count the coefficient for each term and its

Hermitian conjugate only once, it is possible to obtain an upper bound to the number
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of measurements required directly from the coefficients hpq and hpqrs. Provided that the

Hamiltonian is normal-ordered first, this bound can be expressed as

Mf ≤
(∑

p,q≤p |hpq|+
∑

pqr,s<q |hpqrs|+
∑

pq,r≤p,s=q |hpqrs|
ε

)2

. (4)

We denote this bound by Mf to indicate it was derived in the fermionic representation

of the Hamiltonian. However, this bound is looser than necessary in multiple ways. In

Supplementary Table I we show a breakdown of the calculation of the sum of the absolute

values of the coefficients for the Hamiltonian of a chain of eight equally spaced hydrogen

atoms. We consider five different types of terms from Supplementary Eq. (3) and calculate

the sum of the absolute values of the coefficients for all terms of each type in both the qubit

and fermionic representations. By comparing the two approaches in this way we show below

that we can shed light on the difference in the resulting bounds.

In column I of Supplementary Table I we begin with this analysis for the ‘number operator’

terms, a†pap of partition I. We see that the value reported in the qubit representation is exactly

half of that reported in the fermionic one. This is because the Jordan-Wigner transformation

applied to a†pap yields 1
2
I + 1

2
Zp. However, we may neglect the first contribution since

this is a constant and so does not affect the variance. Another way of understanding this

difference between the qubit and fermionic contributions is to realize that the bound of

Supplementary Eq. (1) is derived with the assumption that the maximum variance of each

term is 1. The number operator, however, has eigenvalues 0 and 1 rather than −1 and 1 like

a Pauli operator, and so its maximum variance is lower. We shall present an alternative to

Supplementary Eq. (4) below in Supplementary Eq. (8) that accounts for this lower variance.

The analysis of the other one-body term, a†paq + h.c., from partition II, is simpler. Column

II shows that the part of the total magnitude of the coefficients of these terms is the same,

regardless of which representation is used for the calculation.

The two-body terms in the Hamiltonian display more varied behavior. Taking a term

from partition III and applying the Jordan-Wigner transformation results in exactly 1
4

of the

weight being assigned to a constant term, explaining the difference between the values for

this partition. Because terms such as a†pa
†
qapaq can be rewritten as the product of two number

operators, they must have eigenvalues 0 and 1 and thus, a maximum variance smaller than

one. This improved bound would actually be lower than the one suggested by the analysis of

the Jordan-Wigner transformed terms, because it would account for the covariances between
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Hamiltonian Partition I II III IV V Whole

Hamiltonian

Example Term a†pap a†paq + h.c. a†pa
†
qapaq a†pa

†
qaqar + h.c. a†pa

†
qaras + h.c. -

Fermionic
∑

` |w`| 32.288 2.852 34.214 7.436 35.579 112.368

Qubit
∑

` |w`| 16.144 2.852 25.660 6.794 17.790 33.500

Supplementary Table I. Consider the normal ordered second quantized quantum chemistry Hamil-

tonian of Supplementary Eq. (3), calculated for a chain of eight hydrogen atoms equally spaced

1.0Å apart in an STO-3G basis. We group the terms in this Hamiltonian into five partitions.

Partitions I and II contain the one particle terms from the first summation. Partition I consists

of those terms where p = q, while II consists of those where p 6= q. Partitions III, IV, and V

contain the two particle terms from the second summation. Partition III consists of those where

there are two unique values among p, q, r, and s, while IV consists of those with three unique

values and V consists of those with four eigenvalues. For each partition, we report the sum of the

absolute values of the coefficients of these terms in the fermionic representation of the Hamiltonian

(counting the coefficient of a term and its Hermitian conjugate only once). We also report the same

quantity calculated in the qubit representation after applying the Jordan-Wigner transformation.

We drop any constant terms which appear as a result of the Jordan-Wigner transformation, since

these do not contribute to the variance. Additionally, we report the sum of the absolute value of

the coefficients for the entire Hamiltonian calculated in both ways in the final column.

the Zp, Zq, and ZpZq terms that emerge. We shall incorporate this tighter bound on the

variance of the individual terms in this class into the alternative to Supplementary Eq. (4)

presented below as Supplementary Eq. (8).

The disparity for partitions IV and V has a different source. If one performs the Jordan-

Wigner transformation of a term from either class individually, there is no difference between

the total magnitudes of the coefficients for the fermionic operators and their qubit counter-

parts. However, when one sums all such terms together there is some cancellation between

the qubit terms that reduces the overall total magnitude. Specifically, the terms in class V

benefit from some cancellation due to the eight-fold symmetries of the two-electron integral
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tensor for real orbitals [3],

hpqrs = hqpsr = hrspq = hsrqp = hrqps = hqrsp = hpsrq = hspqr = h. (5)

We claim that the cancellations between symmetric terms result in a value for the sum of

the magnitudes of the coefficients that is exactly half as large in the qubit representation as

it is in the fermionic one. As an example, consider the case with p = 4, q = 2, r = 3, s = 1.

After normal-ordering, the eight terms become four and we have

2ha†4a
†
2a3a1 + h.c.+ 2ha†3a

†
2a4a1 + h.c., (6)

where h is given by Supplementary Eq. (5) and denotes the value of the coefficients before

normal-ordering. The Jordan-Wigner transformation leads to terms from a†4a
†
2a3a1 + h.c.

that cancel with terms from a†3a
†
2a4a1 as shown below:

−h
4

(
X1X2X3X4 +X1X2Y3Y4 −X1Y2X3Y4 +X1Y2Y3X4 + Y1X2X3Y4 − Y1X2Y3X4 + Y1Y2X3X4 + Y1Y2Y3Y4

)
+

−h
4

(
X1X2X3X4 +X1X2Y3Y4 +X1Y2X3Y4 −X1Y2Y3X4 − Y1X2X3Y4 + Y1X2Y3X4 + Y1Y2X3X4 + Y1Y2Y3Y4

)
=

−h
4

(
X1X2X3X4 +X1X2Y3Y4 + Y1Y2X3X4 + Y1Y2Y3Y4 +X1X2X3X4 +X1X2Y3Y4 + Y1Y2X3X4 + Y1Y2Y3Y4

)
.

(7)

It is straightforward, although tedious, to prove that the same cancellation occurs generically

for terms in class V as a consequence of this eight-fold symmetry. As a result, for this class

of terms the sum of the magnitudes of the coefficients is exactly half as large in the qubit

representation as it is in the fermionic one. Analogous cancellations in the sum of the class

IV terms do not show an obvious symmetry but they are also the source of the difference

between the contributions from the two representations in partition IV.

Further cancellation is also apparent when one combines all five classes and calculates

the sum of the absolute values of the coefficients (dropping the constant terms) for both

representations of the Hamiltonian. The sum of magnitudes of the individual classes in

the fermionic representation is the same as the magnitude of the sum. However, in the

qubit representation, this value calculated for the entire Hamiltonian is roughly half the

size of the sum of the individual partitions. One substantial reason for this difference is

the fact that the terms in partitions I and III naturally give rise to terms proportional to

products of single qubit Z operators having opposite signs. This is behavior that we should

expect for any molecular Hamiltonian, where the single number operator terms arise from

the Coulomb attraction between nuclei and individual electrons (negative sign), while the

terms containing two number operators arise from the Coulomb repulsion between pairs of
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electrons (positive sign). Furthermore, unlike the tighter bounds achievable by accounting

for the smaller variance of the terms in partitions I and III, this cancellation derives from

the underlying form of the Hamiltonian and can not be accounted for in a straightforward

way by using a better upper bound for the σ` values in Supplementary Eq. (2) when deriving

a fermionic bound like Supplementary Eq. (4).

In the first three rows of Supplementary Table II, we now tabulate the bounds on the

variance of the energy estimator, in units of 100 E2
h, that arise from the sums of the absolute

values of the coefficients. We perform these calculations for a chain of eight hydrogen atoms

at various symmetric stretched interatomic spacings, including the 1.0Å distance explored

in Supplementary Table I. In this table, ‘Qubit Variance Bound’ refers to the bound of Sup-

plementary Eq. (1) calculated using the qubit form of the Hamiltonian. ‘Naive Fermionic

Variance Bound’ is calculated in a similar way, except using the sums of the fermionic coeffi-

cients, as in Supplementary Eq. (4). As noted above, the terms in the Fermionic Hamiltonian

which consist of number operators (class I in Supplementary Table I) or products of number

operators (class II in Supplementary Table I) actually have a variance which is upper-

bounded by 1
4

rather than one. One can substitute this tighter bound in Supplementary

Eq. (2) to yield the expression

Mf ≤

(
1
2

∑
p |hp|+

∑
p,q<p |hpq|+

∑
pqr,s<q |hpqrs|+

∑
pq,r<p,q |hpqrq|+

1
2

∑
pq |hpqpq|

ε

)2

,

(8)

where we have assumed that the Hamiltonian is normal-ordered to simplify the expression.

We present calculation based on this improved bound in the row titled ‘Fermionic Variance

Bound.’ However, it is clear that the bounds obtained directly from the qubit representation

of the Hamiltonian are considerably tighter than either of the bounds obtained using the

fermionic representation. This difference is explained by the cancellation effects that we

have described above.

In addition to these bounds on the variance of the estimator for the Hamiltonian, we also

consider two approximations to this variance that are not guaranteed to be upper bounds

(rows 4 and 5 of Table II). These approximations, which we refer to for brevity as FVA

and QVA, are calculated using the methodology of Ref. 1 using the fermionic and qubit

Hamiltonians respectively. In that work Wecker et al. reasoned that, in a typical quantum

chemical calculation, the orbitals would have occupation numbers near 0 or 1. Therefore,
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Interatomic Spacing (Angstrom) .6 .7 .8 .9 1.0 1.1 1.2 1.3

Qubit Variance Bound 22.499 17.657 14.680 12.675 11.222 10.134 9.297 8.629

Fermionic Variance Bound 99.393 86.271 76.352 68.683 62.596 57.721 53.768 50.462

Naive Fermionic Variance Bound 205.251 177.997 156.704 139.847 126.267 115.234 106.168 98.545

Fermionic Variance Approximation 31.501 27.404 24.580 22.557 21.038 19.893 19.023 18.321

Qubit Variance Approximation 7.212 6.225 5.567 5.118 4.786 4.540 4.356 4.209

Hartree-Fock Variance 7.211 6.224 5.565 5.118 4.785 4.539 4.355 4.208

Ground State Variance 9.206 8.194 7.568 7.181 6.929 6.779 6.695 6.641

Supplementary Table II. Variances for a symmetrically stretched chain of 8 hydrogen atoms in an

STO-3G basis. Rows 1-5 show values of the variance bounds and approximations to these that

are described in the text. The variances are presented in units of 100 E2
h. The bound in row 1 is

calculated using Supplementary Eq. (1), while row 2 uses Supplementary Eq. (8), and row 3 uses

Supplementary Eq. (4). The approximations in rows 4-5 are calculated using the methodology of

Ref. 1, which amounts to using Supplementary Eq. (1) or Supplementary Eq. (4) but neglecting

some of the terms in the Hamiltonian as described in the text below. The last two rows, 6-7, present

the actual variance of an estimator that measures each term in the Jordan-Wigner transformed

Hamiltonian separately, for the Hartree-Fock state and for the ground state, respectively.

the number and number-number terms in the Hamiltonian (partition I and partition III

in Supplementary Table I) would have a variance that is close to zero. This assumption

is satisfied exactly for the Hartree-Fock state when the appropriate single-particle basis is

used, and should be approximately true when Hartree-Fock is qualitatively correct. Based

on this assumption, Ref. 1 neglected these terms and then approximated the variance of the

remaining terms in the Hamiltonian using the type of bounds we have already discussed.

Rows 4 and 5 of Table II show that that there is still a substantial difference between

the variances calculated under this approximation using the two different representations of

the Hamiltonian, i.e., between FVA and QVA. This is primarily due to the reduction caused

by the cancellations among the double-excitation terms (class V in Supplementary Table I).

Interestingly, the numbers presented for the ‘Qubit Variance Approximation’ (QVA) are

nearly identical to those for the actual variance expected when measuring the Hartree-Fock
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state (row 6). In fact, any differences between these values are found to arise purely from

numerical precision issues in the data. One can examine the Pauli operators that arise

from performing the Jordan-Wigner transformation on the Hamiltonian after deleting the

diagonal terms and see that each of them has an expectation value of exactly zero on the

Hartree-Fock state. Measurements of these terms therefore achieve the maximum possible

variance of 1, while measurements of the deleted diagonal terms would have a variance that

is exactly 0. Thus, the calculation of the actual variance (when measuring each term in

the Hamiltonian separately) using Supplementary Eq. (2) for the Hartree-Fock state then

yields the same value as the calculation of the bound of Supplementary Eq. (1) under the

approximation proposed by Ref. 1.

SUPPLEMENTARY NOTE II: APPLYING THE FERMIONIC RDM CON-

STRAINTS TO THE QUBIT HAMILTONIAN

In the previous section we saw a substantial difference between the bounds calculated

from the fermionic operators and those calculated from the qubit operators after applying

the Jordan-Wigner transformation. In light of this, it is natural to ask how the reduced

density matrix (RDM) approach of Ref. 2 might perform when formulated using the qubit

representation of the Hamiltonian. In Ref, [2], Rubin et al. proposed that one could use

known n-representability constraints on the expectation values of few-fermion operators, in

order to construct estimators for the expectation value of the Hamiltonian that will have

lower variance. They showed how one could take a collection of algebraic equalities from

these fermionic n-representability constraints and use them to construct a new Hamilto-

nian H̃ from the original H. According to their approach, H̃ is constructed to have the

same expectation value as H, but a lower maximum variance according to the bounds dis-

cussed above. They performed this minimization of the upper bound using standard linear

programming techniques.

We are primarily focused here on the impact of these techniques for a real-world ex-

periment. Therefore, we shall compare the impact of performing this minimization on the

fermionic and qubit representations of the Hamiltonian, using the actual observed variance

with respect to the ground state as the figure of merit, rather than employing the bounds or

approximations discussed above. We take the same Pauli Word Grouping strategy described

8



Supplementary Figure 1. For each of the systems considered in the main text we apply the tech-

niques of Ref. 2 to the Hamiltonians in the fermionic and qubit Hibert spaces. We list these systems

in Supplementary Table III below, duplicating Table II of the main text for convenience. Using

fermionic n-representability constraints, we construct the Hamiltonians H̃fermionic and H̃qubit, that

have the same expectation value but a lower maximum variance under bounds of the type de-

scribed by Supplementary Eq. (1) and Supplementary Eq. (4). We then consider the variance of

these Hamiltonians with respect to the ground state. We calculate these variances assuming mea-

surement is performed using the Pauli Word Grouping strategy described in the main text. Finally,

we plot the ratio of the variance obtained for H̃qubit with the variance obtained for H̃fermionic. The

fact that all of these ratios are found to be near 1 shows that reformulating the work of Ref. 2 in

the qubit representation does not offer a substantial improvement.

in the main text and apply it to the Hamiltonians H̃fermionic and H̃qubit. We define H̃fermionic

and H̃qubit as the Hamiltonians that result from performing the upper bound minimization

procedure of Ref. 2 in the fermionic and qubit representations respectively.

In Supplementary Figure 1 we plot the ratio between the variances of H̃qubit and H̃fermionic

for the ground state of each of the systems considered in the main text of this work. We list

these systems in Supplementary Table III below, duplicating Table II of the main text for

convenience. Despite the substantial differences in the variance bounds formulated in the

two representations, the impact of applying the RDM constraints to the qubit Hamiltonian

rather than the fermionic one is found to be marginal, at best. For the majority of the

systems it appears that the qubit-based bounds perform slightly better, but there are also
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a number of cases where this pattern is reversed.

SUPPLEMENTARY NOTE III: LOW RANK DECOMPOSITION

In the main text, we explained that our strategy for measurement is based on rewriting

the standard quantum chemical Hamiltonian in the following form:

H = U0

(∑
p

gpnp

)
U †0 +

L∑
`=1

U`

(∑
pq

g(`)pq npnq

)
U †` , (9)

where the values gp and g
(`)
pq are scalars, np = a†pap, and the U` are unitary operators which

implement a single particle change of orbital basis. Here we shall explain how one obtains

that factorization starting from a standard representation. We follow the presentation of

Berry et al. with minor deviations and refer the reader to Ref. 4 for more details.

First, it is necessary to obtain the Hamiltonian in the chemist’s standard form,

H =
∑

σ∈{↑,↓}

∑
pq

Tpqa
†
p,σaq,σ +

1

2

∑
α,β∈{↑,↓}

∑
pqrs

Vpqrsa
†
p,αaq,αa

†
r,βas,β. (10)

This differs from the physicist’s convention of Supplementary Eq. (3), where the operators

in the two-electron component of the Hamiltonian have both creation operators to the left of

both annihilation operators. We assume the use of purely real spatial orbitals, and therefore

the tensor Vpqrs inherits the eight-fold symmetry,

Vpqrs = Vsrqp = Vpsqr = Vqprs = Vqpsr = Vrsqp = Vrspq = Vsrpq, (11)

from the definition of the two-electron integrals [3].

Now we can perform the decomposition. We treat the tensor V as a matrix indexed by

the collective indices pq and rs. We can eigendecompose this matrix to yield

Vpqrs =
∑
`

w`v
(`)
pq v

(`)
rs (12)

In the above equation, w` are the eigenvalues of V , v(`) are the eigenvalues. We proceed by

using this equality to rewrite the two-electron component of the Hamiltonian,

1

2

∑
α,β∈{↑,↓}

∑
pqrs

Vpqrsa
†
p,αaq,αa

†
r,βas,β =

1

2

∑
`

w`

( ∑
σ∈{↑,↓}

∑
pq

v(`)pq a
†
p,σaq,σ

)2
, (13)
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with v
(`)
pq inheriting the symmetry between the p and q indices from V .

The final remaining step is to transform Supplementary Eq. (13), as well as the one-

electron component of the Hamiltonian by diagonalizing each of the one-body operators.

It is straightforward to express each of the one-body operators as diagonal operators in a

rotated single-particle basis. The appropriate change of basis matrices can be obtained from

the eigenvalues of the coefficient tensors, T and the g(`)s in our case. We can therefore

express the Hamiltonian in the form of Supplementary Eq. (9), dropping the spin indices

for simplicity. The coefficients gp come from rotating to a basis where Tpq is diagonal.

The coefficients g
(`)
pq likewise come from rotating to a series of bases where the tensors v` are

diagonal between their p and q indices. The operators U` are the inverse of the operators that

diagonalize the one-body operators
∑

σ∈{↑,↓}
∑

pq Tpqa
†
p,σaq,σ and

∑
σ∈{↑,↓}

∑
pq v

(`)
pq a†p,σaq,σ.

Note that the p and q indices of Supplementary Eq. (9) represent new dummy indices and

that the w` terms have been absorbed into g
(`)
pq , together with the contributions from the

squares of the diagonalized v`pq terms.

SUPPLEMENTARY NOTE IV: DESCRIPTION OF DATA

In addition to this supplementary text, we also include the raw data we have generated

through our numerical calculations which does not already appear in tables throughout

the manuscript. The data is provided as a table in the csv file format with each row

corresponding to one of the particular systems listed below in Supplementary Table III

(identical to Table II in the main text) and each column corresponding to the variance of a

different estimator (or an ancillary piece of data, such as the energy of the system). Energies

are provided in units of Eh and variances in units of E2
h.
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System Interatomic Basis Total Frozen Number of

Spacings (Å) Set Orbitals Orbitals Qubits

H2 .6, .7, . . . 1.3 STO-3G 2 None 4

H2 .6, .7, . . . 1.3 6-31G 4 None 8

H4 .6, .7, . . . 1.3 STO-3G 4 None 8

H6 .6, .7, . . . 1.3 STO-3G 6 None 12

H4 .6, .7, . . . 1.3 6-31G 8 None 16

H8 .6, .7, . . . 1.3 STO-3G 8 None 16

H2 .6, .7, . . . 1.3 cc-pVDZ 10 None 20

H10 .6, .7, . . . 1.3 STO-3G 10 None 20

H6 .6, .7, . . . 1.3 6-31G 12 None 24

H2O .8, .9, . . . 1.5 STO-3G 7 1 12

H2O .8, .9, . . . 1.5 STO-3G 7 None 14

H2O .8, .9, . . . 1.5 6-31G 13 1 24

N2 .9, 1.0, . . . 1.6 STO-3G 10 2 16

N2 .9, 1.0, . . . 1.6 STO-3G 10 None 20

Supplementary Table III. List of the molecular systems considered in this work, displayed in order

of increasing number of qubits, for each type of system. This is a duplicate of Table II in the main

text, with an additional column indicating the total number of spatial orbitals. The hydrogen

chain systems (Hn) are all arranged in a line, with equal interatomic spacing. The interatomic

spacing for the water molecules (H2O) refers to the length of the symmetrically stretched O-H

bonds, which are separated by a fixed angle of 104.5 deg. Total Orbitals refers to the number of

spatial molecular orbitals used for each system. A non-zero number of frozen orbitals indicates the

number of molecular orbitals fixed in a totally occupied state.
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