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Supplementary Note 1 : Summary of Hayashi’s results from Ref. [1]

We summarise Hayashi’s result [1] which was published in the proceedings of a domestic workshop in the Research

Institute for Mathematical Sciences (RIMS) at Kyoto University in Japanese for the reader’s convenience. Let Hq be

a finite d-dimensional Hilbert space and consider a set of observables (Hermitian matrices) X = (X1, X2, ..., Xn)ᵀ on

it. We say that a POVM Π = {Πm} is a simultaneous measurement of the given observables X, if

Xj =
∑
m

x̂jmΠm , (1)

holds for all j. In general, a projection measurement does not exist unless the Xj commute with each other, but a

POVM Π exists. Given a state S on Hq, we define the expectation value of Xj by

xj := Tr[SXj ] =
∑
m

x̂jmTr[SΠm] . (2)

We define the covariance matrix by[
Ũ(Π, x̂)

]
jk

=
∑
m

(x̂jm − xj)(x̂km − xk)Tr[SΠm] (3)

=
∑
m

x̂jmx̂kmTr[SΠm]− xjxk (4)

= [U(Π, x̂)]jk − xjxk . (5)

We are interested in minimizing the sum of the diagonal elements of Ũ(Π, x̂). As the second term is constant this

is equivalent to minimising Tr[U]. Indeed the second term can be ignored for all practical purposes. We define the

precision limit as

C = inf
Π

Tr[U]−
∑
j

x2
j

∣∣∣∣Π : simultaneous measurement of X

 . (6)

Note here that C depends on the given state S and the set of observables X. Hayashi derived the following two

bounds for C.

Theorem 1 (Hayashi). The following are lower bounds for C and further that C ≥ C1 ≥ C2 holds.

C1 = inf
U

Tr[U]−
∑
j

x2
j

∣∣∣∣Ujk = Ukj Hermitian, U ≥
√
SXXᵀ

√
S

 , (7)

C2 = inf
U

Tr[U]−
∑
j

x2
j

∣∣∣∣U Hermitian, U ≥ Tr[
√
SXXᵀ

√
S]

 , (8)
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where S = 1⊗ S and U are complex matrices on the extended Hilbert space Hc ⊗Hq.

Hayashi’s first bound C1 is considered as the generalisation of the Nagaoka bound for simultaneous measurement

of non-commuting observables [2]. Using the linear programming approach, Hayashi further derived the following

alternative forms for C1 and C2

C1 = Tr
[
Sym+

(√
SXXᵀ

√
S
)]

+ inf
V

{
Tr[V]

∣∣∣V ≥ 0, Sym− (V) = −Sym−

(√
SXXᵀ

√
S
)}
−
∑
j

x2
j , (9)

C2 = Tr
[
Sym+

(√
SXXᵀ

√
S
)]

+ TrAbs
[
Tr
[
Sym−

(√
SXXᵀ

√
S
)]]
−
∑
j

x2
j , (10)

where Sym±(A) = 1
2 (A ± Aᵀ) is the symmetrised (anti-symmetrized) matrix of A on Hc ⊗ Hq with respect to the

classical index.

Finding the fundamental limit C is still an open problem. For two observables, Nagaoka conjectured that the bound

C1 is tight [3]. In other words, C = C1.

Supplementary Note 2 : Nagaoka bound for two parameter estimation

The Nagaoka bound for the two parameter estimation case is [2]

cN = min
X

{
Tr[SθX1X1 + SθX2X2] + TrAbsSθ[X1, X2]

}
(11)

with Xj Hermitian satisfying (4) in the main text. In this appendix we show that in the two-parameter case, the

Nagaoka–Hayashi bound, (5) in the main text, coincides with the original Nagaoka bound. When n = 2, the Nagaoka–

Hayashi bound is

cNH = min
L, X

{
Tr[SθL]

∣∣∣∣∣
(
L11 L12

L12 L22

)
≥

(
X1X1 X1X2

X2X1 X2X2

)}
, (12)

with Ljk Hermitian and Xj Hermitian satisfying (4) in the main text. We can write the condition in (12) as(
L11 L12

L12 L22

)
−

(
X1X1

1
2{X1, X2}

1
2{X2, X1} X2X2

)
≥

(
0 1

2 [X1, X2]
1
2 [X2, X1] 0

)
. (13)

Recognising that [X1, X2]/2 is an antihermitian matrix which we label as iH, we can rewrite the condition as(
L′11 L′12 − iH

L′12 + iH L′22

)
≥ 0 , (14)

where L′ denotes the matrix on the left hand side of (13). In order for this matrix to be positive we require [4]

‖L′11 + L′22‖ ≥ ‖2iH‖ , (15)

for any unitarily invariant norm. This inequality can be saturated by the choice

L′ =

(
|H| 0

0 |H|

)
, (16)

where |H| =
√
H2. The following lemma ensures (14) is satisfied.

Lemma 2 (Bhatia, corollary 1.3.7 [5]). Let A be any matrix. Then the matrix

(
|A| A†

A |A|

)
is positive.
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The matrix L′ can be chosen in this way by optimising over the matrix L so that(
L11 L12

L12 L22

)
−

(
X1X1

1
2{X1, X2}

1
2{X2, X1} X2X2

)
= L′ , (17)

hence

min
L

∥∥∥∥∥
(
L11 L12

L12 L22

)
−

(
X1X1

1
2{X1, X2}

1
2{X2, X1} X2X2

)∥∥∥∥∥ =

∥∥∥∥∥
(

0 1
2 [X1, X2]

1
2 [X2, X1] 0

)∥∥∥∥∥ . (18)

We let this norm be TrAbs, which is equal to the trace for the left hand side of this equation and so the condition

becomes

min
L

Tr[L11 + L22 −X1X1 −X2X2] = TrAbs 2iH . (19)

Rearranging and including Sθ we arrive at

cNH = min
L,X

Tr[Sθ(L11 + L22)] = min
X

Tr[Sθ(X1X1 +X2X2)] + TrAbsSθ[X1, X2] = cN . (20)

Supplementary Note 3 : Generalisation to arbitrary weight matrix

We present a generalisation of our main results to an arbitrary weight matrix W ≥ 0. In the case where the weight

matrix W > 0 is full rank, it can be set to the identity after a suitable reparametrisation for the model (see for

example, Sec. V of Fujiwara and Nagaoka [6]). Since we are only interested in the local bound, this reparametrisation

does not matter. Specifically, we can reparametrise the model as ϕj =
∑
k Hjkθk where H =

√
W is a real and regular

matrix. Estimating the new parameters ϕ is equivalent to estimating the original parameters θ with a weight matrix

W.

When W is not full rank, a bit more care is required in reparametrising the model because it might be possible

that some of the new parameters ϕj are exactly zero or that two of the ϕj ’s might be identical. This situation is

common when studying parameter estimation in the presence of nuisance parameters [7–9]. Nonetheless, it is still

easy to incorporate the weight matrix W into our original framework. We now wish to minimise Tr[WVθ] instead of

Tr[Vθ]. Recalling that the MSE matrix can be written as Vθ = Tr[SθLθ], this is handled by noting the following

WVθ = WTr[SθLθ] (21)

= Tr[(W ⊗ 1) SθLθ] (22)

= Tr[S′θLθ] , (23)

where S′θ = (W ⊗ 1)Sθ = W ⊗ Sθ is a positive semidefinite matrix. Thus, by changing from Sθ to S′θ, nothing about

the problem changes and it can be solved using the same SDP as in the main text.

Supplementary Note 4 : Conversion to standard SDP and complexity discussions

Here we show that the program

cNH = min
L, X

Tr[SθL] ,

subject to

(
L X

Xᵀ 1

)
≥ 0

(24)

with Ljk = Lkj Hermitian and Xj Hermitian satisfying (4) in the main text can be converted to the standard SDP

program

cNH = min
Y≥0

Tr[F0Y ]

subject to Tr[FkY ] = ck , for k = 1, . . . ,m ,
(25)
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where Y is a positive-semidefinite Hermitian matrix of size nd+d having the form Y =

(
L X

Xᵀ 1

)
, d is the dimension

of Hq and m is the total number of constraints on Y . The objective function to be minimised is handled with

F0 =

(
Sθ 0

0 0

)
. (26)

There are five groups of constraints on Y that have to be implemented through Fk and ck. Denoting Sj = ∂Sθ
∂θj

, the

constraints are:

1. Tr[SθXj ] = θj .

2. Tr[SjXk] = δjk.

3. Xj Hermitian.

4. Ljk = Lkj Hermitian.

5. The lower n-by-n block of Y equals the identity operator.

In the following, we set n = 3 to simplify the notations. The group 1 constraints are achieved with the n matrices

and constants

F
(1)
1 =


0

Sθ0
0


(
Sθ 0 0

)
0

 , c
(1)
1 = 2θ1 ,

F
(1)
2 =


0

 0

Sθ

0


(

0 Sθ 0
)

0

 , c
(1)
2 = 2θ2 ,

F
(1)
3 =


0

 0

0

Sθ


(

0 0 Sθ

)
0

 , c
(1)
3 = 2θ3 .

(27)

The group 2 constraints are achieved with the n×n matrices and constants

F
(2)
1j =


0

Sj0
0


(
Sj 0 0

)
0

 , c
(2)
1j = 2δ1j ,

F
(2)
2j =


0

 0

Sj

0


(

0 Sj 0
)

0

 , c
(2)
2j = 2δ2j ,

F
(2)
3j =


0

 0

0

Sj


(

0 0 Sj

)
0

 , c
(2)
3j = 2δ3j ,

(28)
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for j = 1, . . . , n. To implement the rest of the constraints, we introduce d2 Hermitian basis-operators Bj for L(Hq)
where L(Hq) denote the space of Hermitian operators in Hq, Tr[BjBk] = δjk and B1 proportional to the identity [10–

12]. If Sθ is not full rank, the number of basis operators can be reduced by (d − r)2 where r is the rank of Sθ by

restricting Bj to the quotient space L(Hq)/L(ker(Sθ)). See for example the discussions in [13, Sec. 2.10] or [14]. The

group 3 constraints are then implemented by n×d2 matrices and constants

F
(3)
1j =


0

iBj

0

0


(
−iBj 0 0

)
0

 , c
(3)
1j = 0 ,

F
(3)
2j =


0

 0

iBj

0


(

0 −iBj 0
)

0

 , c
(3)
2j = 0 ,

F
(3)
3j =


0

 0

0

iBj


(

0 0 −iBj

)
0

 , c
(3)
3j = 0 ,

(29)

for j = 1, . . . , d2. The group 4 constraints are implemented with
n2 − n

2
×d2 matrices and constants

F
(4)
1,2,j =


 0 iBj 0

−iBj 0 0

0 0 0

 0

0 0

 , c
(4)
1,2,j = 0 ,

F
(4)
1,3,j =


 0 0 iBj

0 0 0

−iBj 0 0

 0

0 0

 , c
(4)
1,3,j = 0 ,

F
(4)
2,3,j =


0 0 0

0 0 iBj

0 −iBj 0

 0

0 0

 , c
(4)
2,3,j = 0 .

(30)

for j = 1, . . . , d2. Finally, the group 5 constraints are implemented with d2 matrices and constants

F
(5)
1 =

(
0 0

0 B1

)
, c

(5)
1 =

√
d, and F

(5)
j =

(
0 0

0 Bj

)
, c

(5)
j = 0 (31)

for j = 2, 3, . . . , d2.

The worst-case time complexity for solving the SDP (24) or (25) to a desired accuracy ε is O(
√
N log(1/ε)) where

N = (n+1)d is the size of the matrix F0 [15, 16]. However in our simulations, we observed that the time complexity is

independent of N . This is consistent with reports in the literature that in practice, the SDP algorithms perform much

better than its worst-case bound [16]. Each time step requires solving a system of linear equations with a computational

complexity of O(N3). Therefore, the overall worst-case computational complexity is O
(
N3/2 log(1/ε)

)
.
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Supplementary Note 5 : Estimation of qubit rotations with a two-qubit probe—analytic POVM saturating

the Nagaoka–Hayashi bound

We now present an analytic measurement strategy that saturates the Nagaoka–Hayashi bound for the qubit rotation

estimation problem. We first define the four sub-normalised projectors

|φ1〉

|φ2〉

}
=

1

2


1

±ai

±ai

1

 and
|φ3〉

|φ4〉

}
=

1

2


1

∓b
∓b
−1

 (32)

where a and b are two non-zero real parameters satisfying a2 +b2 ≤ 1. An optimal strategy that saturates the Nagaoka

bound for estimating θx and θy consists of measuring the five-outcome POVM with Πj = |φj〉〈φj | for j = 1, 2, 3, 4 and

Π5 = 1− (Π1 + Π2 + Π3 + Π4). The probability for each POVM outcome is

p1

p2

}
=

1

4
a(2− ε)(a± θx) ,

p3

p4

}
=

1

4
b(2− ε)(b± θy) ,

p5 = 1− 1

2
(2− ε)(a2 + b2) .

(33)

We can use this to construct unbiased estimators for θx and θy with

ξx,1 = −ξx,2 =
2

(2− ε)a
, ξx,3 = ξx,4 = ξx,5 = 0 ,

ξy,3 = −ξy,4 =
2

(2− ε)b
, ξy,1 = ξy,2 = ξy,5 = 0 .

(34)

In this construction, the fifth outcome Π5 does not give any additional information about θx or θy. Nonetheless, it is

still necessary to be included so that the POVM outcomes sum up to 1. For a finite sample, to have a better estimate

of θx and θy, it is thus beneficial to have both a and b large so the outcomes Π1 to Π4 occur more often. However, in

the asymptotic limit, the variances in our estimate of θx and θy are

vx = ξ2
x,1 p1 + ξ2

x,2 p2 =
4(p1 + p2)

(2− ε)2a2
=

2

2− ε
,

vy = ξ2
y,3 p3 + ξ2

y,4 p4 =
4(p3 + p4)

(2− ε)2b2
=

2

2− ε

(35)

which do not depend on a or b. The sum vx + vy = 4/(2− ε) saturates the Nagaoka bound as claimed.

For estimating all three parameters θx, θy and θz, one measurement strategy is to use the same POVM outcomes

for estimating θx and θy but splitting Π5 to get some information on θz. Ideally, we would like to use these four

projectors we get when setting a = b = 0,

Π1 = Π2 =
1

4


1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

 , Π3 = Π4 =
1

4


1 0 0 −1

0 0 0 0

0 0 0 0

−1 0 0 1

 , Π5 =
1

2


0 0 0 0

0 1 i 0

0 −i 1 0

0 0 0 0

+
1

2


0 0 0 0

0 1 −i 0

0 i 1 0

0 0 0 0

 (36)

to obtain the most information on θz without affecting the estimate of θx and θy. But the problem is that at this

singular point, the first four outcomes Π1, Π2, Π3 and Π4 do not give any information on θx and θy. To fix this, we
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need both a and b to be close to but not exactly zero. Writing δ = (a2 + b2)/2, we can split Π5 as

Π5 =


0 0 0 0

0 1− δ −δ 0

0 −δ 1− δ 0

0 0 0 0

 (37)

= δ


0 0 0 0

0 1 −1 0

0 −1 1 0

0 0 0 0


︸ ︷︷ ︸

Π
(3)
5

+
1− 2δ

2


0 0 0 0

0 1 −i 0

0 i 1 0

0 0 0 0


︸ ︷︷ ︸

Π
(3)
6

+
1− 2δ

2


0 0 0 0

0 1 i 0

0 −i 1 0

0 0 0 0


︸ ︷︷ ︸

Π
(3)
7

(38)

which has outcome probabilities

p5 = δ ε ,

p6

p7

}
=

1

2
(1− 2δ) (1± (1− ε)θz) .

(39)

This together with

ξz,1 = ξz,2 = ξz,3 = ξz,4 = ξz,5 = 0 , and ξz,6 = −ξz,7 =
1

(1− ε)(1− 2δ)
, (40)

give a variance for estimating θz as vz =
1

(1− ε)2(1− 2δ)
which approaches vz =

1

(1− ε)2
as δ tends to zero.

Supplementary Note 6 : Phase and transmissivity estimation in interferometry—analytic POVM saturating

the Holevo Cramér–Rao bound for 1 photon state

Consider the 1 photon state |ψin〉 = |01〉 a0 + |10〉 a1 where a0 and a1 are positive coefficients. This state transforms

through the lossy interferometer with transmissivity η and a phase shift φ to the state with matrix representation

Sθ =

(1− η)a2
1 0 0

0 a2
0

√
ηa0a1e

−iφ

0
√
ηa0a1e

iφ ηa2
1

 (41)

whose derivatives evaluated at φ = 0 are

∂Sθ
∂η

=


−a2

1 0 0

0 0 a0a1
2
√
η

0 a0a1
2
√
η a2

1

 and
∂Sθ
∂φ

=

0 0 0

0 0 −i
√
ηa0a1

0 i
√
ηa0a1 0

 , (42)

where the matrix basis is {|00〉 , |01〉 , |10〉}. The Holevo bound for this model was computed by Albarelli et al. [14]

to be

cH =


1 + 3η − 4η3

4ηa2
1

for a1 <
1√
2

and η <
a2

0 − a2
1

2a2
0

,(
a2

0 + ηa2
1

) (
1 + 4η(1− η)a2

0

)
4ηa2

0a
2
1

otherwise.

(43)
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In the following, we show that this bound can be saturated by a separable measurement. There exist a family of

measurements that can saturate the Holevo bound. One of them is the four-outcome POVM

Π1 =

1 0 0

0 0 0

0 0 0

 , Π2 =


0 0 0

0 0 0

0 0 1− a2
0

(1− η)(1 + 2η)a2
0 − ηa2

1

 ,

Π3

Π4

}
=

1

2


0 0 0

0 1 ∓ ia0√
(1− η)(1 + 2η)a2

0 − ηa2
1

0 ± ia0√
(1− η)(1 + 2η)a2

0 − ηa2
1

a2
0

(1− η)(1 + 2η)a2
0 − ηa2

1


(44)

together with the estimation coefficients

ξη,1 = −1 + 2η

2a2
1

, ξη,2 =
(1− η)(1 + 2η)

2ηa2
1

, ξη,3 = ξη,4 =
1

2a2
0

,

ξφ,1 = ξφ,2 = 0 , and ξφ,3 = −ξφ4 =

√
(1− η)(1 + 2η)a2

0 − ηa2
1

2
√
ηa2

0a1
.

(45)

One can verify that when η < (a2
0−a2

1)/2, these outcomes are non-negative operators that satisfy Π1+Π2+Π3+Π4 = 1.

The estimator matrices Xη = ξη,1Π1 + ξη,2Π2 + ξη,3Π3 + ξη,4Π4 and Xφ = ξφ,3Π3 + ξφ,4Π4 satisfy the unbiased

conditions, (4) in the main text. The probability for each outcome to occur is

p1 = (1− η)a2
1 ,

p2 = ηa2
1 −

ηa2
0a

2
1

(1− η)(1 + 2η)− ηa2
1

,

p3 = p4 =
a2

0

2

(
1 +

ηa1

(1− η)(1 + 2η)a2
0 − ηa2

1

)
.

(46)

The variances of these two estimators are

vη = ξ2
η,1 p1 + ξ2

η,2 p2 + ξ2
η,3 p3 + ξ2

η,4 p4 =
1 + η − 2η2

2a2
1

,

vφ = ξ2
φ,3 p3 + ξ2

φ,4 p4 =
1 + η − 2η2

4ηa2
1

,

(47)

which together gives vη + vφ = (1 + 3η − 4η3)/4ηa2
1 saturating the Holevo bound (43) as claimed.

At the boundary η = (a2
0 − a2

1)/2a2
0, the POVM outcome Π2 = 0 while the remaining three reduce to a projective

measurement on the eigenstate of the SLD operator [14]

Π1 =

1 0 0

0 0 0

0 0 0

 ,
Π3

Π4

}
=

1

2

0 0 0

0 1 ∓i

0 ±i 1

 . (48)

In this case, the estimator coefficients are

ξη,1 = −a
2
0 + a2

1η

a2
1

, ξη,3 = ξη,4 = 1− η , ξφ,1 = 0 and ξφ,3 = −ξφ,4 =
1

2
√
ηa0a1

. (49)

This measurement scheme remains optimal even when η > (a2
0−a2

1)/2a2
0. Comparing the 4-outcome POVM (44) to

the 3-outcome POVM (48), we see that the role played by Π2 is to obtain a better estimate of η, but at the expense
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of a worse estimate of φ. Whether this trade-off improves the overall sum of the MSE depends on the exact form

of the probe and the value of η. We note that the estimators presented here depend on the unknown parameter η.

Although this would be an issue if we were interested in global parameter estimation, for local estimation this is not

an issue, as we are only interested in estimating η in the local neighbourhood of some a priori known value, η0.

Supplementary Note 7 : Dual solutions for the semidefinite program

From the constructed POVM, we can arrive at a candidate for the optimal X and L matrices which gives an upper

bound to the primal solution. In this supplementary note, we write down the dual problem and provide its solution

which gives a lower bound to the primal solution. One can easily check that the lower and upper bounds coincide

which implies that the candidate solution is indeed an optimal solution for the Nagaoka–Hayashi bound.

The dual problem is

c̃NH = max
y

∑
k

yk ck

subject to
∑
k

ykFk ≤ F0 ,
(50)

where the matrices Fk and constants ck implements the constraints on the primal SDP as defined in Supplementary

Note 4.

We first present the dual solution for the qubit rotation estimation problem. In order to write down the dual

solutions, we need to choose a representation for the set of basis matrices {Bj} in Supplementary Note 4. We use the

following 16 matrices:

B1 =
1

2


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , B2 =
1√
2


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 , B3 =
1√
2


0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

 , B4 =
1√
2


0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

 ,

B5 =
1√
2


0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

 , B6 =
1√
2


0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

 , B7 =
1√
2


0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

 , B8 =
1√
2


0 −i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

 ,

B9 =
1√
2


0 0 −i 0

0 0 0 0

i 0 0 0

0 0 0 0

 , B10 =
1√
2


0 0 0 −i

0 0 0 0

0 0 0 0

i 0 0 0

 , B11 =
1√
2


0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0

 , B12 =
1√
2


0 0 0 0

0 0 0 −i

0 0 0 0

0 i 0 0

 ,

B13 =
1√
2


0 0 0 0

0 0 0 0

0 0 0 −i

0 0 i 0

 , B14 =
1√
2


1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

 , B15 =
1√
6


1 0 0 0

0 1 0 0

0 0 −2 0

0 0 0 0

 , B16 =
1

2
√

3


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −3

 .

(51)

One can then check that for estimating a single parameter, the following dual solution coincides with the primal

candidate:

y
(2)
1,1 = 1, y

(3)
1,2 = y

(3)
1,7 =

1√
8
, y

(3)
1,3 = y

(3)
1,6 =

1− ε√
8
,

y
(5)
1,1 = −1

2
, y

(5)
1,4 = −1− ε√

2
, y

(5)
1,14 = − 1√

8
, y

(5)
1,15 = − 1√

24
, y

(5)
1,16 =

1√
12

,

(52)
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and all other yk zero. For estimating two parameters:

y
(2)
1,1 = y

(2)
2,2 =

2

2− ε
, y

(3)
1,2 = y

(3)
1,7 = y

(3)
2,8 = y

(3)
2,13 =

1√
2(2− ε)

, y
(3)
1,3 = y

(3)
1,6 = y

(3)
2,9 = y

(3)
2,12 =

1− ε√
2(2− ε)

,

y
(4)
1,2,14 = − ε√

8
, y

(4)
1,2,15 = ε

√
3

8
, y

(5)
1 = − 2

2− ε
, y

(5)
14 = −

√
2

2− ε
, y

(5)
15 = −

√
2√

3(2− ε)
, y

(5)
16 =

2√
3(2− ε)

,

(53)

and all other yk zero. For estimating three parameters:

y
(2)
1,1 = y

(2)
2,2 =

2

2− ε
, y

(2)
3,3 =

1

(1− ε)2
, y

(3)
1,2 = y

(3)
1,7 = y

(3)
2,8 = y

(3)
2,13 =

1√
2(2− ε)

,

y
(3)
1,3 = y

(3)
1,6 = y

(3)
2,9 = y

(3)
2,12 =

1− ε√
2(2− ε)

, y
(3)
3,14 = − 1√

8
, y

(3)
3,15 =

√
3√
8
, y

(4)
1,2,14 = − ε√

8
, y

(4)
1,2,15 = ε

√
3

8
,

y
(5)
1 = − 2

2− ε
− 1

2(1− ε)2
, y

(5)
1 =

1√
2(1− ε)

, y
(5)
14 = −

√
2

2− ε
+

√
2

4(1− ε)2
, y

(5)
15 =

1√
3
y

(5)
14 , y

(5)
16 = −

√
2

3
y

(5)
14 ,

(54)

and all other yk zero.

We now write down the dual solution to the Nagaoka–Hayashi bound for the second example, phase and transmis-

sivity estimation in an interferometer, when N = 1. To do this, we use the following 9 matrices as basis matrices:

B1 =
1√
3

1 0 0

0 1 0

0 0 1

 , B2 =
1√
2

0 1 0

1 0 0

0 0 0

 , B3 =
1√
2

0 0 1

0 0 0

1 0 0

 ,

B4 =
1√
2

0 0 0

0 0 1

0 1 0

 , B5 =
1√
2

0 −i 0

i 0 0

0 0 0

 , B6 =
1√
2

0 0 −i

0 0 0

i 0 0

 ,

B7 =
1√
2

0 0 0

0 0 −i

0 i 0

 , B8 =
1√
2

1 0 0

0 −1 0

0 0 0

 , B9 =
1√
6

1 0 0

0 1 0

0 0 −2

 .

(55)

When a1 < 1/
√

2 and η < (a2
0 − a2

1)/2a2
0, one solution to the dual problem is:

y
(2)
1,1 =

(1− η)(1 + 2η)

2a2
1

, y
(2)
2,2 =

(1− η)(1 + 2η)

4ηa2
1

,

y
(3)
1,7 = −y(3)

2,4 =
a0(1 + η − 2η2)

2
√

2ηa1
, y

(3)
2,8 =

1 + η − 2η2

2
√

2
, y

(3)
2,9 =

√
3

8
(1 + η − 2η2),

y
(4)
1,2,1 = − 1√

3
, y

(4)
1,2,4 = −

√
2ηa0a1, y

(4)
1,2,8 =

a2
0 − (1− η)a2

1√
2

, y
(4)
1,2,9 = − 1√

6
+

√
3

2
ηa2

1,

y
(5)
1 = − (1− η)(1 + 2η)2

4
√

3ηa2
1

, y
(5)
8 = − (1− η)(1 + 2η)2

4
√

2a2
1

, y
(5)
9 =

(1− η)(2− 3η)(1 + 2η)2

4
√

6ηa2
1

,

(56)

and all other yk zero. When the condition a1 < 1/
√

2 and η < (a2
0 − a2

1)/2a2
0 is not satisfied, one solution to the dual
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problem is given by:

y
(2)
1,1 =

(1− η)(a2
0 + ηa2

1)

a2
1

, y
(2)
2,2 =

a2
0 + ηa2

1

4ηa2
0a

2
1

, y
(3)
1,7 =

(1− η)a0√
2ηa1

(a2
0 + ηa2

1),

y
(3)
2,4 =

a2
1η − a2

0 − 8η(1− η)2a2
1a

4
0

2
√

2ηa0a1
, y

(3)
2,8 = − 1

2
√

2
+
√

2a2
0(1− η)2(2a2

0 + ηa2
1), y

(3)
2,9 =

√
3

8
+
√

6η(1− η)2a2
0a

2
1,

y
(4)
1,2,1 = − 2√

3
(1− η)a2

0, y
(4)
1,2,4 = −2

√
2η(1− η)a3

0a1, y
(4)
1,2,8 =

√
2(1− η)a2

0(a2
0 − (1− η)a2

1),

y
(4)
1,2,9 = −

√
2

3
(1− η)a2

0(1− 3ηa2
1), y

(5)
1 = − (a2

0 + ηa2
1)(1 + 4η(1− η)a2

0)

4
√

3ηa2
0a

2
1

,

y
(5)
4 =

1− 4(1− η)2a4
0

2
√

2ηa0a1
, y

(5)
8 =

a2
1 − 4a2

0(1− η)(a2
0 + a2

0a
2
1η + a4

1η
2)

4
√

2a2
0a

2
1

,

y
(5)
9 =

−η + (2 + η + 8η2 − 20η3 + 12η4)a2
0 + 4η(1− η)2(5− 6η)a4

0 − 12η(1− η)2(2− η)a6
0

4
√

6ηa2
0a

2
1

,

(57)

and all other yk zero. One can check that these solutions coincide with the primal solution in Supplementary Note 6.
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