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In this Supplementary Information we will provide a detailed analysis of resources required for each model, and
we will show the correctness of the HHOBO

valid Hamiltonian.

1 Supplementary methods

1.1 QUBO

Let us recall that the QUBO model takes the form

HQUBO(b) = A1

N−1∑
t=0

(
1−

N−1∑
i=0

bti

)2

+A2

N−1∑
i=0

(
1−

N−1∑
t=0

bti

)2

+B

N−1∑
i,j=0
i 6=j

Wij

N−1∑
t=0

btibt+1,j . (1)

Number of qubits The model requires N2 qubits.

Number of terms The number of terms can be determined as follows. First we note that we have N2 1-local terms.
Secondly, from the first addend for each t we have

(
N
2

)
2-local terms, similarly for the second. Finally, for the last

part for each i 6= j we have additional N 2-local terms. Note that each 2-local term is present only in one part, which
makes our calculation tight. Finally we have

#terms = N2 + 1 + 2N

(
N

2

)
+NN(N − 1) = 2N3 −N2 + 1. (2)

Depth of the circuit Following the reasoning presented in the Method section, we can conclude that the 1-
local terms can be implemented with the circuit of depth 1. The first addend from Supplementary Eq. (1) can be
implemented with the circuit of depth N for even N , and N − 1 for odd N , counting ZiZj gates. We can apply the
same strategy for the second addend.

For last addend we can independently consider parts
∑
i 6=jWijbtibt+1,j for even t, and then for odd t, which will

double the circuit depth comparing to fixed t (in case of odd t we have to implement (t, t + 1) = (1, N) separately,
which requires tripling the circuit depth). Let us fix t. We can implement terms Zt,k = {Zt,iZt+1,i+k|0 ≤ i < N} with
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circuit of depth 1. Since 1 ≤ k < N , we can simulate the last addend with the circuit of depth 2N − 2 for even N
(and 3N − 3 for odd N). Thus in total our circuit has depth 4N − 1 for even N (and 5N − 4 for odd N), counting
ZiZj gates. In order to count total number of controlled NOT and 1-qubit gates, we need to triple the depth.

Since we have N2 qubits, we can simulate at most N2/2 2-local terms independently. We have ∼ 2N3 terms and
N2 qubits. The minimum circuit depth for simulating 2-local terms is ∼ 2N3/(N2/2) = 4N , which shows that our
analysis is tight.

The calculations were done in terms of gates exp(−itZ) and exp(−itZiZj). Since the latter requires 2 CNOTs and
a single rotation gate, we have to triple the circuit depth implementing 2-local gates, which finally gives us 12N − 5
for even N and 15N − 14 for odd N .

Number of measurements For the sake of simplicity we assume that A1, A2 ≤ C maxi 6=jWij and B = 1. Note

that for each t, the expression
(

1−
∑N−1
i=0 bti

)2

can be bounded from above by (N−1)2. We can similarly upperbound

the next addend. For the last part we have

N−1∑
i,j=0
i 6=j

Wij

N−1∑
t=0

btibt+1,j ≤ N
N−1∑
i,j=0
i 6=j

Wij ≤ N
(
N

2

)
max
i6=j

Wij . (3)

Finally we have

HQUBO(b) ≤ A1N(N − 1)2 +A2N(N − 1)2 +BN

(
N

2

)
max
i 6=j

Wij

≤ CN3 max
i 6=j

Wij + CN3 max
i 6=j

Wij +N3 max
i 6=j

Wij

= (2C + 1)N3 max
i 6=j

Wij .

(4)

Note that the results is tight in order of N , which can be shown using bti ≡ 1 assignment.

1.2 HOBO

Let us recall that the model takes the form

HHOBO(b) = A1

N−1∑
t=0

HHOBO
valid (bt) +A2

N−1∑
t=0

N−1∑
t′=t+1

HHOBO
6= (bt, bt′)

+B

N−1∑
i,j=0
i 6=j

Wij

N−1∑
t=0

HHOBO
δ (bt, i)H

HOBO
δ (bt+1, j).

(5)

Provided that b̃K−1 . . . b̃0 is a binary representation of N − 1, we define

HHOBO
valid (bt) :=

∑
k0∈K0

bt,k0

K−1∏
k=k0+1

(1− (bt,k − b̃k)2), (6)

HHOBO
6= (b, b′) := HHOBO

δ (b, b′) :=

K−1∏
k=0

(1− (bk − b′k)2) =

K−1∏
k=0

(
1− 1

4
(Zk − Z ′k)2

)
=

K−1∏
k=0

(
1− 1

2
(1− ZkZ ′k)

)

=
1

2K

K−1∏
k=0

(1 + ZkZ
′
k),

(7)
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where k0 ∈ K0 are such indices that b̃k0 = 0.
The proof that HHOBO

valid is a valid Hamiltonian for this encoding will be presented in Supplementary Section 1.4.
For the sake of convenience, we will assume K = dlog(N)e, which is at the same time the number of bits in bt for any
t. We assume K = logN + ε for some 0 ≤ ε < 1. We also define C := 2ε ∈ [1, 2) for convenience.

Number of qubits The required number of qubits is NK+ N
2 ∼ N log(N). The N

2 part comes from the Gray code
technique presented in the main text.

Number of terms Let us first consider the terms contributing to both bt and bt+1. We can see Hamiltonians
HHOBO
δ (bt, i) and HHOBO

δ (bt+j , j) are Ising model consisting of all Pauli configurations. The function HHOBO
δ (bt, i) ·

HHOBO
δ (bt+1, j) is an Ising model defined over all variables from bt and bt+1, thus having 22K = 22 logN+2ε = 4εN2

spins. We need to sum all operators, and exclude the part related to bt only, as they were counted twice for pairs
(t− 1, t) and (t, t+ 1). The total number of Pauli operators is

N22K −N2K = N22 logN+2ε −N2logN+ε = 4εN3 +O
(
N2
)
. (8)

Note that all terms which are part of the Hamiltonian HHOBO
valid (bt) were already included.

Let us continue with H6=. All Pauli terms which appear in there consist of product of spins of the form ZkZk′ ,
thus we have exactly 2K = 2εN . For consecutive times t, t+ 1, the Pauli terms were already included. Thus, the total
number of terms is ((

N

2

)
−N

)
2K =

N(N − 1)− 2N

2
2εN = 2ε−1N3 +O

(
N2
)
. (9)

Taking all of the considerations into account we obtain

#terms = 4εN3 +O
(
N2
)

+ 2ε−1N3 +O
(
N2
)

= (4ε − 2ε−1)N3 +O
(
N2
)

= (C2 − C/2)N3 +O
(
N2
)
. (10)

Depth of the circuit Let us first implement the objective Hamiltonian. For even N , we first implement (t, t+ 1)
for even t, then for odd t. For odd N we need extra level for (t, t + 1) = (N − 1, 0). The total depth will be the 2

times (3 times for N odd) the cost of implementing
∑N−1
i,j=0
i 6=j

WijH
HOBO
δ (bt, i)H

HOBO
δ (bt+1, j) for arbitrary t. Note that

for each t we have only 4εN2 Pauli terms, which can be implemented within depth 2 terms choosing the Gray order
as in Fig. ?? d). Thus the total depth will be ∼ 2 · 2 · 4εN2 = 41+εN2 (6 · 4εN2 for odd N). Note that Pauli terms
from Hvalid can be already implemented together with the objective Hamiltonian.

Let us now consider the H6= related Hamiltonian. We can apply round-robin schedule on registers bt so that the
total depth will be N +O(1) times the single implementation of H6= Hamiltonian. Let us now consider the depth of
H6= treating each pair ZkZk′ as a separate wire. We can use Gray ordering again, however now instead of 2 gates,
we will need 2 CNOTs and single Z rotation. Thus the depth for single H6= is ∼ 3 · 2K ∼ 3 · 2εN , and for the whole
constraint it will be ∼ 3 · 2εN2.

The total depth will be at most

∼ 41+εN2 + 3 · 2εN2 = (4C2 + 3C)N2 (11)

for even N and
∼ 6 · 4εN2 + 3 · 2εN2 = (6C2 + 3C)N2 (12)

for odd N .
It is not obvious to provide lower bound on the circuit’s depth. Since most of the factors are of order logN , one

could consider that applying each term requires the depth of the same order as well. However using Gray code ordering
it is clear that only two qubits may be needed for applying higher-local terms. For this reason we will assume that only
finite-depth circuit is required to implement each term. This gives us the lower bound ∼ (C2−C/2)N3/(N log(N)) =
Θ(N2/ logN) which shows that our approach is tight up to log(N) factor.
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Number of measurements For simplicity, we will assume that A1, A2 ≤ C maxi 6=jWij and B = 1. Note that
HHOBO

valid is a sum of at most K−1 elements, each giving the value either 0 or 1. Hence, for each t we have HHOBO
valid (bt) ≤

K − 1.
Note that HHOBO

6= ≡ HHOBO
δ and HHOBO

δ (·, ·) ∈ {0, 1}. Furthermore, since bt can decode a single number only,
Hδ(bt, i) = 1 only for a single i. Thus

N−1∑
i,j=0
i6=j

Wij

N−1∑
t=0

HHOBO
δ (bt, i)H

HOBO
δ (bt+1, j) =

N−1∑
t=0

N−1∑
i,j=0
i 6=j

WijH
HOBO
δ (bt, i)H

HOBO
δ (bt+1, j)

=

N−1∑
t=0

Wbt,bt+1
≤ N max

i 6=j
Wij .

(13)

and we can upper bound the energy by

HHOBO(b) ≤ A1N(K − 1) +A2

(
N

2

)
+BN max

i6=j
Wij

≤ CN logN max
i 6=j

Wij + C
N2

2
max
i 6=j

Wij +N max
i6=j

Wij

≤ C ′N2 max
i 6=j

Wij .

(14)

Note that the results is tight in order of N , which can be shown using bti ≡ 1 assignment.

1.3 Mixed approach

The Hamiltonian takes the form

HMIX(b) = A1

N−1∑
t=0

HMIX
valid(bt; ξt) +A2

N−1∑
t=0

N−1∑
t′=t+1

HMIX
6= (bt, bt′)

+B

N−1∑
i,j=0
i 6=j

Wij

N−1∑
t=0

HMIX
δ (bt, i)H

MIX
δ (bt+1, j),

(15)

where ξt are slack variables required to implement HMIX
valid and

HMIX
valid(bt) :=

− L−1∑
l=0

K−1∑
k=0

btlk + 1 +

dlog(KL)e∑
i=0

2iξt,i

2

+

L−1∑
l=0

(
K−1∑
k=0

btlk

)L−1∑
l′=0
l′ 6=l

K−1∑
k=0

btlk

 (16)

HMIX
6= (bt, bt′) :=

L−1∑
l=0

(
K−1∑
k=0

(btlk + bt′,l,k)

)
K−1∏
k=0

(1− (bt,l,k − bt′,l,k)2) =

=

L−1∑
l=0

(
K−1∑
k=0

1

2
(2− Ztlk − Zt′,l,k)

)
1

2K

K−1∏
k=0

(1 + Zt,l,kZt′,l,k)

(17)

Hδ(bt, i)
MIX :=

K−1∏
k=0

(1− (bt′,l̄(i),k − bik)2) =
1

2K

K−1∏
k=0

(1 + Zt′,l̄(i),kZ
i
k). (18)
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For a general choice of α ∈ (0, 1) it is hardly possible that α logN will be an integer number. Hence for fixed α let
K := dα logNe. Note that K ∼ α logN . On the other hand, we will encounter elements of the form 2K and 22K , for
which such an equivalence is not always valid, as

2K = 2dα logNe = 2α logN+εα(N) = Cα(N)Nα, (19)

where Cα(N) := 2εα(N) depends on the choice of α and N , but always 1 ≤ Cα(N) ≤ 2. Similarly

22K = 22dα logNe = 22α logN+2εα(N) = C2
α(N)N2α. (20)

Furthermore

L :=

⌈
N

2K − 1

⌉
∼
⌈

N

Cα(N)Nα

⌉
∼ 1

Cα(N)
N1−α (21)

Note that if N 6= (2K − 1)L, then we have to add a separate Hamiltonian of the form similar to HHOBO
valid , as this

encoding will not a encode valid city. This does not change the estimations derived in next paragraphs, as

• it does not require additional qubits,

• it does not produce new terms (they are already included in HHOBO
valid ), and by this it does not change the depth

of the circuit,

• it has negligible impact on the energy upperbound, since for each t the mentioned Hamiltonian will increase
energy by at most K.

Number of qubits The Hamiltonian requires

NKL+

⌊
N

2

⌋
L+N(dlog(KL) + 1)e ∼ α

Cα(N)
NN1−α logN +

1

2Cα(N)
NN1−α +N

(
1 + log

(
α

Cα(N)
N1−α logN

))
=

α

Cα(N)
N2−α logN +

1

2Cα(N)
N2−α +N poly(log(N))

(22)

qubits. The
⌊
N
2

⌋
L is required for implementing the Gray code scheduling, while Ndlog(KL)e + 1 qubits are needed

for ξ variables.

Number of terms Let us start by calculating the terms generated from the objective Hamiltonian. Each Hδ(bt, i)
is a full Ising model defined over K spins, thus having 2K spins. Note that if l̄(i) = l̄(j), then we receive different
Ising models defined over the same qubits. Thus only registers for different l(i) matter. We have L2 different registers,
which gives L22K terms. However, each Pauli term defined only over single bt,l were calculated L times, so we
need to substract (L − 1)2K terms. Finally, the same terms were considered L times for consecutive time points
(t, t+ 1), (t+ 1, t+ 2). So the final number of Pauli terms for the objective function is

NL22K −N(2L− 1)2K ∼ N 1

C2
α(N)

N2−2αCα(N)Nα =
1

Cα(N)
N3−α. (23)

Let us now consider H 6= related term. We only need to consider terms for nonconsecutive timepoints, and there

are
(
N
2

)
−N ∼ 1

2N
2 of them. Let us fix l, t, t′. From the product

∏K−1
k=0 (1 + Zt′,l,kZt,l,k) we have 2K even-local Pauli

terms. However multiplying it by the sum on the left, we necessarily make all of the odd-local Pauli terms. All these
Pauli terms are of the following form: they are of product of Zt,l,kZt,l,k terms, except of single variable without match.
Such Pauli term was created in two ways: either by adding it, or by removing it’s match. Since there are 2K2K
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combinations of H 6=, we have K2K terms. Such Hamiltonian occurs for each l and non-consecutive t, t′, and for the
whole constraints we have((

N

2

)
−N

)
LK2K ∼ 1

2
N2 1

Cα(N)
N1−αα logNCα(N)Nα =

α

2
N3 logN. (24)

Note that resulting 1-local terms were counter several times, and were considered in the objective Hamiltonian, but
their number is negligible and has no effect in our derivation.

Finally, let us consider HMIX
valid. First note that the Hamiltonian is QUBO, and the former part consists of all possible

second order interactions. Thus we can omit the latter part, and the total number of terms will be(
KL+ dlog(KL)e+ 1

2

)
∼ 1

2
(KL+ dlog(KL)e+ 1)2 ∼ 1

2
K2L2 ∼ α2

2C2
α(N)

N2−2α log2(N). (25)

The determined number is negligible compared to number of terms for objective function and H 6=.
Taking all numbers above we see that

#terms ∼ α

2
N3 logN. (26)

Depth of the circuit For the depth we apply the same strategy as we did for the HOBO approach. First we
implement objective Hamiltonian, then with round-robin method we apply H 6= related terms. At the end we implement
Hvalid.

We first implement the Hamiltonian defined over bt, bt+1 for even t, and then odd t for even N . For odd N the case
t = N − 1 needs to be implemented separately. For each bunch l = 0, . . . , L− 1 the Hamiltonian can be implemented
independently, and each of these Hamiltonians has 2K Pauli terms. Each Pauli term (because it has pairs of spin)
requires 3 gates. Thus for even N the depth is 6 · 2K = 2Nα, while for odd N it is 9Nα.

Let us now consider H 6= related Hamiltonian, which we will implement with round-robin schedule on bt registers.
This will require N rounds each of depth equal to implementing single H 6=. Single H6= consists of parts defined for
different l = 0, . . . , L−1, which can be implemented independently. Finally, for each fixed l we have K2K Pauli terms,
and implementing them one by one using the decomposition as in Fig. 3a) from the main paper we can implement
them with at most (2K − 1)K2K ∼ 2K22K depth. So the total depth is at most

∼ N2K22K = 2α2Cα(N)N1+α log2N. (27)

Finally, the Hvalid is a QUBO defined over ∼ LK qubits. Using round-robin scheme, one can implement it with
the depth ∼ LK = α

Cα(N)N
1−α logN , which is negligible compared to the formulas derived before.

Based on the derivation above we can see that the total depth is at most

∼ 2α2Cα(N)N1+α log2N. (28)

Similarly as it was done for HOBO, we can compute minimal depth as

∼ α

2
N3 logN/

(
α

Cα(N)
N2−α logN

)
=
Cα(N)

2
N1+α (29)

which shows our derivation is tight up to logarithmic factor.

Number of measurements For the sake simplicity, we will assume that A1, A2 ≤ C maxi 6=jWij and B = 1. For
general b we have

H(b) ≤ A1N(2LK − 1)2 +A1N · L ·K · LK +A2

(
N

2

)
L · 2K +BN max

i 6=j
Wij

≤
(
2CNL2K2 + CN2LK +N

)
max
i 6=j

Wij

∼
(

2Cα2

C2
α(N)

N3−2α log2N + CN3−α logN +N

)
max
i 6=j

Wij .

(30)
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By this we conclude that H(b) = O
(
N3−α logN

)
maxi6=jWij . Note that the bound is achievable when taking btlk ≡ 1.

1.4 Proof for HHOBO
valid

Theorem 1. Let N > 0 and K satisfies 2K−1 ≤ N < 2K . Let b̃ = b̃K−1 . . . b̃0 is a binary representation of N − 1.
Let K0 ⊆ {0, . . . ,K − 1} be indices such that k0 ∈ K0 iff b̃k0 = 0 Let

H(b) :=
∑
k0∈K0

bk0

K−1∏
k=k0+1

(1− (bk − b̃k)2) (31)

and b = bK−1 . . . b0 be a vector of bits encoding some number n ∈ {0, . . . , 2K − 1}. Then H(b) ≥ 0, with equality iff
n < N .

Proof. Note that (1 − (bk − b̃k)2) is nonnegative, hence H(b) ≥ 0 independently on b. Let n = N − 1, which means
b = b̃. Then

H(b̃) =
∑
k0∈K0

b̃k0

K−1∏
k=k0+1

(1− (b̃k − b̃k)2) =
∑
k0∈K0

0 ·
K−1∏

k=k0+1

(1− (b̃k − b̃k)2) = 0. (32)

Let n < N − 1. Then there exists a unique k′ ∈ {0, . . . ,K − 1} \ K0 such that for all k > k′ we have bk = b̃k,
bk′ = 0. In other words, there exists a bit, which for N − 1 is one, and for n is 0. It is the first one starting from most
significant one. Then we have

H(b) =
∑
k0∈K0

bk0

K−1∏
k=k0+1

(1− (bk − b̃k)2)

=
∑
k0∈K0

k0>k
′

bk0

K−1∏
k=k0+1

(1− (bk − b̃k)2) +
∑
k0∈K0

k0<k
′

bk0

K−1∏
k=k0+1

(1− (bk − b̃k)2)

=
∑
k0∈K0

k0>k
′

b̃k0

K−1∏
k=k0+1

(1− (b̃k − b̃k)2) +
∑
k0∈K0

k0<k
′

bk0

K−1∏
k=k0+1

(1− (bk − b̃k)2)

=
∑
k0∈K0

k0>k
′

0 ·
K−1∏

k=k0+1

(1− (b̃k − b̃k)2) +
∑
k0∈K0

k0<k
′

bk0(1− (bk′ − b̃k′)2)

K−1∏
k=k0+1
k 6=k′

(1− (bk − b̃k)2)

= 0 +
∑
k0∈K0

k0<k
′

bk0(1− (0− 1)2)

K−1∏
k=k0+1
k 6=k′

(1− (bk − b̃k)2) = 0.

(33)

Let n > N . Then there exists a unique k′ ∈ K0 such that for all k > k′ we have bk = b̃k and bk′ = 1. In other
words, there exists a bit, which for bit from N − 1 is zero, and for bit from n is one It is the first one starting from
most significant one. Then, taking the addend to k0 = k′ we have

bk′
K−1∏
k=k′+1

(1− (bk − b̃k)2) = 1

K−1∏
k=k′+1

(1− (b̃k − b̃k)2) = 1, (34)

which is enough to prove that H(b) > 0 as each addend is nonnegative.
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