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SUPPLEMENTARY NOTE 1: PARAMETERS FOR THE SIMULATIONS IN THE MAIN TEXT

In the Supplementary Table 1, we present the parameters applied in the simulations of the main text, where the
upper part is from the microwave mode cooling experiment [1] and the lower part is mainly from the diamond maser
experiment [2]. Here, we assume the relatively smaller Zeeman shift induced by a relatively weak magnetic field so
that the +1 → 0 spin level transition couples resonantly with the microwave resonator.

According to the experiment [1], the optical pumping rate ξ can be calculated with the following expression

ξ =
λPσλP

hcAplα

(
1− e−lα

)
(1−R)P. (1)

Here, σλp = 3.1 × 10−21m2 is the absorption cross-section of the NV centers at the laser wavelength λp = 532 nm.
h = 6.63 × 10−34 J · s is the Planck constant, c = 2.99 × 108 m/s is the speed of light. Ap = 1.76 × 10−6 m2 is
the cross-sectional area of the pump beam on the sample. l = 1.5 mm is the thickness of the diamond crystal.

α = 2.3×103 m−1 is the absorption coefficient at λP . R =
∣∣∣n1−n2

n1+n2

∣∣∣2 is Fresnel reflection coefficient with the refractive
index of air n1 = 1 and of the diamond n2 = 2.42. P is the laser power in unit of W. These parameters are estimated
for the setup in Ref. [1], and might vary for the proposed setup. In any case, we expect that these values might lead
to a reasonable estimation of the optical pumping rate for given laser power.

It is worth noting that by optimizing the system setup, such as absorption of the diamond with a tapered configu-
ration [3] or total reflection [4], the optical pumping rate ξ might be increased by one to two orders of magnitude for
the same laser power. Furthermore, the typical commercial CW solid-state laser of 532 nm can provide powers up to
20 W, and the pulsed solid-state laser can provide peak powers up to 100 W or even 1000 W.

For the performance of the microwave mode cooling and the CQED effects, the spin-lattice relaxation rate, the spin
dephasing rate and the number of NV spins are the three key parameters. At room temperature, the former rate
is determined by two-phonon Raman process and Orbach-type process, and seems to be consistent among different
samples [5]. However, this rate is sensitive to the applied magnetic field, and shows resonant feature with about ten
times larger value at the magnetic field of about 51, 102 mT, because of the resonant coupling of the electron spin
levels with the nuclear spin levels [6–8]. However, by departing from these conditions, the spin-lattice relaxation rate
is in the order of hundreds Hertz, as considered in the experiment [2].

The spin dephasing rate is determined by the decoherence time T ∗
2 for the nitrogen-rich diamond. In return, T ∗

2

is mainly determined by the paramagnetic substitutional nitrogen defects N0
S (also known as P1 centers), and is

inversely proportional to the defect concentration [N0
S] in unit ppm: 1/T ∗

2 ≈ AN0
S
[N0

S] with the coefficient AN0
S
= 101

ms−1ppm−1 [9]. In the diamond maser experiment [2], the P1 center concentration is estimated as [N0
S] ≈ 4 ppm and
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Description Symbol Value

Transition rates between NV multiple levels [1]
Optical pumping and decay rate ξ 0− 1 MHz

Spontaneous emission rate ksp 66 MHz
Inter-system crossing rates k47 7.9 MHz

k67 = k57 53 MHz
k73 = k72 0.73 MHz

k71 1.0 MHz
Parameters related to the diamond maser experiment [2]

Resonator Frequency ωc 2π × 9.22 GHz
Photon damping rate κ 1.88 MHz

Spin-resonator coupling g31 0.69 Hz
Number of spins N 4× 1013

Spin level transition frequency ω31 2π × 9.22 GHz
ω12 2π × 3.48 GHz

Spin dephasing rate χ2 = χ3 2π × 0.64 MHz
Spin-lattice relaxation rate k31 ≈ k12 208 Hz

Supplementary Table 1. System parameters. Parameters for the dissipation rates of NV centers (upper part), as reported
[1], and the parameters for the microwave resonator and NV spins, as reported in the diamond maser experiment [2]. In our
proposed setup, the +1 → 0 spin transition with frequency ω31 couples resonantly to the microwave resonator mode.

the decoherence time is evaluated as T ∗
2 ≈ 2.48 µs, about five times longer than the measured value 0.5 µs. Since the

scaling coefficient AN0
S

can have a discrepancy of ten times in different theoretical simulations, the discrepancy here
is not surprised. In our simulations, we utilize the reported dephasing rate 2/T ∗

2 ≈ 4 MHz.

Besides the spin-dephasing rate, the number of the negatively charged nitrogen-vacancy (NV−) centers is also
important. Thus, the product [NV−]T ∗

2 of the NV− concentration [NV−] and the decoherence time T ∗
2 should be

considered when optimizing the system performance. Approximating [NV−] with [N0
S], we should look at the product

[N0
S]T

∗
2 . According to Ref. [10], this product saturates for [N0

S] larger than 1 ppm for the diamond sample with neutral
abundant 13C (1.1%), but starts saturating only for [N0

S] larger than 40 ppm for the diamond sample with depleted
13C (0.005%). The diamond sample, as used in the experiment [2] and considered here, is already in the range of
saturation. However, the property might be improved by several times if the sample with depleted 13C is used.

1.   using QuantumCumulants；
2. @cnumbers N 𝛥𝛥ω31 ξ ksp k47 k57 k67 k73 k72 k71 

k31 k13 k21 k12 χ2 χ3；
3. @cnumbers 𝛥𝛥ωm g31 κ nmth Ω ωd;
4. hm = FockSpace(:resonator);
5. hNV_ = NLevelSpace(:NV,7) ;
6. hNV = ClusterSpace(hNV_, N, 2) ;
7. h = hm⊗ hNV;
8. @qnumbers a::Destroy(h);
9. σ(i,j) = Transition(h, :σ, i, j, 2);
10. H = 𝛥𝛥ω31*sum(σ(3,3)) + 𝛥𝛥ωm*a'a + 

g31*(a'*sum(σ(1,3)) + a*sum(σ(3,1)))+ Ω*(a‘ + a); 
11. J = [σ(4,1),σ(5,2),σ(6,3),σ(1,4),σ(2,5),σ(3,6), 

σ(7,4),σ(7,5),σ(7,6),σ(2,7),σ(3,7),σ(1,7),
σ(1,2),σ(1,3),σ(2,1),σ(3,1),σ(2,2),σ(3,3), a,a']; 

12. rates = [ξ,ξ,ξ,ξ+ksp,ξ+ksp,ξ+ksp,k47,k57,k67,k72,k73, 
k71, k21,k31,k12,k13,2*χ2,2*χ3,(1.0+nmth)*κ,
nmth* κ];

13. ops =[a'*a,σ(2,2)[1],σ(3,3)[1]];
14. eqs = meanfield(ops, H, J;rates=rates, order=2);
15. eqs_c = complete(eqs, order=2);

1. N_ = 4e14; ksp_ = 6.6e7; k47_ = 7.9e6;k57_ = 
5.3e7;k67_ = 5.3e7; k73_ = 7.3e5; k72_ = 7.3e5;k71_ 
= 1.0e6;ω31__ = 2*pi*9.22e9; k13_=k31_=k21_ 
=k12_=208; χ2_ = 2*pi*0.64e6; χ3_ = 2*pi*0.64e6; 

2. λp = 532e-9; σλp = 3.1e-21; c = 2.99792458e8; Ap = 
1.76e-6; l = 1.5e-3; α = 2.3e3; n_1 = 1; n_2 = 2.42; R 
= abs((n_1-n_2)/(n_1+n_2))^2;P =  1;ξ_ = 
(λp*σλp)/(hh*c*Ap*l*α)*(1-exp(-l*α))*(1-R)*P;

3. ωm_ = 2*pi*9.22e9; nmth_ = 1.0/(exp(hbar*ωm_/ 
kbT)-1);g31_ = 2*pi*0.11; κ_ = 2*pi*0.8e6; 𝛥𝛥ωm_=0;
𝛥𝛥ω31 _=0;

4. ps = [N, 𝛥𝛥
ω31,ξ,ksp,k47,k57,k67,k73,k72,k71,k31,k13,k21,
k12,χ2,χ3, 𝛥𝛥 ωm,g31,κ,nmth];

5. p0 = [N_, 𝛥𝛥ω31_,ξ_,ksp_,k47_,k57_,k67_,k73_,k72_,
k71_,k31_,k13_,k21_,k12_,χ2_,χ3_,
𝛥𝛥ωm_,g31_,κ_,nmth_]; 

6. u0 = zeros(ComplexF64, length(eqs_c)); u0[1] = 
nmth_; u0[2] = 
1.0/(1.0+k21_/k12_*(1.0+k13_/k31_)); u0[3] = 
1.0/(1.0+k31_/k13_*(1.0+k12_/k21_)); 

a b 7. using OrdinaryDiffEq, ModelingToolkit
8. sys = ODESystem(eqs_c);
9. prob0 = ODEProblem(sys,u0,(0.0, 20e-3), ps.=>p0);
10. sol0 = solve(prob0,RK4());
11. t0 = sol0.t;n0 = real.(sol0[sys.states[1]]);p20 =

real.(sol0[sys.states[2]]); p30 = real.(sol0[sys.states[3]]); 
p40 = real.(sol0[sys.states[4]]); p50 = 
real.(sol0[sys.states[5]]); p60 = real.(sol0[sys.states[6]]); 
p70 = real.(sol0[sys.states[7]]); p10 = 1.0 - (p20 + p30 + 
p40 + p50 + p60 + p70);

12. se = p30/(p30+p10);
13. smsp = sol0[sys.states[16]]
14. sese = sol0[sys.states[47]]/(p30+p10)^2;
15. szsz = 4*sese.-4*se.+ 1;
16. M = real.(se).-0.5; J = real.(sqrt.(0.75/N_.+((N_-

1)/N_)*(smsp.+0.25*szsz)));
17. using Plots;
18. plot(t0/1e-3, n0, xlabel="time (ms)", ylabel="⟨a⁺a⟩");
19. plot(t0/1e-3, p20, xlabel="time (ms)", ylabel="⟨σ22⟩");
20. plot(t0/1e-3, p30, xlabel="time (ms)", ylabel="⟨σ33⟩");
21. plot(J, M);

Supplementary Figure 1. Julia codes to derive the mean-field equations (a) and to solve the equations (b).
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SUPPLEMENTARY NOTE 2: JULIA CODES TO DERIVE AND SOLVE MEAN-FIELD EQUATIONS

In this Supplementary Note, we present the Julia codes to derive the mean-field equations (Supplementary Figure
1a) and to solve these equations (Supplementary Figure 1b). First, we explain the former code. The 1st line imports
the QuantumCumulants.jl package, and the 2nd and 3rd lines define the complex numbers. Here, we work in a
frame rotating with the microwave driving field frequency ωd and introduce the frequency detuning ∆ω31 = ω31 − ωd

and ∆ωm = ωm − ωd. The 4th line defines the Hilbert space of the microwave resonator as a quantized harmonic
oscillator, while the 5th line defines that of the single NV center as a seven-levels system. The 6th line defines
the Hilbert space of the N NV centers, where the last argument indicates the number of representative NV centers
labeled by k = 1, 2, and the 7th line defines the Hilbert space of the NV centers-microwave resonator system. The
8th line defines the annihilation operator of the microwave photons, and the 9th line defines the projection operators
σ (i, i) =

{
σ̂ii
1 , σ̂

ii
2

}
with i = 1, ..., 7 and the transition operators σ (i, j) =

{
σ̂ij
1 , σ̂ij

2

}
with i ̸= j. The 10th line

defines the system Hamiltonian, while the 11th and 12th line define the list of operators and values to specify the
Lindblad super-operators. The 13th line defines a list of three operators, and the 14th line derives the equations for
the expectation value of these operators. The 15th line analyzes the unknown mean-field quantities, and derives the
equations for them to form a closed set of equations, see the Supplementary Note 3 for an example. In the derivation,
we have assumed vanishing third-order cumulant to approximate ⟨ôp̂q̂⟩ as ⟨ô⟩ ⟨p̂q̂⟩ + ⟨p̂⟩ ⟨ôq̂⟩ + ⟨q̂⟩ ⟨ôp̂⟩ − 2 ⟨ô⟩ ⟨p̂⟩ ⟨q̂⟩
for any operators ô, p̂, q̂.

Second, we describe the code to solve the equations, see the Supplementary Figure 1b. The 1st line specifies the
parameters related to the NV centers, and the 2nd line calculates the optical pumping rate for the laser excitation
with the reference power 1 W. The 3rd line specifies the parameters related to the microwave resonator. The 4th and
5th line define the list of the symbols and of their values. The 6th line defines the initial conditions for the unknown
mean-field quantities. The 7th line imports the "OrdinaryDiffEq" and "ModelingToolkit" packages to define and solve
the ordinary differential equations (ODE). The 8th line defines the ODE system with the derived mean-field equations,
and the 9th line defines the ODE problem with the initial condition, the time argument and the parameters. The
10th line solves the ODE with Rounge-Kutta method, and the 11th line extracts the list of simulation time and the
physical quantities of interest. The 12th line calculates the relative population, and the 13-15th lines calculate the
spin-spin correlations. The 16th line calculates the Dicke state quantum number J,M . The 17th line imports the
"Plots" package, and the remaining lines plot the dynamics of the mean photon number, the levels population, and
the Dicke states.

We use the Dicke state quantum numbers J,M to represent the quantum state of the NV center ensemble. M
can be calculated as M/N =

〈
σ̂33
1

〉
/(
〈
σ̂33
1

〉
+

〈
σ̂11
1

〉
) − 0.5, where

〈
σ̂11
1

〉
and

〈
σ̂33
1

〉
are the population of the 1st

and 3nd (ms = 0, 1) spin levels, respectively. J can be computed as J/N =
√

3
4N + N−1

N (⟨σ̂13
1 σ̂31

2 ⟩+ 1
4 ⟨σ̂

z
1 σ̂

z
2⟩) with

⟨σ̂z
1 σ̂

z
2⟩ = 4

〈
σ̂33
1 σ̂33

2

〉
− 4

〈
σ̂33
1

〉
/(
〈
σ̂33
1

〉
+
〈
σ̂11
1

〉
) + 1, where ⟨σ̂z

1 σ̂
z
2⟩ ,

〈
σ̂33
1 σ̂33

2

〉
,
〈
σ̂13
1 σ̂31

2

〉
are the spin-spin correlations.

SUPPLEMENTARY NOTE 3: CLOSED SET OF SECOND-ORDER MEAN-FIELD EQUATIONS FOR
MICROWAVE MODE COOLING

In this Supplementary Note, we show the closed set of derived mean-field equations in second order. Here, we focus
on the microwave mode cooling, and do not include the microwave field driving. First, we present the equations for
the first-order mean-field quantities. The population ⟨σ̂ii

1 ⟩ of various levels of NV centers follows the equations

∂t⟨σ̂11
1 ⟩ = −(k12 + k13 + ξ)⟨σ̂11

1 ⟩+ (ξ + ksp)⟨σ̂44
1 ⟩+ k21⟨σ̂22

1 ⟩+ k31⟨σ̂33
1 ⟩ − ig31

(
⟨â†σ̂13

1 ⟩ − ⟨âσ̂31
1 ⟩

)
, (2)

∂t⟨σ̂22
1 ⟩ = −ξ⟨σ̂22

1 ⟩+ (ksp + ξ)⟨σ̂55
1 ⟩+ k72⟨σ̂77

1 ⟩+ k12⟨σ̂11
1 ⟩ − k21⟨σ̂22

1 ⟩, (3)

∂t⟨σ̂33
1 ⟩ = −ξ⟨σ̂33

1 ⟩+ (ksp + ξ)⟨σ̂66
1 ⟩+ k73⟨σ̂77

1 ⟩+ k13⟨σ̂11
1 ⟩ − k31⟨σ̂33

1 ⟩+ ig31
(
⟨â†σ̂13

1 ⟩ − ⟨âσ̂31
1 ⟩

)
, (4)

∂t⟨σ̂44
1 ⟩ = ξ⟨σ̂11

1 ⟩ − (ksp + ξ)⟨σ̂44
1 ⟩ − k47⟨σ̂44

1 ⟩, (5)

∂t⟨σ̂55
1 ⟩ = ξ⟨σ̂22

1 ⟩ − (ξ + ksp)⟨σ̂55
1 ⟩ − k57⟨σ̂55

1 ⟩, (6)

∂t⟨σ̂66
1 ⟩ = ξ⟨σ̂33

1 ⟩ − (ξ + ksp)⟨σ̂66
1 ⟩ − k67⟨σ̂66

1 ⟩, (7)

∂t⟨σ̂77
1 ⟩ = k47⟨σ̂44

1 ⟩+ k57⟨σ̂55
1 + k67⟨σ̂66

1 ⟩ − (k71 + k72 + k73) ⟨σ̂77
1 ⟩. (8)

Second, we illustrate the equations for the second-order mean values. The mean intra-resonator photon number
⟨â†â⟩ satisfies the equation

∂t⟨â†â⟩ = κ
(
nth
m − ⟨â†â⟩

)
+ iNg31

(
⟨âσ̂31

1 ⟩ − ⟨â†σ̂13
1 ⟩

)
. (9)
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Frequency ωc = 2πfc 2π × 2.872 GHz
Quality-factor Q = fc/κ 2900

Damping rate κ 6.22 MHz
Spin-resonator coupling g31 0.084 Hz

Number of spins N 1.6× 1015

Spin transition frequency ω31 2π × 2.872 GHz
ω21 2π × 2.867 GHz

Spin-lattice relaxation rate k31 ≈ k12 83 Hz
Spin dephasing rate χ2 = χ3 2π × 2.6 MHz

Supplementary Table 2. Parameters related to the microwave mode cooling experiments [1].

 a  b

188 K

T=293 K T=293 K

Supplementary Figure 2. Cooling dynamics of a NV spin ensemble and a microwave resonator mode. Similar
results as those in Fig. 2 in the main text, but for the a low frequency microwave resonator as used in the microwave mode
cooling experiment [1].

The NV-photon correlation ⟨â†σ̂13
1 ⟩ follows the equation

∂t⟨â†σ̂13
1 ⟩ = i (ωm − ω31) ⟨â†σ̂13

1 ⟩ − [(κ+ k12 + k13 + k31) /2 + ξ + χ3] ⟨â†σ̂13
1 ⟩

+ ig31
[
⟨σ̂33

1 ⟩
(
1 + ⟨â†â⟩

)
− ⟨σ̂11

1 ⟩⟨â†â⟩
]
+ i(N − 1)g31⟨σ̂31

1 σ̂13
2 ⟩. (10)

The correlations ⟨âσ̂31
1 ⟩ are simply the complex conjugation of ⟨â†σ̂13

1 ⟩. In the end, the NV-NV correlation ⟨σ̂31
1 σ̂13

2 ⟩
satisfies the equation

∂t⟨σ̂31
1 σ̂13

2 ⟩ = − [k12 + k13 + k31 + 2 (ξ + χ3)] ⟨σ̂31
1 σ̂13

2 ⟩+ ig31
(
⟨σ̂33

1 ⟩ − ⟨σ̂11
1 ⟩

) (
⟨âσ̂31

1 ⟩ − ⟨â†σ̂13
1 ⟩

)
. (11)

SUPPLEMENTARY NOTE 4: MICROWAVE MODE COOLING WITH A LOWER FREQUENCY
RESONATOR

In this Supplementary Note, we present results similar to those in the main text but for the setup used in the
microwave mode cooling experiment [1], which features a microwave resonator with lower frequency. In the Sup-
plementary Table 2, we present the parameters applied in the simulations. Here, we assume a spin dephasing rate
2π × 2.6 MHz, which is consistent with the value reported in experiments at low temperature [11, 12], but an order
of magnitude larger than 0.33 MHz as assumed in the experiment [1]. The latter value is obtained by assuming that
the NV− concentration is equal to that of the P1 centers, while usually the P1 centers concentration can be orders
of magnitude larger [13]. We note that our conservative value is also of the same order of magnitude as the width of
the zero-field transient electron paramagnetic resonance measurement, see Fig. 2b in [1].

With the transition rates in the upper part of the Supplementary Table 1 and the parameters in the Supplementary
Table 2, we have simulated the cooling dynamics (Supplementary Figure 2) and steady-state (Supplementary Figure
3) of the NV centers and the coupled microwave resonator. Supplementary Figure 2 shows similar results as Fig. 2 in
the main text except: (1) the intra-resonator photon number starts from relatively larger thermal value 2125 because
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 a b

Experiment Experiment

T=293 K

T=293 K

Supplementary Figure 3. Steady-state cooling of the NV spins and the microwave resonator mode. Similar results
as those in Fig. 3 in the main text but for the low frequency microwave resonator as used in the microwave mode cooling
experiment [1].

the single photon energy ℏωm is much smaller than the thermal energy kBT ; (2) the effective mode temperature
reduces to 188 K, about 35 K higher than 153 K in Fig. 2b of the main text, due to the insufficient energy transfer
from the NV centers to the microwave mode. Supplementary Figure 3 shows similar results as Fig. 3 in the main
text except that the minimal mode temperature is 170 K, about 54 K higher than the value 116 K in Fig. 3b. The
dynamics of the mode temperature reproduces the experimental results [1], and the mode temperature can be reduced
from 188 K to the minimal temperature 170 K by increasing the laser power from 2 W to 100 W. In addition, we
verify that the rate equations given in the Supplementary Note 5 can reproduce perfectly the results, because the
system works in the weak coupling regime, and the spin-spin correlation does not play a role here.

For the current setup, we estimate the largest NV spins-microwave mode coupling as
√
2Jg ≈ 2π × 0.45 MHz, and

conclude that the system is in the weak collective coupling regime since this coupling is much smaller than the spin
dephasing rate χ3 = 2π × 2.6 MHz. As a result, with this setup, we do not expect to realize C-QED effects at room
temperature.

40 20 0 20 40
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1200

1400

1600
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Supplementary Figure 4. Influence of two NV spin transitions on the microwave mode cooling. Intra-resonator
steady-state photon number as a function of the detuning of the microwave mode frequency ωm to the middle frequency
ωD = (ω31 + ω21)/2 of the 0 → +1 and 0 → −1 transitions, for the laser excitation with 2 W power. The dashed lines indicate
the results when only one transition is considered.

Considering the large spin-dephasing rate, the −1 spin level might also influence the microwave mode cooling even
though it is off-resonant to the microwave mode. To quantify this influence, we should extend the multi-level JC
model in the main text by considering the coupling between this spin level with the microwave mode. However, in
the light that this coupling has no influence on the cooling dynamics and steady-state of the NV spin ensemble, we
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conclude that this coupling affects only Eq. (20) for the intra-resonator photon number:

⟨â†â⟩(t) ≈ N(k31eet + k21eet)⟨σ̂11
1 ⟩(t) + κnth

m

N
∑

i=2,3 k
i1
eet[⟨σ̂11

1 ⟩(t)− ⟨σ̂ii
1 ⟩(t)] + κ

, (12)

where we have introduced the energy transfer rates ki1eet = −2g2i1Imδ̃i1
−1

with the complex detuning δ̃31 = (ωm − ω31)+

i [(κ+ k12 + k13 + k31) /2 + ξ + χ3] and δ̃21 = (ωm − ω21) + i [(κ+ k13 + k12 + k21) /2 + ξ + χ2]. Assuming the same
parameters for the −1 → 0 and +1 → 0 transition, we can use the above expression to compute the intra-resonator
photon number at steady-state as function of the microwave mode frequency ωm for the laser excitation of power
2 W, see the Supplementary Figure 4. We see that the two spin transitions contribute together to the microwave
mode cooling, and the off-resonant spin transition contributes to the microwave mode cooling by 5% when the other
transition is resonant to the microwave mode. Note that the photon number decreases with increasing microwave
mode frequency ωm due to the dependence of the thermal photon number nth

m on this frequency.

SUPPLEMENTARY NOTE 5: RATE EQUATIONS FOR MICROWAVE MODE COOLING

In this Supplementary Note, we explain how to derive the rate equations by ignoring the spin-spin correlation and
eliminating the spin-photon correlation, and how to further simplify these equations by eliminating the population of
triplet and singlet excited states, as well as how to obtain the analytical expressions for the steady-state of the NV
spins-microwave resonator system.

Eliminate Spin-Photon Correlations

To clarify whether the collective coupling plays a role in the microwave mode cooling via the optically cooled NV spin
ensemble, we derive the rate equations for the mean-field quantities given in the previous Supplementary Note. To
this end, we assume the spin-spin correlations vanish, i.e. ⟨σ̂31

1 σ̂13
2 ⟩ ≈ 0, and we solve Eq. (10) in steady-state

⟨â†σ̂13
1 ⟩ ≈ g31δ̃

−1
[
⟨σ̂11

1 ⟩⟨â†â⟩ − ⟨σ̂33
1 ⟩

(
1 + ⟨â†â⟩

)]
, (13)

with the complex frequency detuning δ̃ = (ωm − ω31)+i [(κ+ k12 + k13 + k31) /2 + ξ + χ3]. Inserting the above result
into Eq. (9), we obtain

∂t⟨â†â⟩ ≈ κ
(
nth
m − ⟨â†â⟩

)
−Nkeet⟨σ̂11

1 ⟩⟨â†â⟩+Nkeet⟨σ̂33
1 ⟩

(
1 + ⟨â†â⟩

)
, (14)

with the energy transfer rate keet = −2g231Imδ̃−1 for single NV center to the microwave mode. If we ignore the
spontaneous emission of microwave photon and consider that the imaginary part of δ̃ is dominated by the photon
damping rate κ and the spin dephasing χ3, we will obtain Eq. (2) in the main text. Inserting Eq. (13) to Eqs. (2)
and (4), we obtain

∂t⟨σ̂11
1 ⟩ ≈ −(k12 + k13 + ξ)⟨σ̂11

1 ⟩+ (ξ + ksp)⟨σ̂44
1 ⟩+ k21⟨σ̂22

1 ⟩
+ k31⟨σ̂33

1 ⟩ − keet⟨σ̂11
1 ⟩⟨â†â⟩+ keet⟨σ̂33

1 ⟩
(
1 + ⟨â†â⟩

)
, (15)

∂t⟨σ̂33
1 ⟩ ≈ −ξ⟨σ̂33

1 ⟩+ (ksp + ξ)⟨σ̂66
1 ⟩+ k73⟨σ̂77

1 ⟩+ k13⟨σ̂11
1 ⟩

− k31⟨σ̂33
1 ⟩+ keet⟨σ̂11

1 ⟩⟨â†â⟩ − keet⟨σ̂33
1 ⟩

(
1 + ⟨â†â⟩

)
. (16)

Eqs. (14), (15) and (16) together with Eqs. (3), (5)-(8) constitute the rate equations for the microwave mode cooling.
Our equations differ from those in Ref. [1] in the following aspects: (1) the energy transfer rate depends on the

frequency detuning, and thus our rate equations can be also applied to the off-resonant case; (2) the energy transfer
rate depends also on the resonator mode damping rate κ and the optical pumping rate ξ, and thus our equations
are valid when these two rates become comparable with the spin-dephasing rate; (3) our equations account for the
resonator-mediated spontaneous emission of microwave photon (i.e. superradiance) and thus are also valid when the
microwave mode is cooled to the ground state. In the experiments reported in [1], the spin-dephasing rate dominates
over other rates and the number of microwave photons is very large, and in this limit, our rate equations are equivalent
to those developed in Ref. [1].

Eliminate Population of Higher Excited States

In light of Fig. 2a in the main text and the Supplementary Figure 2a, the population of the triplet and single excited
state seems to follow adiabatically the population on the spin levels of the triplet ground state due to the large

6



spontaneous emission rate compared to other rates. Motivated by this, we might apply the adiabatic approximation
to eliminate the population on the triplet and singlet excited states. To this end, we consider the steady-state solutions
for these populations from Eqs. (5)-(8): ⟨σ̂44

1 ⟩ ≈ ⟨σ̂11
1 ⟩ ξ

ksp+ξ+k47
, ⟨σ̂55

1 ⟩ ≈ ⟨σ̂11
1 ⟩ ξ

ksp+ξ+k57
, ⟨σ̂66

1 ⟩ ≈ ⟨σ̂11
1 ⟩ ξ

ksp+ξ+k67
, and

⟨σ̂77
1 ⟩ ≈ 1

k71+k72+k73
(k47⟨σ̂44

1 ⟩+ k57⟨σ̂55
1 ⟩+ k67⟨σ̂66

1 ⟩), and insert these results into Eqs. (3), (15) and (16) to obtain

∂t⟨σ̂11
1 ⟩ ≈ −(k̃11 + k12 + k13)⟨σ̂11

1 ⟩+ (k̃21 + k21)⟨σ̂22
1 ⟩

+ (k̃31 + k31)⟨σ̂33
1 ⟩ − keet⟨σ̂11

1 ⟩⟨â†â⟩+ keet⟨σ̂33
1 ⟩(1 + ⟨â†â⟩), (17)

∂t⟨σ̂22
1 ⟩ ≈ −(k̃22 + k21)⟨σ̂22

1 ⟩+ (k̃12 + k12)⟨σ̂11
1 ⟩+ k̃31⟨σ̂33

1 ⟩, (18)

∂t⟨σ̂33
1 ⟩ ≈ −(k̃33 + k31)⟨σ̂22

1 ⟩+ (k̃13 + k13)⟨σ̂11
1 ⟩

+ k̃23⟨σ̂22
1 ⟩+ keet⟨σ̂11

1 ⟩⟨â†â⟩ − keet⟨σ̂33
1 ⟩(1 + ⟨â†â⟩). (19)

In the above equations, we have defined the rates

k̃11 = ξ k47

ksp+ξ+k47
(1− k71

k71+k72+k73
) k̃21 = ξ k57

ksp+ξ+k57

k71

k71+k72+k73
k̃31 = ξ k67

ksp+ξ+k67

k71

k71+k72+k73

k̃12 = ξ k47

ksp+ξ+k47

k72

k71+k72+k73
k̃22 = ξ k57

ksp+ξ+k57
(1− k72

k71+k72+k73
) k̃32 = ξ k67

ksp+ξ+k67

k72

k71+k72+k73

k̃13 = ξ k47

ksp+ξ+k47

k73

k71+k72+k73
k̃23 = ξ k57

ksp+ξ+k57

k73

k71+k72+k73
k̃33 = ξ k67

ksp+ξ+k67
(1− k73

k71+k72+k73
)

Here, k̃ii are the rates of the population transfer from the spin levels of the triplet ground state to the higher excited
states, where k̃ij with i ̸= j = 1, 2, 3 are the rates of the population transfer from the i-th spin level to the j-th spin
level of the triplet ground state via the higher excited states.

Our calculations show that keet is on the order of 10−7 Hz while the other rates in the above equations are on the
order of 102, 103 Hz. Thus, in Eqs. (17) to (19), we can ignore the terms proportional to the photon number ⟨â†â⟩.
Furthermore, the photon damping rate κ and the collective energy transfer rate Nkeet are on the order of 106 Hz,
which is orders of magnitude larger than the rates appearing in Eqs. (17) to (19) for the spin level populations. As a
result, we might also apply the adiabatic approximation to Eq. (14) to obtain

⟨â†â⟩(t) ≈ Nkeet⟨σ̂11
1 ⟩(t) + κnth

m

Nkeet[⟨σ̂11
1 ⟩(t)− ⟨σ̂33

1 ⟩(t)] + κ
. (20)

Analytical Expressions

Since the parameters related to the ±1 spin levels are similar, the equations for the populations ⟨σ̂22
1 ⟩ and ⟨σ̂33

1 ⟩ are
equivalent, leading to ⟨σ̂33

1 ⟩ ≈ ⟨σ̂22
1 ⟩ ≈ (1− ⟨σ̂11

1 ⟩)/2. In this case, we can approximate Eq. (17) as

∂t⟨σ̂11
1 ⟩ ≈ −(k̃11 + k12 + k13 + k̃31 + k31)⟨σ̂11

1 ⟩+ k̃31 + k31, (21)

and solve it analytically to obtain

⟨σ̂11
1 ⟩(t) ≈ (c1 − c0)e

−(k̃11+k12+k13+k̃31+k31)t + c0. (22)

For the optical spin cooling period in the Supplementary Fig. 2(a), the two constants are c0 ≈ k̃31+k31

k̃11+k12+k13+k̃31+k31

and c1 ≈ 1/3. For the thermalization period in the Supplementary Fig. 2, the effective rates are k̃31 = k̃11 = 0 and the
constants are c0 ≈ 1/3 and c1 ≈ k31

k12+k13+k31
. From this population we can compute the population of the ±1 spin levels

⟨σ̂33
1 ⟩(t) ≈ ⟨σ̂22

1 ⟩(t) ≈ 1 − 2⟨σ̂11
1 ⟩(t), as well as the intra-resonator photon number ⟨â†â⟩(t) ≈ Nkeet⟨σ̂11

1 ⟩(t)+κnth
m

Nkeet[⟨σ̂11
1 ⟩(t)−⟨σ̂33

1 ⟩(t)]+κ

with the energy transfer rate keet =
2g2

31χ

(ωm−ω31)
2+χ2 , where χ = (κ+ k12 + k13 + k31) /2 + ξ + χ3 is the total dephasing

rate. The photon number can be further simplified as ⟨â†â⟩(t) ≈ κnth
m

Nkeet[⟨σ̂11
1 ⟩(t)−⟨σ̂33

1 ⟩(t)]+κ
for Nkeet ≪ κnth

m . The above
expressions indicate that the population of the 0 spin level evolves exponentially during both the optical cooling and
thermalization period, and the intra-resonanter photon number behaves oppositely.

Finally, we derive analytical expressions for the steady-state situation. To this end, we ignore the coupling with
the microwave mode in Eqs. (18) and (19), and consider the equations in steady-state. Using the relation ⟨σ̂11

1 ⟩ ≈
1 − ⟨σ̂22

1 ⟩ − ⟨σ̂33
1 ⟩, we can solve these equations analytically and obtain ⟨σ̂22

1 ⟩ ≈ B(k̃12+k12)−C(k̃13+k13)
AB−CD , ⟨σ̂33

1 ⟩ ≈
A(k̃13+k13)−D(k̃12+k12)

AB−CD with the abbreviations A = k̃22+k21+k̃12+k12, B = k̃33+k31+k̃13+k13, C = k̃12+k12−k̃32, D =

k̃13+k13−k̃23. We have verified that these analytical expressions reproduce the results obtained with the rate equations.
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SUPPLEMENTARY NOTE 6: COUNTERACTING OPTICAL HEATING OF DIAMOND

The results in the main text show that a laser power about 1 W is sufficient to achieve the microwave mode cooling
and observe C-QED effects at room temperature, while a laser power about 100 W is necessary to achieve optimal
spin cooling, and thus much better performance. Under such strong laser illumination, the diamond sample might be
overheated. It was reported in the experiment of the diamond maser at room temperature [2] that the temperature
increases by 35 K when the laser power increases to 0.4 W, suggesting the relationship ∆T/∆P = 87.5 K/W. According
to Ref. [14], the change of the zero-field splitting depends on the temperature change as ∆D/∆T = −2π×0.074MHz/K.

Assuming similar properties of the diamond sample in our study, we expect that for the laser power P = 1 W, the
temperature raises by 87.5 K, and the frequency drifts by −2π × 6.48 MHz. This simple calculation indicates that
we must mitigate the effects of optical heating. To counteract the optical heating, we can cool the diamond sample
with heat-sinking, forced air, immersive liquid cooling or heat pipes, as pointed out in Ref. [1]. As an example, in the
experiment [15], it was demonstrated that by cooling the diamond sample with water and N2 gas, the temperature
rise can be managed within 30 K for a laser power up to 24 W. If this cooling is still efficient for much higher laser
power, we expect a temperature rise of 125 K for a 100 W laser power, and a frequency drift of 2π × 9.25 MHz. This
is acceptable, and if necessary, the frequency drift can be counteracted by a Zeeman shift induced by a magnetic field.

The temperature discussed above refers to that of the diamond lattice phonons Tlat not the NV spins and the
microwave mode, and it affects the phenomena studied in the main text only by increasing the spin-lattice relaxation
rate. According to Refs. [5, 6], for lattice temperatures above 200 K, the spin-lattice relaxation rate is determined by
the two-phonon Raman process, and scales as ki1 ∝ T 5

lat with temperature. As a result, we have ki1 ≈ k1i (i = 2, 3) to
ki1 × [(Tini +∆T )/Tini]

5 with Tini = 293 K and ∆T = 125 K. For the high frequency resonator, k31 ≈ k21 increases
from 208 Hz to 2181 Hz. For the lower frequency resonator, k31 ≈ k21 increases from 83 Hz to 490 Hz. Even with
the increased spin-lattice relaxation rate, we can still obtain results as in the main text except that the laser power
should be increased slightly to counteract the increased spin-lattice relaxation rate.
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