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Supplementary Note 1. ENERGY LEVELS OF THE SINGLE HOW10 MOLECULE

The spin energy level scheme for HoW10 can be described by the following Hamiltonian:

Ĥ =
∑

k=2,4,6

k∑
q=−k

Bq
kÔ

q
k(J) + Ĵ ·A · Î + µBgeB0 · Ĵ − µNgNB0 · Î , (1)

where, Bq
k are the CFPs in Extended Steven Operator (Ôq

k). J and I are the total electronic and nuclear angular
momentum, respectively, whereas “A” denotes the isotropic hyperfine interaction. ge (gN ) and µB (µN ) correspond to
the electronic (nuclear) gyromagnetic ratio and Bohr magneton, respectively. For HoW10, J=8, I=7/2 and A=0.02768
cm−1 (830 MHz) [1], ge=1.25 and gN=1.668. B0 is the applied magnetic field.
In the ground 16-level electronuclear spin manifold (|±MJ ,±MI⟩), the levels of a single HoW10 molecule correspond

to a electronic spin doublet that is hyperfine coupled to a single nuclear spin octuplet. In both cases, the spin resides
in the Ho3+ ion. This results in 4 CTs, equispaced in terms of magnetic field and of identical transition frequency,
always corresponding to transitions between the 8th and 9th levels. Note that, although the levels involved at the
CTs are the same (the 8th and 9th levels), they are different in nature due to the multiple crossings in this dense
spectrum. Figure 1 displays the energy evolution of the electronuclear states as a function of a B-field applied along
the easy axis of the magnetization (B0z).

Supplementary Figure 1. Calculated Zeeman diagrams for the 16 states of the MJ=±4, I = 7/2 electro-nuclear spin ground
manifold vs a B-field applied along the easy axis of the magnetization (B0z). The electronic spin wavefunction varies contin-
uously, with perfect mixing at each CT, as the curve attains zero slope, and pure electronic spin state at effectively infinite
distance from the CT. The nuclear spin wavefunction is always pure, since no extradiagonal term acting on the nuclear spin is
included in the Hamiltonian.
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Supplementary Note 2. RELAXATION DYNAMICS: REDFIELD THEORY

The total Hamiltonian is decomposed in the spin, phonon and spin-phonon Hamiltonians as described in Eqs. 8, 9
and 10 respectively in main text. For convenience, we write Eq. 10 in a more compact way as

ĤS−ph =
∑
α

(
∂ĤS

∂q̂α

)
0

q̂α =
∑
α

V̂ αq̂α (2)

The dynamics of the total system (electronic spin states + the phonon bath) can be described by the time evolution
of density operator ρ̂. In interaction picture, this is defined as:

dρ̂(t)

dt
= − ι̇

ℏ

[
ĤS−ph(t), ρ̂(t)

]
(3)

integral form of Eq. 3 takes the form for time 0 → t as follows:

ρ̂(t) = ρ̂(0)− ι̇

ℏ

∫ t

0

ds
[
ĤS−ph(t), ρ̂(s)

]
(4)

By inserting Eq.4 in Eq. 3 and taking trace over phonon bath, this leads to:

d

dt
ρ̂s(t) = − 1

ℏ2

∫ t

0

dstrB

[
ĤS−ph(t),

[
ĤS−ph(s), ρ̂(s)

]]
(5)

At this point, we have to make some approximations. First, the coupling between the system (electronic spin states)
and phonons is weak and can be treated as a perturbation. Second, the process is Markovian meaning phonon bath
relaxation is much faster than the time scale for the spin dynamics. These approximation can be enumerated as,

1. ρ̂(t) ≈ ρ̂s(t)⊗ ρ̂Beq (weak-couplings, Born-approximation)

2. ρ̂s(s) → ρ̂s(t), t′ = t− s (Markov-approximation)

After casting these approximations, the time evolution of the reduced system takes the form:

d

dt
ρ̂s(t) = − 1

ℏ2

∫ ∞

0

dt′trB

[
ĤS−ph(t),

[
ĤS−ph(t− t′), ρ̂s(t)⊗ ρ̂Beq

]]
(6)

By substituting the definition of ĤS−ph from Eq. 2 into Eq. 6,

d

dt
ρ̂s(t) = − 1

ℏ2

∫ ∞

0

dt′trB
∑
α

[
V̂ α(t)q̂αq(t),

[
V̂ α(t− t′)q̂α(t− t′), ρ̂s(t)⊗ ρ̂Beq

]]
(7)

After expanding the commutator followed by some mathematical steps, Eq. 7 is expanded as:

d

dt
ρ̂s(t) = − 1

ℏ2

∫ ∞

0

dt′
∑
α

{
[
V̂ α(t)V̂ α(t− t′)ρ̂S(t)− V̂ α(t)ρ̂s(t)V̂ α(t− t′)

]
trB

(
q̂α(t)q̂α(t− t′)ρ̂Beq

)
−[

V̂ α(t− t′)ρ̂s(t)V̂ α(t)− ρ̂s(t)V̂ α(t)V̂ α(t− t′)
]
trB

(
q̂α(t− t′)q̂α(t)ρ̂

B
eq

)}
(8)

Eq. 8 can be expressed in terms of the eigenstates of ĤS leading to:

dρsab(t)

dt
+ ι̇ωabρ

s
ab = − 1

ℏ2

∫ ∞

0

dt′
∑
α

{
[V α

ac(t)V
α
cd(t− t′)ρsdb(t)− V α

ac(t)V
α
db(t− t′)ρscd(t)] trB

(
q̂α(t)q̂α(t− t′)ρ̂Beq

)
−

[V α
ac(t− t′)V α

db(t)ρ
s
cd(t)− V α

cd(t)V
α
db(t− t′)ρsac(t)] trB

(
q̂α(t− t′)q̂α(t)ρ̂

B
eq

)}
(9)
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where ρsab = ⟨b| ρ̂s |a⟩ is a reduced system density matrix element and ωab = (Eb−Ea)/ℏ, being Eb and Ea eigenvalue
energies of the spin Hamiltonian.

Explicit time dependencies for the spin-phonon coupling can be described by going back to the Schrödinger picture
V α
ab(t) = ⟨a| eι̇HStV̂ αe−ι̇HSt |b⟩,

dρsab(t)

dt
+ ι̇ωabρ

s
ab =− 1

ℏ2
∑
α

{∑
j

δbdV
α
ajV

α
jc

∫ ∞

0

dt′e−ι̇ωjct
′
trB

(
q̂αq(t)q̂α(t− t′)ρ̂Beq

)
− V α

acV
α
db

∫ ∞

0

dt′e−ι̇ωdbt
′
trB

(
q̂α(t)q̂α(t− t′)ρ̂Beq

)
− V α

acV
α
db

∫ ∞

0

dt′e−ι̇ωact
′
trB

(
q̂α(t− t′)q̂α(t)ρ̂

B
eq

)
+
∑
j

δcaV
α
djV

α
jb

∫ ∞

0

dt′e−ι̇ωdjt
′
trB

(
q̂α(t− t′)q̂α(t)ρ̂

B
eq

)}
(10)

The Fourier transformation of the bath correlation function can be written as∫ ∞

0

dt′e−ι̇ωijt
′
trB (q̂α(t)q̂α(t− t′)ρ̂eqB ) =

1

2

∫ ∞

0

dt′e−ι̇ωijt
′
trB

[
eι̇ωαt′ â†αâα + e−ι̇ωαt′ âαâ

†
α

]
=

1

2

∫ ∞

0

dt′e−ι̇(ωij−ωα)t′ n̄α +
1

2

∫ ∞

0

dt′e−ι̇(ωij+ωα)t′(n̄α + 1) (11)

where, n̄α = trB
[
â†α, âα

]
is average phonon number. By using the definition of

∫∞
0

dt′e−ι̇ωt′ = πδ(ω), Eq. 10 becomes:

dρsab(t)

dt
+ ι̇ωabρ

s
ab = − π

2ℏ2
∑
α

{∑
j

δbdV
α
ajV

α
jcG(ωjc, ωα)− V α

acV
α
dbG(ωdb, ωα)

− V α
acV

α
dbG(ωca, ωα) +

∑
j

δcaV
α
djV

α
jbG(ωjd, ωα)

}
(12)

where G(ω) denotes the phonon spectral density, which contains the information of the temperature dependence of
spin-dynamics carried by molecular vibrations. Within the harmonic approximation, where phonons are undamped,
this is described by dirac-delta function [2, 3],

G(ωij , ωα) = δ(ωij − ωα)n̄α + δ(ωij + ωα)(n̄α + 1) (13)

The spin-phonon coupling constant expressed in eigenvectors in Eq. 12 can be conveniently written in MJ basis as
follows:

V α
ab =

∑
κ

∑
λ

⟨a|κ⟩ ⟨κ| V̂ α |λ⟩ ⟨λ|b⟩ (14)

Note that the matrix elements in MJ basis (i.e., |κ⟩ ≡ |MJ⟩) are the ones directly evaluated by the ab initio CASSCF

calculations since the spin Hamiltonian ĤS has been built in these basis.
Finally, Eq. 12 can be written in a more compact and general way:

dρsab(t)

dt
= −ι̇ωabρ

s
ab −

∑
c,d

Rab,cdρ
s
cd(t) (15)

where, Rab,cd corresponds to the full tetradic RedField tensor. To calculate this tensor, we therefore need to estimate
the spin-phonon coupling matrix elements, which were previously calculated from ab-initio electronic structure cal-
culations (see Supplementary Table 2 and Ref. [4]), and a expression for the phonon spectral density G(ω). For the
latter, we are using, instead of Eq. 14, the expression proposed by Lunghi et al.[5–8], which is more appropriate for
real molecular systems since it incorporates anharmonicity. This spectral density reads as:

G(ωij , ωα) =
1

π

[
∆α

∆2
α + (ωij − ωα)2

n̄α +
∆α

∆2
α + (ωij + ωα)2

(n̄α + 1)

]
(16)
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where, n̄α = 1
eβℏωα−1

, is the Bose-Einstein population at a temperature T and β = 1/kBT . ∆α is the Lorentzian
vibrational linewidth. Temperature dependence of spectral line-width can be defined as:

∆2
α =

∂ ⟨Hvib,α⟩
∂β

=
(ℏωα)

2eβℏωα

(eβℏωα − 1)
2 (17)

where, β = 1/kBT , kB is the boltzman constant.
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Supplementary Table 1. Energy level scheme (in cm−1), predominant Mj microstate contribution ( 10%) and expectation
value of total angular momentum ⟨Jz⟩ for the ground multiplet of HoW10 calculated at CASSCF level on the crystallographic
coordinates. The atomic coordinates are oriented with the easy axis of magnetization along the z axis.

ECASSCF (cm
−1) MJ ⟨Jz⟩ ECASSCF (cm

−1) MJ ⟨Jz⟩

0.00 47.5% |±4⟩ -5.53 0.36 47.5% |±4⟩ 5.53

26.24 47.2% |±3⟩ -3.06 27.92 47.2% |±3⟩ 3.06

50.08 48.7% |±5⟩ -5.31 50.31 48.7% |±5⟩ 5.31

86.70 48.2% |±2⟩ -2.19 96.34 48.2% |±2⟩ 2.19

155.59 48.9% |±1⟩ -1.23 156.90 48.9% |±1⟩ 1.23

178.90 46.6% |±6⟩ -6.36 179.05 46.6% |±6⟩ 6.36

181.88 94.3% |0⟩ 0.00

279.97 49.3% |±8⟩ -9.20 279.97 49.3% |±8⟩ 9.20

315.99 49.1% |±7⟩ -7.53 315.99 49.1% |±7⟩ 7.53



7

Supplementary Table 2: Spin-vibrational coupling coefficients -∑
k=2,4,6

∑k
q=−k

(
∂B

q
k

∂qα

)
in (cm−1), numerical derivatives are obtained

by fitting the evolution of CFPs (Bq
k) along the displacement vector of

normal mode-α with second order polynomial.

α = 68.4 cm−1 α = 94.5 cm−1 α = 149.0 cm−1

(k,q)
(

∂B
q
k

∂qα

)
(cm−1)

(
∂B

q
k

∂qα

)
(cm−1)

(
∂B

q
k

∂qα

)
(cm−1)

(2, -2) -0.04796 0.09267 -0.00031

(2, -1) 0.00172 -0.00505 0.00306

(2, 0) -0.00369 0.00375 0.00279

(2, 1) 0.16933 -0.30027 -0.00370

(2, 2) -0.00956 0.01411 -0.01288

(4, -4) -0.00010 0.00010 0.00013

(4, -3) -0.00085 -0.00069 -0.00001

(4, -2) 0.00011 -0.00003 0.00016

(4, -1) -0.00094 -0.00051 0.00000

(4, 0) -0.00003 -0.00003 -0.00002

(4, 1) -0.00028 0.00014 -0.00003

(4, 2) -0.00016 -0.00006 0.00014

(4, 3) 0.00034 -0.00042 -0.00010

(4, 4) -0.00010 0.00005 -0.00020

(6, -6) 0.00000 -0.00001 0.00000

(6, -5) -0.00008 -0.00005 0.00000

(6, -4) 0.00000 0.00000 0.00000

(6, -3) -0.00004 -0.00002 0.00000

(6, -2) 0.00000 0.00000 0.00000

(6, -1) 0.00002 0.00001 0.00000

(6, 0) 0.00000 0.00000 0.00000

(6, 1) 0.00000 0.00001 0.00000

(6, 2) 0.00000 0.00000 0.00000

(6, 3) 0.00000 -0.00001 0.00000

(6, 4) -0.00001 0.00000 0.00000

(6, 5) -0.00003 0.00001 0.00000

(6, 6) 0.00000 0.00000 0.00000
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Supplementary Note 3. DETERMINATION OF LONGITUDINAL (T1) AND TRANSVERSE (T2)
RELAXATION-TIME

To investigate transverse and longitudinal spin relaxation times, T1 and T2 respectively. We solved the full RedField
theory described in Eq. 15 and 12. From these equation, it is possible to calculate the evolution of a given eigenstate
which in turn can be used to calculate the evolution of expected magnetization value:〈

M⃗(t)
〉
=
∑
a

⟨a| ρs(t)M⃗ |a⟩ (18)

Longitudinal Relaxation time T1: For the determination of T1, we prepared the state in system eigenstate of Ĥs,
ρs(t = 0) = |0⟩ ⟨0|, where |0⟩ represents the lowest eigensate of ĤS . This populated state is then quenched by thermal
bath at a given temperature. The decay of the expected magnetization in this process is fitted exponentially as follows:

Mz(t) = (Mz(0)−Mz(∞))e−t/τ +Mz(∞) (19)

In HoW10, the ground state is |0⟩ = |MJ = −4⟩ at CT. Evolution of expected Mz(t) in time is shown in Fig. 2 at 5
and 6 Kelvin.
Transverse Relaxation time T2: For the determination of transverse relaxation time T2, we prepared the initial
density in superposition eigenstate of Ĥs, ρ

s(t = 0) = |0⟩ ⟨1|. As indicated above in the description of full Redfield
tensor Rab,cd, combination of ab,ab will be realized as coherence relaxation. Decay profile is fitted with exponential
to obtain the transverse relaxation times.

Mx,y(t) = (Mx,y(0)−Mx,y(∞))e−t/τ +Mx,y(∞) (20)

Coherence relaxation for HoW10 is presented in Fig. 3 at 5 and 6 Kelvin.
T1/T2 around CT: To determined the T1/T2 divergence with magnetic field, we solve the full Redfield tensor at

different B-Field around CT, decay profile for expected Mz and Mx,y at 5 K is shown in 4 and 5 respectively. In
Fig. 6, we show the T1/T2 at different B-Field and also at different temperature. Detailed values are provided in
Supplementary Table 3 and 4.

0 1 2 3 4 5 6

2.2
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4.4

5.5

M
z(

)

 

 

Time ( s)

 5K
 6K

Supplementary Figure 2. Longitudinal (T1) relaxation-time-temperature dependence at magnetic field of CT.
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Supplementary Figure 3. Transverse (T2) relaxation-time-temperature dependence at magnetic field of CT.
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Supplementary Figure 4. Longitudinal (T1) relaxation at magnetic field of 0 and 20 mT.



10

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

1.1

2.2

3.3

4.4

5.5

M
x,
y(

)

 

 

Time ( s)

   0mT@5K
 20mT@5K

Supplementary Figure 5. Transverse (T2) relaxation at magnetic field of 0 and 20mT.

- 2 0 - 1 0 0 1 0 2 0

1 0 - 2

1 0 - 1

1 0 0

1 0 1

1 0 2

1 0 3

- 2 0 - 1 0 0 1 0 2 0

- 0 . 4

- 0 . 3

- 0 . 2

- 0 . 1

0 . 0

- 2 0 - 1 0 0 1 0 2 0

1 0 - 2

1 0 - 1

1 0 0

1 0 1

1 0 2

1 0 3

- 2 0 - 1 0 0 1 0 2 0
- 0 . 5

- 0 . 4

- 0 . 3

- 0 . 2

- 0 . 1

0 . 0

 

 

T 1 (µ
s)

 

 

�
T 1/T 1, 

B =
 0

 3  K
 4  K
 5  K
 6  K
 7  K
 8  K
 9  K
 1 0  K
 1 1  K

 

 

T 2 (µ
s)

B 0 z -  B m i n  ( m T )

 3  K
 4  K
 5  K
 6  K
 7  K
 8  K
 9  K
 1 0  K
 1 1  K  

 

�
T 2/T 2, 

B =
 0

B 0 z -  B m i n  ( m T )

Supplementary Figure 6. a)- Longitudinal (T1) and b)- transverse (T2) relaxation-time-temperature dependence at magnetic
field of -20 to 20 mT. c)- T1 and d)- T2 divergences at CT at different temperatures.
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Supplementary Table 3: Longitudinal relaxation time (T1) in µs at dif-
ferent B-field and different temperatures.

Temperature
(K)

-20 mT -15 mT -10 mT -5 mT 0 mT +5 mT +10 mT +15 mT +20 mT

3 617.843 633.518 676.230 808.439 1026.615 808.440 676.230 633.518 617.842

4 9.999 10.247 10.927 13.028 16.459 13.028 10.927 10.247 9.999

5 0.825 0.845 0.901 1.076 1.363 1.076 0.901 0.872 0.825

6 0.151 0.155 0.165 0.198 0.252 0.198 0.165 0.160 0.151

7 0.045 0.046 0.047 0.058 0.074 0.058 0.049 0.046 0.045

8 0.017 0.018 0.019 0.023 0.029 0.023 0.019 0.018 0.017

9 0.008 0.009 0.009 0.011 0.014 0.011 0.009 0.009 0.008

10 0.005 0.005 0.005 0.006 0.008 0.006 0.005 0.005 0.005

11 0.003 0.003 0.003 0.004 0.005 0.004 0.003 0.003 0.003

Supplementary Table 4: Transverse relaxation time (T2) in µs at different
B-field and different temperatures.

Temperature
(K)

-20 mT -15 mT -10 mT -5 mT 0 mT +5 mT +10 mT +15 mT +20 mT

3 607.138 611.257 667.961 793.881 991.274 793.881 667.961 611.257 607.138

4 9.890 10.139 10.775 12.686 15.864 12.686 10.775 10.139 9.890

5 0.817 0.757 0.783 1.050 1.334 1.050 0.783 0.757 0.775

6 0.127 0.155 0.153 0.180 0.231 0.180 0.153 0.155 0.151

7 0.042 0.043 0.042 0.048 0.057 0.048 0.042 0.043 0.042

8 0.017 0.018 0.019 0.022 0.028 0.022 0.019 0.018 0.017

9 0.008 0.008 0.009 0.011 0.014 0.011 0.009 0.008 0.008

10 0.004 0.004 0.005 0.006 0.007 0.006 0.005 0.004 0.004

11 0.002 0.002 0.003 0.003 0.004 0.003 0.003 0.003 0.002
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Supplementary Note 4. ENERGY DEPENDENCE VS ELECTRIC AND MAGNETIC FIELD WITHIN
THE 2-QUBIT OPERATING SPACE

A. Dipolar Couplings, jdip.a,b (B)

To understand the origin and evolution of the dipolar coupling between the two HoW10 molecules we need to
analyze the expectation value of their magnetic moments as they depart from the CT. Indeed, exactly at the CT the
neighbours are exactly independent, since they neither experience any first order effect from magnetic field, nor do
they themselves create a magnetic field around them. The left panel of Fig. 7 displays a combined information on the
electronic and nuclear part of the wavefunction, and can be best understood having Fig. 1 in mind. It can be seen as
depicting the derivative of each level in Fig. 1, multiplied by a constant factor, in each case corresponding to MI .

At high magnetic field approximation, the magnetic moment of Ho spin is saturated and its squared expectation

value ⟨Jz⟩2 is 16. Its dipolar coupling, jdip.sat. , can be calculated using the well-known equation in cgs units as follows:

jdip.sat. =
µ2
B

|r|3
[
ḡa · ḡb − 3 (ḡa · r̄) (r̄·) ḡb

]
(21)

where ḡi is the corresponding g-tensor, which is obtained from multiconfiguratinoal ab initio calculations; r̄ is the unit

vector at the direction from site a to b and |r| is the length between these two sites. jdip.sat. of -0.0012 cm−1 is derived
considering the nearest neighbour at distance |r|= 11.2 Å. The dipolar coupling at a given magnetic field away from

the CT, jdip.a,b , is dependent of the B-field and can be expressed by a variant of Eq. 21 as:

jdip.a,b (B) =
⟨Jz⟩a · ⟨Jz⟩b
MJ,a ·MJ,b

µ2
B

|r|3
[
ḡa · ḡb − 3 (ḡa · r̄) (r̄·) ḡb

]
(22)

where ⟨Jz⟩ is the expected angular momentum, which is varied by the B-field and is identical to MJ = ±4 at high
B-field approximation, where the magnetic moment of Ho3+ spin is saturated. The right panel of Fig. 7 shows the
B-field dependence of the diplolar coupling, which cancels completely at each CT and has a locally square dependence
in its vicinity since the dipolar coupling between the two molecules is a direct consequence of their expectation value
⟨Jz⟩.

Supplementary Figure 7. a) Expectation Jz values of the 16 spin levels at different magnetic fields for HoW10, considering the
hyperfine interaction of the ground doublet (MJ = ± 4) with the nuclear spin (I = 7/2). b) Calculated dipolar interaction

(jdip.a,b ) of the 16 spin levels of a HoW10 molecule with its neighboring molecule in a two-qubit pair.
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B. Energy Level Scheme for Di-nuclear system

Let us first locate the four energy levels that constitute our operating space among the large space of 256 electronu-
clear spin states created by a dimer of HoW10 molecules, each with a 16 level manifold. As will be seen in more detail
in the next Supplementary Section, the natural levels to consider as a 2-qubit operating space are levels 64, 123, 124
and 193. They correspond, in very good approximation, to the four combinations of the ground and excited states of
the CT in the two HoW10 molecules (ground-ground, ground-excited, excited-ground, excited-excited).

Essentially, the upper and lower levels behave vs the magnetic field as regular CTs, since they can be well approx-
imated as the addition of the CT energies of molecule 1 and molecule 2. In turn, the intermediate levels behave vs
the magnetic field as almost perfect diamagnetic systems, since they can be well approximated as the substraction
of the CT energies of molecule 1 and molecule 2. The levels are highlighted in Supplementary Figures 8 and 9,
with increasingly detailed zooms to allow distinguishing the behaviors of the two intermediate levels and their subtle
deviation from perfect diamagnetism. Note that we employed this approximation of two independent molecules only
in this text description: all representations correspond to the actual coupled system.

Supplementary Figure 8. a) Spin energy levels evolution of 256 levels for coupled HoW10 pair at different magnetic field and at
0 V electric field, and b) its zoomed-in scheme focusing on the vicinity of the first CT. The selected four levels are highlighted
as black, red, blue and green for levels 64, 123, 124 and 193, respectively. c) Zoomed-in scheme of the middle 128 levels in b)
showing a nearly horizontal behavior upon magnetic fields. d) Zoomed-in scheme of the horizontal levels focusing on levels 123
and 124.
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Supplementary Figure 9. a) Spin energy levels evolution of 256 levels for coupled HoW10 pair at different magnetic field and at
300 V electric field, and b) its zoomed-in scheme focusing on the vicinity of the first CT. The selected four levels are highlighted
as black, red, blue and green for levels 64, 122, 124 and 193, respectively. c) Zoomed-in scheme of the middle 128 levels in b)
showing a nearly horizontal behavior upon magnetic fields. d) Zoomed-in scheme of the horizontal levels focusing on levels 122
and 124.
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C. Wavefunction composition vs electric and magnetic field within the 2-qubit operating space

Wavefunction information for moderate electric field and moderate deviation from the CT in the composition of
the 4 states of our operating space.

Supplementary Table 5: Moduli of the different components of the wave-
functions for coupled HoW10 dimer, |Mj,a,Mj,b⟩ ⊗ |MI = −1/2⟩ of four
levels at 24 mT (CT), 18mT, and 12 mT at 0 volts.

Magnetic
Field

State
number

Energy
(GHz)

|−4a,−4b⟩ |−4a,+4b⟩ |+4a,−4b⟩ |+4a,+4b⟩

24mT 64 -8279.39 0.252 0.250 0.250 0.248

123 -8268.38 0.500 0.000 0.000 0.500

124 -8268.38 0.000 0.500 0.500 0.000

193 -8257.37 0.248 0.250 0.250 0.252

18mT 64 -8279.42 0.215 0.249 0.249 0.288

123 -8268.38 0.497 0.003 0.003 0.497

124 -8268.38 0.000 0.500 0.500 0.000

193 -8257.34 0.288 0.249 0.249 0.215

12mT 64 -8279.51 0.182 0.245 0.245 0.329

123 -8268.38 0.489 0.011 0.011 0.489

124 -8268.38 0.000 0.500 0.500 0.000

193 -8257.25 0.329 0.245 0.245 0.182

Supplementary Table 6: Moduli of the different components of the wave-
functions for coupled HoW10 dimer, |Mj,a,Mj,b⟩ ⊗ |MI = −1/2⟩ of four
levels at 24 mT (CT) and 18 mT at 300 volts. Degeneracy is broken by
the electrical field.

Magnetic
Field

State
number

Energy
(GHz)

|−4a,−4b⟩ |−4a,+4b⟩ |+4a,−4b⟩ |+4a,+4b⟩

24mT 64 -8278.92 0.252 0.250 0.250 0.248

122 -8267.92 0.250 0.248 0.252 0.250

124 -8267.91 0.250 0.252 0.248 0.250

193 -8256.91 0.248 0.250 0.250 0.252

18mT 64 -8278.95 0.215 0.249 0.249 0.287

122 -8267.92 0.251 0.286 0.213 0.251

125 -8267.91 0.247 0.217 0.289 0.247

193 -8256.88 0.287 0.249 0.249 0.215

12mT 64 -8279.04 0.182 0.245 0.245 0.329

122 -8267.92 0.253 0.321 0.174 0.253

126 -8267.91 0.236 0.190 0.337 0.236

193 -8256.78 0.329 0.245 0.245 0.182
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Supplementary Table 7: Complex coefficients of the wavefunctions for
coupled HoW10 dimer, |Mj,a,Mj,b⟩ ⊗ |MI = −1/2⟩ of four levels at 24
mT (CT), 18mT and 12 mT at 0 volts.

Magnetic
Field

State
number

Energy
(GHz)

|−4a,−4b⟩ |−1/2⟩ |−4a,+4b⟩ |−1/2⟩ |+4a,−4b⟩ |−1/2⟩ |+4a,+4b⟩ |−1/2⟩

24mT 64 -8279.39 0.356 +0.354ι̇ 0.252 -0.432ι̇ 0.252 -0.432ι̇ -0.480 -0.135ι̇

123 -8268.38 -0.568 +0.421ι̇ -0.002 -0.002ι̇ -0.002 -0.002ι̇ -0.292 0.644ι̇

124 -8268.38 0.000 0.362 -0.607ι̇ -0.362 +0.607ι̇ 0.000

193 -8257.37 -0.495 + 0.053ι̇ -0.176 -0.468ι̇ -0.176 -0.468ι̇ 0.410 -0.289ι̇

18mT 64 -8279.42 0.462 + 0.038ι̇ -0.085 -0.491ι̇ -0.085 -0.491ι̇ -0.488+0.221ι̇

123 -8268.38 -0.417 -0.569ι̇ -0.032 +0.040ι̇ -0.032 +0.040ι̇ -0.641 -0.294ι̇

124 -8268.38 0.000 0.602 -0.370ι̇ -0.602 + 0.370ι̇ 0.000

193 -8257.34 -0.434 -0.316ι̇ 0.183 -0.464ι̇ 0.183-0.464ι̇ 0.460 + 0.056ι̇

12mT 64 -8279.51 -0.355 -0.236ι̇ -0.161 + 0.467ι̇ -0.161 + 0.467ι̇ 0.572 +0.045ι̇

123 -8268.38 -0.638 -0.287ι̇ -0.018 + 0.103ι̇ -0.018 + 0.103ι̇ -0.697 +0.059ι̇

124 -8268.38 0.000 0.706 -0.037ι̇ -0.706 +0.037ι̇ 0.000

193 -8257.25 0.497 + 0.286ι̇ -0.131 +0.477ι̇ -0.131+ 0.477ι̇ -0.426-0.006ι̇
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Supplementary Table 8: Complex coefficients of the wavefunctions for
coupled HoW10 dimer, |Mj,a,Mj,b⟩ ⊗ |MI = −1/2⟩ of four levels at 24
mT (CT), 18mT and 12 mT at 300 volts. Degeneracy is broken by the
electrical field.

Magnetic
Field

State
number

Energy
(GHz)

|−4a,−4b⟩ |−1/2⟩ |−4a,+4b⟩ |−1/2⟩ |+4a,−4b⟩ |−1/2⟩ |+4a,+4b⟩ |−1/2⟩

24mT 64 -8278.92 -0.490 -0.109ι̇ 0.009 + 0.500ι̇ 0.017 +0.500ι̇ 0.480-0.133ι̇

122 -8267.92 0.103 -0.489ι̇ -0.498+0.014ι̇ 0.501-0.023ι̇ -0.139-0.480ι̇

124 -8267.91 0.246 -0.436ι̇ 0.483 +0.137ι̇ -0.481 -0.128ι̇ 0.011 -0.500ι̇

193 -8256.91 0.471+0.162ι̇ -0.047+ 0.498ι̇ -0.039+0.498ι̇ -0.495+0.079ι̇

18mT 64 -8278.95 0.447+ 0.125ι̇ 0.018 -0.498ι̇ 0.009-0.499ι̇ -0.523+0.116ι̇

122 -8267.92 0.460+0.199ι̇ 0.091 -0.526ι̇ -0.071+ 0.456ι̇ 0.499 -0.041ι̇

125 -8267.91 -0.454 -0.201ι̇ 0.084-0.458ι̇ -0.088 +0.531ι̇ -0.495+0.036ι̇

193 -8256.88 -0.490 -0.218ι̇ 0.090-0.491ι̇ 0.082-0.492ι̇ 0.463-0.034ι̇

12mT 64 -8279.04 -0.216+0.368ι̇ 0.473 + 0.143ι̇ 0.476 +0.135ι̇ 0.023-0.573ι̇

122 -8267.92 0.233 + 0.446ι̇ 0.427-0.372ι̇ -0.309+ 0.279ι̇ 0.415+0.284ι̇

126 -8267.91 0.243 +0.421ι̇ -0.316+0.301ι̇ 0.414 -0.408ι̇ 0.413+ 0.257ι̇

193 -8256.78 -0.500 -0.281ι̇ 0.135 -0.476ι̇ 0.127-0.478ι̇ 0.426 0.009ι̇
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Supplementary Note 5. TECHNICAL REQUIREMENTS OF PULSES: INITIALIZATION, 1- AND
2-QUBIT OPERATIONS

Supplementary Table 9 displays the simple correspondence between physical operations and logical operations. In
sum, the only three kinds of physical operations in our proposal are the two single-qubit rotations (implemented
by microwave pulses) and a two-qubit rotation (implemented by switching off the E-Field during a specific time).
With adequate times and microwave B1 field intensities corresponding to π EPR pulses, these correspond to Pauli
σx operations and an adequate time τ corresponds to the SWAP gate, but of course in all cases adjusting the times
arbitrary rotation angles can be achieved.

Supplementary Table 9. Gate operations

Operation pulses

σx(1) ℏω1(π)

σx(2) ℏω2(π)

SWAP E -Field (τ)

Let us now offer some technical details for the qubit register initialization, single qubit rotations and two-qubit
operations.

A. Initialization

This significant level crowding in practice means that in a thermalized system the effective population to start the
quantum manipulation will be significantly smaller in experiments targeting pairs of molecules than for individual
molecules. The simplest way of improving this is via a moderate cooling, from T = 5 K to T = 3 K or below.
The thermal population of states can be estimated via a Boltzmann distribution, see Supplementary Table 10. This
strategy has limitations, in the sense that cooling down to a significantly lower temperature, to the order of 50 mK,
removes all population from the operating space.

Supplementary Table 10. Percentage populations of the states of interests at different temperatures at CT (0.024mT) with 0
volt, for the bimolecular system.

State
number

∆E
(GHz)

0.05 K 1 K 2 K 5 K

1 0 79.752 1.268 0.740 0.511

64 17.76175 0.000 0.541 0.483 0.431

123 28.76909 0.000 0.319 0.371 0.387

124 28.76909 0.000 0.319 0.371 0.387

193 39.77642 0.000 0.188 0.285 0.349

While in principle it is optional, the proposed initialization sequence is expected to increase the signal-to-noise ratio
and thus is desirable in this case. It consists in a series of 8 π pulses that transfer population from a (+7/2,+7/2)
nuclear spin state to a (-1/2,-1/2) nuclear spin state via allowed ∆MI = ±1 transitions. The exact transition energy
depends on the applied magnetic field. At 12mT away from the CT, the sequence consists in the following frequencies
(in GHz): 2.95, 2.66, 1.96, 0.48, 2.94, 2.65, 1.96, and 0.48, as seen in Fig. 3d in the main text.

For the best results in a given diluted crystal, one could apply quantum optimal control to choose the initialization
pulse sequence that maximizes the (T2-weighted) amplitudes of the echos within the operating space[9].
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Supplementary Figure 10. Initialization scheme showing the population transfer from the ground level (green) to the first
operating level (black) by using 8 consecutive π pulses.

B. Single qubit rotations

In presence of an electric field, the transition energy for qubit 1 is higher than for qubit 2. In both cases, the
transition frequency resulting from our calculations is approximately 11.00 GHz (from the experiment, we know this
to be approximately 9.15 GHz at the CT). For an electrical field of 150 V/2mm that affects the two molecules in
opposite ways (or, in our calculations an electrical field of 300 V/2mm affecting one of the molecules, with respect
to a case with no electric field), this generates a shift of about 3 MHz (Supplementary Figure 11). Experimentally,
selective addressing has already proven to be achievable in this system under an external electric field of 300V/2mm
affecting the two molecules in opposite ways. This requires soft pulses of at least a duration of 400 ns for π/2 and
800 ns for π pulses.
The length of the pulses, adjusted for the intensity of the B1 magnetic component of the microwave pulse, will

allow to obtain any desired rotation angle.

C. Two-qubit operations

The only two-qubit operation that is straightforward in the present scheme is the SWAP operation. More exactly,
any desired rotation between the |01⟩ and |10⟩ states can be achieved by choosing the time of the operation, including

the notable
√
SWAP that together with single-qubit rotations forms a universal gate set. Any other operations need

to be constructed from combination of these straightforward gates.
As explained in the text, the SWAP operation starts as soon as the E field is turned off, and can be viewed as

a kind of ”anti-pulse”: it is the absence of E field that makes the two qubits indistinguishable, and this change in
the set of the Hamiltonian eigenstates triggers the rotation. The typical times will be given by the inverse of the
interaction energy between the two molecular spins. At 12 mT away from a CT, this interaction is in the order of 0.1
MHz (Figure 3c in main text, black line), meaning a full rotation would take in the order of 10 µs. This is comparable
to the T2 value at 5 K, but conveniently below the estimated T2 times at 3 or even 4 K, meaning any cooling below
5 K would suffice.
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Supplementary Figure 11. δf as a function of the B−field in the presence of an E−field of 300 V, and its best 3rd and 4th

order polynomial fits. The 4th order polynomial fit returns to a 3rd order protection from magnetic noise (a 3rd-order CT).

Supplementary Note 6. STRATEGIES TO DEAL WITH LIMITATIONS OF THE PROPOSAL

As indicated in the main text, operating dimers within a diamagnetically diluted crystal involves a crucial technical
difficulty, namely dealing with the signal from monomers, which will be statistically more abundant. In the example
operation discussed in the main text, which generates the superposition Φ±

14 = 1√
2
(|00⟩ ± |11⟩) the signal of the

monomers is naturally suppressed, since they experience a full 2π rotation.

Interestingly, this is not an isolated case. For different quantum operations, it is possible to translate the desired
sequence into one that also cancels out any excitations of the monomers, i.e. for both transition energies the total
rotation must be a multiple of 2π, and any Hadamard gate needs to be canceled out. For example, the quantum
circuits depicted in Fig. 12, obtained by using the online simulator quirk at https://algassert.com/quirk , show how
different coherent superpositions of two qubits, (symmetric or asymmetric) can be achieved by pulse sequences that
can be trivially shown to have no effect on isolated qubits.

Another experimental limitation of the proposed scheme derives from the low symmetry of the crystal structure.
In contrast to simpler solids, in this molecular crystal there is a mismatch between the idealized D4d (or even C4)
symmetry of the single molecule and the number of countercations (9), determined by the charge. This causes every
one of the nearest neighbours from a molecule in the crystal to be distinct, both in terms of distance and relative
orientation. In practice, this means that in a real diluted sample there will not be a unique dipolar coupling between
pairs of HoW10 neighbours, but instead a distribution of couplings. Indeed, in the crystal if one focuses on a ”central”
HoW10 molecule there are in the order of 20 possible non-equivalent near-neighbours at comparable distances around,
and of course an infinity more at larger distances. Half of the neighbours will have the same orientation as the
central molecule, with the other half presenting an inversion-related orientation. This means (a) in 50% of the cases,
neighbouring pairs will not be distinguishable by means of an electric field, with the result being that this part of the
protocol will fail for those pairs of molecules and (b) throughout the sample there will be a spread of dipolar coupling
values, both in magnitude and in sign. For the experiment, this means that the duration of the electric field pulse
will need to be empirically adjusted to maximize the echo.

A further, related, real-world limitation of the stability of this highly protected qubit are local electric fields caused
by the crystal environment. Any electric fields caused by a crystalline defect and felt by the qubit molecules, e.g.
a Na+ vacancy in the vicinity of one of the HoW10 molecules, will have the same qualitative effect as the external
electric field pulse, i.e. break the symmetry between the two HoW10 entities and cause an alteration in the expected
spin dynamics. Empirically, different crystallization procedures can be tested to address this.
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Supplementary Figure 12. a) Sequence of logical operations that generate an entangled state involving |00⟩ , |01⟩ , |10⟩ , |11⟩. b)
Same sequence, but omitting the effect of the 2-qubit gates, produces no net effect on the single qubits. c) Sequence of logical
operations that generate an entangled state involving |00⟩ , |01⟩. b) Same sequence, but omitting the effect of the 2-qubit gates,
produces no net effect on the single qubits.
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