Supplementary Information: Experimental signature of initial quantum coherence on entropy production

S. Hernández-Gómez,^{1, 2, 3,} * S. Gherardini,^{1, 4, [†](#page-0-1)} A. Belenchia,^{5, 6, [‡](#page-0-2)} A. Trombettoni,^{7, 8, 9, [§](#page-0-3)} M. Paternostro, ^{6, [¶](#page-0-4)} and N. Fabbri^{1, 3,} **

 1 European Laboratory for Non-linear Spectroscopy (LENS), Università di Firenze, I-50019 Sesto Fiorentino, Italy

 2 Dipartimento di Fisica e Astronomia, Università di Firenze, I-50019, Sesto Fiorentino, Italy

3 Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR-INO), I-50019 Sesto Fiorentino, Italy

 4 CNR-INO, Area Science Park, Basovizza, I-34149 Trieste, Italy

⁵Institut für Theoretische Physik, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, German

 6 School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom

 7 Department of Physics, University of Trieste, Strada Costiera 11, I-34151 Trieste, Italy

8 SISSA and INFN, Sezione di Trieste, Via Bonomea 265, I-34136 Trieste, Italy

⁹ CNR-IOM DEMOCRITOS Simulation Center and SISSA, Via Bonomea 265, I-34136 Trieste, Italy

In this document we detail the theoretical modelling of the photodynamics of the NV-center (Supplementary Note 1), and we report further experimental data concerning the reconstruction of the probability distribution resulting from the EPM scheme (Supplementary Note 2).

Supplementary Note 1

Theoretical modelling

In our experimental set-up, the photodynamics of the NV center is well described by a seven-level quantum model $[1-3]$ $[1-3]$, which, however, can be effectively reduced to a two-level quantum system as detailed in the Supplementary Information of Refs. [\[3\]](#page-1-1). Here, for completeness of exposition, we report the modelling of this effective two-level open dynamics of the NV center, by resorting to the super-operator formalism [\[4\]](#page-1-2) and working in the energy eigenbasis.

Let us thus model the NV center as a two-level quantum system subjected to a dissipative dynamics. The dissipative dynamics is induced by the laser pulses and it is described by the linear super-operators $\mathbf{S} \in \mathbb{C}^{4 \times 4}$ acting directly on the column vector $\text{col}[\rho_t] \in \mathbb{C}^{4\times 1}$, with $\text{col}[\rho]$ denoting the vectorization of the density operator $\rho \in \mathbb{C}^{2\times 2}$. The super-operator **S** is explicitly given by

$$
\mathbf{S} = \frac{1}{2} \begin{pmatrix} 2 - p_{\text{abs}}(k_{\text{c}} - p_{\text{d}} \cos \alpha) & p_{\text{abs}}k_{\text{sc}} & p_{\text{abs}}k_{\text{sc}} & p_{\text{abs}}(p_{\text{d}} \cos \alpha + k_{\text{c}}) \\ p_{\text{abs}}(k_{\text{sc}} + p_{\text{d}} \sin \alpha) & 2 - p_{\text{abs}}(1 + k_{\text{s}}) & -p_{\text{abs}}(k_{\text{s}} - 1) & p_{\text{abs}}(p_{\text{d}} \sin \alpha - k_{\text{sc}}) \\ p_{\text{abs}}(k_{\text{sc}} + p_{\text{d}} \sin \alpha) & -p_{\text{abs}}(k_{\text{s}} - 1) & 2 - p_{\text{abs}}(1 + k_{\text{s}}) & p_{\text{abs}}(p_{\text{d}} \sin \alpha - k_{\text{sc}}) \\ p_{\text{abs}}(k_{\text{c}} - p_{\text{d}} \cos \alpha) & -p_{\text{abs}}k_{\text{sc}} & 2 - p_{\text{abs}}(p_{\text{d}} \cos \alpha + k_{\text{c}}) \end{pmatrix}, \tag{1}
$$

where

work

$$
k_c = 1 - (1 - p_d)(\cos \alpha)^2
$$
, $k_s = 1 - (1 - p_d)(\sin \alpha)^2$, $k_{sc} = (1 - p_d)\sin \alpha \cos \alpha$, (2)

 p_{abs} is the absorption probability, p_d is the probability of population transfer to $|S_z = 0\rangle$, and $\alpha \in [0, \pi/2]$.

The unitary dynamics in between two consecutive pulses is instead described by the linear operator

$$
\mathbf{U} = \exp\left(-i\tau \left(H \otimes \mathbb{I}_2 - \mathbb{I}_2 \otimes H^*\right)\right) \tag{3}
$$

with \hbar set to 1, \mathbb{I}_2 denoting the 2 × 2 identity matrix, and $H = \omega \sigma_z/2$ the Hamiltonian of the effective two-level system. Considering a total number of pulses N we thus have

$$
col[\rho_t] = \mathbf{L} col[\rho_0] \quad \text{with} \quad \mathbf{L} \equiv (\mathbf{S}\mathbf{U})^N. \tag{4}
$$

[∗] [shergom@mit.edu;](mailto:shergom@mit.edu) These authors contributed equally to this work; Current address: Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA † [stefano.gherardini@ino.cnr.it;](mailto:stefano.gherardini@ino.cnr.it) These authors contributed equally to this

[‡] [alessio.belenchia@uni-tuebingen.de;](mailto:alessio.belenchia@uni-tuebingen.de) These authors contributed equally to this work

[§] andreatr@sissa.it

[¶] m.paternostro@qub.ac.uk

^{∗∗} fabbri@lens.unifi.it

For a fixed set of values of the parameters $(p_{abs}, p_d, \alpha, \tau, \omega)$, the super-operator **L** governing the open dynamics of the NV center possesses a unique steady-state ρ^* that is characterised by a non vanishing coherence in the energy basis.

The Kraus representation for L can be uniquely determined by diagonalizing its Choi matrix

$$
\mathbf{T} \equiv \sum_{k,j=0}^{1} \left(E_{kj} \otimes \mathbb{I}_2 \right) \mathbf{L} \left(\mathbb{I}_2 \otimes E_{kj} \right) = \sum_{\ell=0}^{3} \xi_{\ell} \mathbf{u}_{\ell} \mathbf{u}_{\ell}^{\dagger}
$$
(5)

where $E_{kj} \equiv |k\rangle\langle j|$, with $|0\rangle \equiv (1,0)^T$ and $|1\rangle \equiv (0,1)^T$, and $(\xi_\ell, \mathbf{u}_\ell)$ denotes the j-th pair (eigenvalue, eigenvector) resulting from the eigenvector decomposition of T. The Kraus operators ${K_{\ell}}$ associated with the open map L are thus implicitly provided by the following relation:

$$
\operatorname{col}\left[K_{\ell}\right] = \sqrt{\xi_{\ell}} \mathbf{u}_{\ell} \quad \text{such that} \quad \rho(t) = \sum_{\ell=0}^{3} K_{\ell} \, \rho(0) K_{\ell}^{\dagger} \,. \tag{6}
$$

One can easily determine that the open dynamics of the NV center is correctly described by three Kraus operators K_{ℓ} . These Kraus operators can be then considered for the derivation of the backward dynamics as discussed in the main text.

Supplementary Note 2

Experimental data and simulation

As described in the main text, in our experiments we measure the EPM probability $p_f^{\rm fin}(\rho)=\text{tr}(\Pi_f^{\rm fin}\Phi(\rho))$ i.e., the probability of obtaining $E_f^{\rm fin}$ when measuring the energy of the system at the final time $t_{\rm fin} = N\tau$ (N is the number of laser pulses and τ is the time between them), assuming that the system is initialized into the state ρ . In particular, we performed four independent experiments for each of the four initial states: $|0\rangle$, $|1\rangle$, $|+\rangle_y$, and $|-\rangle_y$. The results of such measurements are shown in Fig. [1.](#page-2-0) Notice that we only measure the probability $p_{f=1}^{\rm fin}$ associated to the final excited state $|1\rangle.$ This is because, for a two level system, the remaining probability is obtained as $p_{f=0}^{\text{fin}} = 1 - p_{f=1}^{\text{fin}}$. As mentioned in the main text, the classical mixtures we are interested in are a convex combination of these four pure states. For example, the EPM probability associated with the initial thermal state $\rho_{\text{th}}^{\text{in}} = e^{-\beta H_{t_{\text{in}}}}/Z_{\text{in}}$ is obtained as $p_f^{\text{fin}}(\rho_{\text{th}}^{\text{in}}) = p(E_0^{\text{in}})p_f^{\text{fin}}(|0\rangle\langle 0|) + p(E_1^{\text{in}})p_f^{\text{fin}}(|1\rangle\langle 1|)$, where $p(E_i^{\text{in}}) = \mathrm{e}^{-\beta E_i}/Z_{\text{in}}$. Similarly, the probability $p_f^{\text{fin}}(\rho_0)$ for a given initial state (see main text) $\rho_0 = p|1\rangle\langle 1| + (1-p)|+\rangle_y\langle +|,$ with p ∈ [0, 1], is obtained as p fin f (ρ0) = p pfin f (|1⟩⟨1|) + (1 − p)p fin f (|+⟩y⟨+|).

In Supplementary Figure [1](#page-2-0) we compare the experimental data with the numerical simulation of the dynamics, using the model described in the previous section. The values of the parameters p_{abs} , and p_d are selected by minimizing the sum of the squares of the residuals between data and simulation.

In Fig. 2 of the main text we show the results of the irreversible entropy production $\Delta\Sigma$ obtained for an initial state $|+\rangle_y$. In Supplementary Figure [2](#page-2-1) we present similar results but for the initial state $|-\rangle_y = (|0\rangle - i|1\rangle)/\sqrt{2}$.

^[1] Wolters, J., Strauß, M., Schoenfeld, R. S. & Benson, O. Quantum zeno phenomenon on a single solid-state spin. Phys. Rev. A 88, 020101 (2013).

^[2] Manson, N. B., Harrison, J. P. & Sellars, M. J. Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics. Phys. Rev. B 74, 104303 (2006).

^[3] Hernández-Gómez, S. et al. Experimental test of exchange fluctuation relations in an open quantum system. Phys. Rev. Research 2, 023327 (2020).

^[4] Havel, T. F. Robust procedures for converting among lindblad, kraus and matrix representations of quantum dynamical semigroups. J. Math. Phys. 44, 534–557 (2003).

Supplementary Figure 1. EPM final probabilities. Measurements of the EPM protocol as a function of the number N of pulses for the initial pure states $\{|0\rangle, |1\rangle, |+\rangle_y, |-\rangle_y\}$. The crosses with error bars are the experimental data (dotted line is a guide to the eye). Solid lines represent the numerical simulation of the dynamics described in the previous section, using the parameters $p_{\text{abs}} = 0.700$ and $p_{\text{d}} = 0.255$. As mentioned in the main text, the other parameters are $\alpha = \pi/4$ (i.e., $\delta = -\Omega$), $\tau \omega \simeq (2\pi)0.9$, and $\tau = 190$ ns. The error bars correspond to the standard deviation of the normalized photo-luminescence (see Methods in the main text).

Supplementary Figure 2. Coherence-affected entropy production. Panel (a): Experimental values (markers with error bars) of the irreversible entropy production. Black squares are $\Delta\Sigma_{1,1}=\Delta\Sigma_{0,1}$, and orange bullets are $\Delta\Sigma_{1,0}=\Delta\Sigma_{0,0}$. Dashed black line and dotted orange line are the corresponding numerical simulations. Panel (**b**): Experimental verification of the fluctuation theorem $\langle e^{-\Delta\Sigma} \rangle_{\Gamma} = 1$ [Eq. (6) of the main text], for the coherence-affected irreversible entropy production, as a function of the number N of pulses used to drive the dynamics of the NV center. Panel (c): Average experimental coherence-affected entropy production as a function of N (blue circles). In all panels, the experimental data are plotted against the predictions (from the numerical simulations) that are obtained by taking $\sqrt{2}$ $|-\rangle_y=(|0\rangle-\mathrm{i}\,|1\rangle)/\sqrt{2}$ as the initial quantum state.