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Optimal number of shots per circuit.

In our algorithm, an expectation value is expressed as an average over random circuits. Each of these random circuits is then
implemented on a quantum computer with a certain number of shots. Let us denote S the number of shots per circuit and N/S
the number of circuits. At fixed N , we would like to find the value of S that minimizes the variance on the result, taking into
account both the shot noise and the statistical error due to the random circuits.

Given a random circuit U drawn from the Poisson process, we denote −1 ≤ mU ≤ 1 the real part of the complex amplitude
that we measure with our algorithm. Given the real part of a complex amplitude −1 ≤ m ≤ 1, we denote xm the Bernoulli
random variable that takes value +1 with probability 1+m

2 and −1 with probability 1−m
2 . We denote E the expectation value

with respect to the random circuit U , and ⟨⟩ the expectation value with respect to the shot noise. The exact value of the real part
of the complex amplitude that we measure after averaging over random circuits and shots is

m = E[⟨xmU
⟩] . (1)

With S shots to evaluate mU and N/S different circuits U , the estimated value mest of m is
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1

N/S

N/S∑
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1

S
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x(i)
mUp

, (2)

where the Up’s are independent circuits drawn from the Poisson process, and where the x
(i)
mUp

’s are independent Bernoulli

random variables with parameter
1+mUp

2 . Let us compute the variance of this quantity. We have
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where we used that (x(i)
mUp

)2 = 1. Then, averaging over the shots
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(4)

In the case where we have only one circuit U , i.e. S = N , we have ⟨m2
est⟩ − ⟨mest⟩2 =

1−m2
U

N , which is the usual variance of a
Bernoulli random variable taking values ±1 with mean mU . In the general case, after averaging over the circuits we have
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Denoting v = E[m2
U ]− E[mU ]

2 the variance over the circuits, it yields

E[⟨m2
est⟩]− E[⟨mest⟩]2 =

1− v

N
+

S

N
v . (6)

Since v ≥ 0, we obtain that at fixed total number of shots N , doing only one shot S = 1 per circuit minimizes the total variance.
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Optimal gate angles.

When measuring an observable M with our algorithm with gate angles τn, in absence of noise, the total number of rotations
to perform to reach a precision ϵ on the result is R({τn})/ϵ2, where

R({τn}) = 2t

N∑
n=1

|cn|
sin τn

exp

(
4t

N∑
n=1

|cn| tan(τn/2)

)
. (7)

Writing ∂τnR = 0 at the optimal gate angle τ∗n , we find that it satisfies the equation

2t

cos2(τ∗n/2)

N∑
p=1

|cp|
sin τ∗p

=
cos τ∗n
sin2 τ∗n

. (8)

The left-hand side is bounded from below by 2tµ. Hence at large t, we necessarily have τn → 0 for all n to make the right-hand
side go to ∞. In that limit we have

2t

N∑
p=1

|cp|
τ∗p

∼ (τ∗n)
−2 . (9)

The left-hand side is independent of n, so the leading behaviour of τ∗n when t → ∞ is independent of n. Denoting this leading
behaviour τ∗, we thus have 2tµ(τ∗)−1 = (τ∗)−2, and so

τ∗n =
1

2tµ
(10)

Let us now consider the noisy case where each rotation eiτnOn comes with an attenuation factor e−rn . The damping due to noise
per circuit is thus exp

(
−2t

∑N
n=1

|cn|rn
sin τn

)
. The total number of rotations to reach a precision ϵ is thus R({τn})/ϵ2, with now

R({τn}) = 2t

N∑
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4t
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N∑
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)
. (11)

Writing again ∂τnR = 0 at the optimal gate angle τ∗n , we find that it satisfies the equation

2t

(
1

cos2(τ∗n/2)
− 2rn cos τ

∗
n

sin2 τ∗n

) N∑
p=1

|cp|
sin τ∗p

=
cos τ∗n
sin2 τ∗n

. (12)

Let us assume that when t → ∞, the quantity Q ≡ 1
cos2(τ∗

n/2)
− 2rn cos τ∗

n

sin2 τ∗
n

does not go to 0. Then the same reasoning as above
would apply and we would have τ∗n → 0. But then we would have Q → −∞, and so the right-hand side would become negative,
which cannot be. Hence we must have Q → 0. This yields an equation for τ∗n when t → ∞

1

cos2(τ∗n/2)
=

2rn cos τ
∗
n

sin2 τ∗n
. (13)

Assuming rn small, this is

τ∗n =
√
2rn . (14)

Numerical data.

We provide in Supplementary Table I the numerical data plotted in the Figures in the main text.
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Figure 2a
time noisy noiseless
0.025 3.466

0.02625 2.558
0.0275 1.935

0.02875 1.5854
0.03 1.289

0.03125 1.033
0.0325 0.862

0.03375 0.726
0.035 0.580

0.03625 0.479
0.0375 0.371

0.03875 0.263
0.04 0.164

Figure 2b
time exact this algo

0 1.000 -2.000 ± 0
0.2 -2.045 -2.045 ± 0.001
0.4 -2.161 -2.164 ± 0.003
0.6 -2.306 -2.311 ± 0.005
0.8 -2.445 -2.438 ± 0.008
1. -2.560 -2.562 ± 0.011

1.2 -2.648 -2.656 ± 0.015
1.4 -2.709 -2.700 ± 0.019
1.6 -2.748 -2.746 ± 0.024
1.8 -2.772 -2.780 ± 0.030
2. -2.785 -2.739 ± 0.037

Figure 3
time exact Trotter qDRIFT this algo

0 1.000 1.000 1.000 ± 0 1.000± 0
0.1 -0.619 -0.577 -0.529 ± 0.006 -0.622± 0.008
0.2 0.258 0.194 0.199 ± 0.005 0.253± 0.011
0.3 -0.184 -0.151 -0.129 ± 0.004 -0.194± 0.011
0.4 0.205 0.161 0.122 ± 0.004 0.201± 0.012
0.5 -0.239 -0.192 -0.125± 0.003 -0.245± 0.014
0.6 0.268 0.207 0.106 ± 0.004 0.268± 0.018
0.7 -0.288 -0.218 -0.098 ± 0.003 -0.297±0.024
0.8 0.285 0.202 0.084± 0.003 0.279±0.031
0.9 -0.272 -0.176 -0.063 ± 0.003 -0.254±0.037
1 0.238 0.128 0.045 ± 0.003 0.263±0.047

TABLE I. Numerical data for Figure 2a,2b and 3 in the main text.
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