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SUPPLEMENTARY NOTE 1: CIRCUIT DESIGN

The granular aluminum oxide nanowire oscillator can
be described by an equivalent circuit diagram (Supple-
mentary Figure 1) in terms of a series connection of capac-
itance, linear inductance and non-linear inductance. On
chip, two pads (60× 160 µm2) constitute the capacitance.
These are shunted by the nanowire contributing the non-
linear inductance. Since the whole oscillator is made from
a high kinetic inductance material, all circuit elements
contribute additional inductance that acts linearly due to
their higher critical currents.

For readout and manipulation, the non-linear oscillator
is capacitively coupled to a classical harmonic resonator.
This is realized in a meandered aluminum λ/2 geometry.
At low temperatures (T � 1 K) the excitation of the
nanowire oscillator influences the harmonic resonator’s
frequency. This is used in a dispersive manipulation and
readout scheme [1].

The circuit is connected to the measurement setup by
two port transmission through a microwave feedline.

SUPPLEMENTARY NOTE 2: SPECTROSCOPY

To detect transitions in the nanowire circuits, a disper-
sive two-tone spectroscopy scheme is used. At one fixed
frequency, the resonance dip of the readout resonator
is monitored while a second drive tone is swept over a
given frequency range. The coupling between the readout
resonator and the sample circuit results in a shift of the
readout resonance frequency when a transition is excited
[1]. This shift leads to a change in the measured ampli-
tude and phase. Supplementary Figure 2 depicts data of
three sample circuits. The increased drive power required
for direct spectroscopy of multi-photon transitions [2] to
higher levels result in a broadening of the fundamental
transition. Thus, individual lines of higher levels are not
resolved.
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Supplementary Figure 1. Schematic circuit diagram of the
experiment. The granular aluminum oxide nanowire oscillator
can be described as nonlinear LC-oscillator with its inductance
split between the nonlinear contribution of the nanowire and
the linear part in the capacitive paddles. It is coupled to a
harmonic aluminum readout resonator with a resonance fre-
quency depending on the circuit’s state [1]. The connection to
the measurement setup is established by a two port microwave
transmission line.

SUPPLEMENTARY NOTE 3: NUMERICAL
MODELING

In order to understand the interplay of the circuit an-
harmonicity and potential multi-photon effects due to the
microwave driving of the circuit, we simulate the system
using the following model. The undriven Hamiltonian of
the system is given by

H0 = h(f01+fs
√
ε2/(ε2 + ∆2))n̂−hfan(n̂2−n̂) (S.eq.1)

with the bosonic number operator n̂. This describes an
oscillator with frequency f01 and anharmonicity fan. A
value of 1.3 MHz for fan is found to agree with other
measurements (Fig. 2b in main text). An additional
asymmetry extending toward the off resonant regions in
the measurement is accounted for by a slight shift fs of
the main transition in a region defined by a parameter for
the width ε and reduced with the detuning ∆ of the drive.
This shift might be due to an AC stark effect [3]. In the
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Supplementary Figure 2. Two-tone spectroscopy of the three
samples. If a second microwave drive excites transitions in the
sample circuit, the measured amplitude at a fixed frequency in
the readout resonance shifts (encoded in the colormap). Due
to the line broadening at higher drive power, higher transitions
do not show as separate lines.

shown result (Fig. 3b in main text) fs was set to −2 MHz
and ε to 1 MHz, both adjusted to the off resonant region.

As we are specifically interested in replicating the ob-
served Rabi oscillations, we also need to include the effects
of decoherence. We do this by solving the Lindblad-GKS
equation [4, 5],

ρ̇ = −i/~[H, ρ] +

N∑
j=1

Γj [LjρL
†
j − 1/2{L†jLj , ρ}] (S.eq.2)

numerically. In this case the total Hamiltonian is com-
prised of the undriven component and the drive term

H = H0 +Hdrive (S.eq.3)

where for this circuit we assume that

Hdrive = a+ a† (S.eq.4)

with the ladder operators defined in the basis of the
undriven Hamiltonian such that n̂ = a†a. The drive
amplitude was adapted to the off-resonant edges with a
value of 0.0023.

For weak microwave driving we could move to a rotat-
ing frame to work with a time-independent Hamiltonian.
However due to the small anharmonicity we will need to
include the possibility of multi-photon transitions. This
can be achieved using a Floquet theory [6] approach.

The decoherence channels of the Lindblad equation are
encoded via the operators Lj and their corresponding

rates Γj . The effects of energy dissipation are included
via the operator

L1 = a, (S.eq.5)

allowing for a decay of one step down. Dephasing is
included via

L2 = a†a. (S.eq.6)

To reduce the amount of dynamic parameters, the rates
have been fixed to 4 µs energy lifetime and 1 µs dephasing
time, in the order of results from time domain measure-
ments.

To solve the Lindblad equation using Floquet theory,
we express the system in an expanded space using the
approach detailed in Ref. [7]. We then solve the resulting
matrix exponential as a function of time, resumming the
contributions due to the various Floquet components to
obtain the population of the relevant states. From this
we calculate the sum of the occupation probability of
each state multiplied by a factor of

√
N to obtain the

measurement signal. The additional factor attributes
for a reduced dispersive shift of the higher excitations.
Convergence of the numerical solution is achieved by
increasing both the number of photon manifolds in the
Floquet expansion and the number of anharmonic levels in
the circuit until the results do not change noticeably. For
the calculation of Fig. 3b in the main text, this required
6 Floquet states and 5 circuit levels.

To account for the remaining differences between this
model and measurement, several factors can be pointed
out. Most importantly, the model Hamiltonian is of a
phenomenological form, representing an oscillator with
simple anharmonicity. The precise form, however, de-
pends on the exact current phase relation in the system
which at this point is not known. Especially at the region
in which higher transitions are excited, two further sim-
plifications play a role. It is assumed that both the decay
rates and the coupling to the drive will differ between
the levels. As there is no way of directly measuring the
corresponding rates, we favored a simpler model with
fewer free parameters.
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