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In this Supplementary Information �le, we discuss the symmetries in intertwined double-Weyl
phases (Supplementary Note 1), derive the e�ective boundary Hamiltonian (Supplementary Note 2),
explain the experimental setup for realizing the intertwined double-Weyl phases (Supplementary
Note 3), and brie�y discuss the generalization to intertwined triple-Weyl phases (Supplementary
Note 4).

Supplementary Note 1. SYMMETRIES IN INTERTWINED DOUBLE-WEYL PHASES

We start with Eq. (6) of the main text, which can be written in the following form,

H(k) = H0(k) +mτ1σ1, (1)

where H0(k) describes a normal double-Weyl semimetal,

H0(k) = 2A(cos ky − cos kx)τ3σ1 + 2A sin kx sin kyτ3σ2 +M(k)τ3σ3 + ετ0σ3, (2)

with M(k) = M0 − 2t(cos kx + cos ky + cos kz).
In order to generate Weyl points, time-reversal symmetry (T ) has been broken by the introduction of a term ε, and

thus,

T H0(kx, ky, kz)T
−1 6= H0(−kx,−ky,−kz), T = τ2σ2K. (3)

Here K is the complex conjugation operator. The system described by the above Hamiltonian is invariant under
inversion symmetry (I), and four-fold rotation symmetry (C4). The symmetry relations are given by,

IH0(kx, ky, kz)I−1 = H0(−kx,−ky,−kz), I = τ0σ0, (4)

Ĉ4H0(kx, ky, kz)Ĉ
−1
4 = H0(ky,−kx, kz), Ĉ4 = τ3σ3. (5)

Since the Weyl points are located on the kz axis, we can do a series expansion around (kx, ky) = (0, 0), i.e.,
sin kx/y → kx/y and cos kx/y → 1− k2x/y/2. The obtained continuum model from Eq. (2) is written as

H0(kx, ky, kz) = A(k2x − k2y)τ3σ1 + 2Akxkyτ3σ2 + (M + tk2x + tk2y − 2t cos kz)τ3σ3 + ετ0σ3, (6)

where M = M0 − 4t. Using the polar coordinates kx = k cos θ, ky = k sin θ, it becomes

H0(k, θ, kz) = Ak2e+2iθτ3σ− +Ak2e−2iθτ3σ+ + (M + tk2 − 2t cos kz)τ3σ3 + ετ0σ3. (7)

Under the fourfold rotation operation about the z axis, the Hamiltonian shall satisfy [1]

Ĉ4H0(k, θ, kz)Ĉ
−1
4 = H0(k,R4θ, kz), (8)

where R4θ = θ+π/2. Together with Eq. (5), the double-Weyl points are stabilized by the fourfold rotation symmetry.

Supplementary Note 2. EFFECTIVE BOUNDARY HAMILTONIAN

In this Supplementary Note, we derive the e�ective boundary Hamiltonian in the direction de�ned by θ =
arctan(ky/kx) in the kxky-plane at a given position on the kz axis. To calculate the boundary states along any
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Supplementary Figure 1. (a) Relation between (kx, ky) and (k‖, k⊥) at a given angle θ in the kxky-plane [see Fig. 2 (a) in
the main text]. The coordinate transformation allows us to calculate the boundary states at any θ at a given position on the
kz axis. (b) Local density of states at zero energy for kz = 0 on a disk geometry with x and y �nite, where the higher-order
topology manifests itself as the corner modes, as indicated by the black arrow.

direction, as shown in Supplementary Figure 1 (a), we �rst transform the coordinates from (kx, ky) to (k‖,k⊥). The
relation between (k‖, k⊥) and (kx, ky) is given by(

kx
ky

)
=

(
sin θ cos θ
− cos θ sin θ

)(
k‖
k⊥

)
. (9)

After the coordinate transformation, the resulting Hamiltonian (without higher-order term mτ1σ1) from Eq. (6)
reads

H0(k‖, k⊥, kz) =


∆u + tk2⊥ −e−2iθA(k‖ − ik⊥)2 0 0

−e+2iθA(k‖ + ik⊥)2 −(∆u + tk2⊥) 0 0
0 0 −(∆d + tk2⊥) e−2iθA(k‖ − ik⊥)2

0 0 e+2iθA(k‖ + ik⊥)2 (∆d + tk2⊥)

 , (10)

where ∆u = M + tk2‖ − 2t cos kz + ε and ∆d = M + tk2‖ − 2t cos kz − ε. The above Hamiltonian is in a block-diagonal

form, which enables us to investigate each block separately. First, we focus on the upper block in Eq. (10), which
reads

hu(k) =

(
∆u + tk2⊥ −e−2iθA(k‖ − ik⊥)2

−e+2iθA(k‖ + ik⊥)2 −(∆u + tk2⊥)

)
. (11)

Suppose we have a semi-in�nite system in the half plane x⊥ ≤ 0 with open boundary conditions and with trans-
lational symmetry along the x̂‖ and ẑ directions. k‖ and kz are still good quantum numbers but k⊥ is replaced by
k⊥ = −i∂⊥ in the Hamiltonian. We can assume a trial wavefunction for each set of k‖ and kz as

ψλ = eik‖x‖+ikzz

[
ψ1

ψ2

]
eλx⊥ . (12)

The corresponding Dirac equation reads (k⊥ → −iλ)

(
∆u − tλ2 −e−2iθA(k‖ − λ)2

−e+2iθA(k‖ + λ)2 −(∆u − tλ2)

)(
ψ1

ψ2

)
= E

(
ψ1

ψ2

)
. (13)

The secular equation for the eigenenergies can be calculated as

det |hu(k‖,−iλ, kz)− E| = 0. (14)
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The equation reads explicitly as

(t2 +A2)λ4 − 2(t∆u +A2k2‖)λ
2 +A2k4‖ + ∆2

u − E2 = 0. (15)

We can obtain the solution for λ as

λ2α =
1

(t2 +A2)

[
(t∆u +A2k2‖) + (−1)α

√
(t2 +A2)E2 −A2(∆u − tk2‖)2

]
. (16)

Here α = 1, 2. The corresponding eigenvectors are

ψλα =

(
e−2iθA(k‖ − λα)2

(∆u − tλ2α)− E

)
, or ψλα =

(
(∆u − tλ2α) + E
−e2iθA(k‖ + λα)2

)
. (17)

Thus, a general wavefunction can be expanded in terms of these eigenvectors.
Using the boundary condition at x⊥ →∞, it is required that Reλα > 0. For the the boundary condition at x⊥ → 0,

by the following relation |ψλ1 ψλ2 | = 0, we get

(2k‖ − λ1 − λ2)E = −(tk2‖ + ∆u)(λ1 + λ2) + 2k‖(∆u + tλ1λ2), (18)

(2k‖ + λ1 + λ2)E = −(tk2‖ + ∆u)(λ1 + λ2)− 2k‖(∆u + tλ1λ2). (19)

Note that we have λ21 + λ22 = (λ1 + λ2)2 − 2λ1λ2 = 2(t∆u +A2k2‖)/(t
2 +A2) from the expression of λ2α in Eq. (16).

Together with the above equation, we obtain

λ1 =
1√

t2 +A2
(Ak‖ −

√
t∆u), (20)

λ2 =
1√

t2 +A2
(Ak‖ +

√
t∆u). (21)

Plugging λα into the relation of Eqs. (18) and (19), the eigenenergy is obtained as

E = − A√
t2 +A2

(tk2‖ + ∆u) = − A√
t2 +A2

(2tk2‖ +M − 2t cos kz + ε). (22)

The eigenstates are obtained as

ψu =

(
e−2iθ

A
t (
√
t2 +A2 +A)

)
. (23)

In the following, we take t = A = 1, in accordence with the parameters in our numerical calculation. It is required
that Reλα > 0 in order for the wavefunction to decay exponentially away from the boundary. Thus,

λ1λ2 =
1

t2 +A2
(A2k2‖ − t∆u) > 0. (24)

The corresponding kz shall satisfy − arccos M+ε
2 < kz < arccos M+ε

2 , which lies approximately between the two Weyl
points, i.e., kz ∈ (−kw2, kw2) in Fig. 2 (a) in the main text. Returning to the full 4×4 Hamiltonian, the eigenfunctions
for the boundary states in this region are in the form of

ψu ∝


e−2iθ√
2 + 1
0
0

 , for kz ∈ (−kw2, kw2). (25)

Note that the contributions from spatial part are neglected here, as they do not a�ect the main results.
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A similar procedure can be obtained for the lower block of

hd(k) =

(
−(∆d + tk2⊥) e−2iθA(k‖ − ik⊥)2

e+2iθA(k‖ + ik⊥)2 (∆d + tk2⊥)

)
. (26)

The wavefunction is obtained as

ψd ∝


0
0

e−2iθ√
2 + 1

 , for kz ∈ (−kw1, kw1). (27)

The boundary states in Eqs. (25) and (27) are both valid in the region of (−kw1, kw1) ∩ (−kw2, kw2). For the chosen
parameters in numerical calculations, kw2 < kw1, and thus, (−kw1, kw1)∩(−kw2, kw2) = (−kw2, kw2). In this region, we
can project the system to the boundary with the normalized eigenvectors, and obtain the following e�ective boundary
Hamiltonian,

he� = − 1√
2

[(2k2‖ − k
2
c )σ3 −m cos(2θ)σ1], for kz ∈ (−kw2, kw2), (28)

up to a constant term −1/
√

2εσ0, where k
2
c = 2t cos kz −M .

We can also project the fourfold rotation symmetry operator to the boundary, and obtain ĉ4 = σ3. The higher-order
term satis�es this symmetry, i.e., ĉ4 [m cos(2θ)σ1] ĉ−14 = m cos[2(θ + π/2)]σ1. Note that the rotation symmetry does
not allow constant terms that are proportional to σ2 after projection. The symmetry enforces the following condition
at the boundary

m cos [2(θ + π/2)] = −m cos(2θ). (29)

This implies that there must be gapless states when going from θ to θ + π/2, resulting in higher-order topology. In
Fig. 1 (b), the corner states are shown by calculating the local density of states at zero energy, in the higher-order
topology region at kz = 0 ∈ (−kw2, kw2). These corner states leads to hinge Fermi arcs as shown in Fig. 1(b) in the
main text.

Supplementary Note 3. PROPOSAL FOR EXPERIMENTAL REALIZATION

We consider the atomic Fermi gas trapped in a 2D bilayer optical lattice, in which the layer index is denoted as
λ = 1, 2. The system is governed by the following Hamiltonian,

H = Hhop +Hsoc +Hos. (30)

The �rst term Hhop describes the nearest-neighbor hopping,

Hhop = −
∑
λ

∑
j

∑
η=x,y

∑
ν=↑↓

tc†jνλcj+eη,ν,λ −
∑
j

∑
ν

tzc
†
jν1cjν2 +H.c. (31)

where cjνλ denotes the annihilation operator of the atom with spin-ν on j-th site of the λ-th layer, and ex,y,z denotes
the unit vector.
The second term Hsoc describes the spin-orbit coupling. We engineer this term by coupling opposite spins via

laser �elds of three modes: M1(r) = iM1 sin(kLx) sin(kLy), M2(r) = M2 cos(kLx) cos(NkLy) cos(kLz), and M
′
2(r) =

−M2 cos(NkLx) cos(kLy) cos(kLz). Here kL = π/d and d denotes the lattice constant. N is an arbitrary odd number
greater than 1 (i.e. N = 3, 5, 7, · · · ). Due to the odd parity of M1(r) in the xy-plane for either x and y, the on-site
and nearest-neighbor (NN) terms vanish, leaving the next-NN terms dominant [2]:

H(1)
soc =

∑
λ

∑
j

∑
νν′

(−1)jx+jyA1[σ2]νν′(c†jνλcj+ex−ey,ν′,λ − c†jνλcj+ex+ey,ν′,λ) +H.c. (32)

where iA1 =
∫
M1(r)W ∗(r)W (r + dex + dey)dr. The modes M2(r) and M ′2(r) can introduce both the on-site and

NN terms. However, due to the crystal symmetry, the Wannier wave function of atoms on each site is isotropic in
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the x, y, and z directions. Since there exists di�erence in sign between M2(r) and M ′2(r), both the on-site and the
z-directional NN terms cancel out, leaving the NN terms in the xy-plane dominant:

H(2)
soc =

∑
λ

∑
j

∑
νν′

(−1)λ(−1)jx+jyA2[σ1]νν′ [c†jνλcj+ey,ν′,λ − c†jνλcj+ex,ν′,λ] +H.c. (33)

where we have denoted A2 =
∫

[M2(r)−M ′2(r)]W ∗(r)W (r + dey)dr. By combining Eqs. (32) and (33), Hsoc is given
as

Hsoc = H(1)
soc +H(2)

soc . (34)

For simplicity, we can tune 2A1 = A2 = A in experiments.
The last term Hos describes the on-site energy,

Hos =
∑
λ

∑
j

∑
νν′

Γλ(φ)[σ3]νν′c†jνλcjν′λ . (35)

It can be engineered by the Zeeman split of hyper�ne levels and assigned with a tunable cyclical parameter φ,

Γλ(φ) = M0 + (−1)λε− 2t cos(φ) . (36)

We make the following operator transformation which preserves the anti-commutation of fermionic operators,

cj↑1 → cj↑1 , cj↓1 → (−1)jx+jycj↓1 , cj↑2 → cj↓2 , cj↓2 → (−1)jx+jycj↑2 . (37)

In the base c = (c↑1, c↓1, c↑2, c↓2)T , Hamiltonian (30) is then rewritten as

H =
∑
j

[
−
∑
η=x,y

tτ3σ3c
†
jcj+eη +Aτ3σ1(c†jcj+ey − c

†
jcj+ex) +

A

2
τ3σ2(c†jcj+ex−ey − c

†
jcj+ex+ey ) +H.c.

]
+ Γλ(φ)τ3σ3c

†
jcj − tzτ1σ1c

†
jcj . (38)

We remark that the higher-order topological term τ1σ1 naturally originates from the hopping in the z direction.
Hereafter, we denote −tz ≡ m to be consistent with formulas in the main text.
Since φ is manually controllable, we can treat it as an arti�cial dimension of the z axis under periodic boundary

conditions along this direction. The 2D momentum space (kx, ky) is then mapped into a 3D parameterized space
(kx, ky, φ). By transforming Eq. (38) into the momentum space, we can obtain the e�ective Hamiltonian that is
identical to the model in the main text:

H(k) = 2A[cos(kyd)− cos(kxd)]τ3σ1 + 2A sin(kxd) sin(kyd)τ3σ2 +M(k)τ3σ3 + ετ0σ3 +mτ1σ1, (39)

where M(k) = M0 − 2t
∑
η=kx,ky,φ

cos(ηd).

We are interested in Fermi-arc topology on the surfaces that are parallel to φ (i.e., kz) direction. Using the time-of-
�ight images [3, 4], the Fermi arc surface states at a speci�c surface orientation may be determined, by measuring the
density on boundaries of the atomic cloud parallel to the expansion direction. In order to process the measurement
on a speci�c surface termination normal to the xy-plane, one can switch o� the trap of atoms in one direction (at
an angle θ to the x-axis), while keeping the con�nement in the relative perpendicular direction. This is practically
feasible because the magneto-optic trap and the optical lattice trap are separately generated, and thus, this provides
provides the possibility for arti�cially controlling the expansion direction in the xy-plane.

Supplementary Note 4. GENERALIZATION TO INTERTWINED TRIPLE-WEYL PHASES

The intertwined triple-Weyl phases could be constructed similarly to intertwined double-Weyl phases. By a straight-
forward generalization from the continuum model in Eq. (6), the low energy e�ective model for the intertwined
triple-Weyl phases is

H0(kx, ky, kz) = Akx(k2x − 3k2y)τ3σ1 +Aky(3k2x − k2y)τ3σ2 + (M + tk2x + tk2y − 2t cos kz)τ3σ3 + ετ0σ3. (40)

Time-reversal symmetry is broken by the term ετ0σ3, which can be seen by T ετ0σ3T−1 = −ετ0σ3. Thus,

T H0(kx, ky, kz)T
−1 6= H0(−kx,−ky,−kz), T = τ1σ1K. (41)



6

The inversion symmetry is still preserved,

IH0(kx, ky, kz)I−1 = H0(−kx,−ky,−kz), I = τ3σ3. (42)

Using the substitution of kx = k cos θ, ky = k sin θ, the above Hamiltonian becomes,

H0(k, θ, kz) = Ak3e+3iθτ3σ− +Ak3e−3iθτ3σ+ + (M + tk2 − 2t cos kz)τ3σ3 + ετ0σ3. (43)

The Hamiltonian is protected by the sixfold rotation symmetry,

Ĉ6H0(k, θ, kz)Ĉ
−1
6 = H0(k,R6θ, kz), Ĉ6 = τ3σ3 and R6θ = θ +

π

3
. (44)

We are interested in symmetry allowed terms that could generate higher-order topology. It is found that mτ1σ1 is
again invariant under C6 symmetry as

Ĉ6mτ1σ1Ĉ
−1
6 = mτ1σ1. (45)

Thus, the Hamiltonian for intertwined triple-Weyl phases could be constructed as

H(kx, ky, kz) = Akx(k2x − 3k2y)τ3σ1 +Aky(3k2x − k2y)τ3σ2 + (M + tk2x + tk2y − 2t cos kz)τ3σ3 + ετ0σ3 +mτ1σ1. (46)

The local density of states on surface with di�erent orientations are calculated in Figs. 1(g-i) in the main text.
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