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1 Supplementary Discussion

1.1 Additional Single-Crystal Neutron Diffraction Data

Supplementary Figure 1 displays the temperature evolution of the magnetic diffrac-
tion along (0, 0, l) and (1, 0, l) to complement Fig. 2 of the main text. The nuclear
component of the intensity is significantly weaker for (1, 0, 0) than for (0, 0, 2), and
the transition at Tspiral is more clearly seen in the (1, 0, l) data.
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Supplementary Figure 1 Temperature evolution of the neutron-diffraction intensity for
ErMn6Sn6 from single-crystal neutron diffraction measurements along the a (0, 0, l) and b (1, 0, l)
reciprocal-lattice directions. The (1, 0, l) data were measured during one experiment, whereas the
(0, 0, l) data were taken over two experiments.
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Supplementary Figure 2 Neutron powder diffraction data for ErMn6Sn6 collected at T = 200 K.
The red curve through the data points shows the fit from a Rietveld refinement using triple-spiral
magnetic order and the bottom blue curve shows the difference between the data and fit. Vertical
tick marks indicate Bragg peak positions. The top set of ticks is for the structural-Bragg peaks. The
bottom two sets are for magnetic-Bragg peaks.
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Supplementary Table 1 Parameters from Rietveld refinements of neutron powder diffraction
data for ErMn6Sn6 taken at T = 200 K. The superscript N indicates a parameter for the structural
phase whereas the + and − superscripts indicate parameters for the two magnetic phases described
in the text. The avg superscript indicates the average value for the two magnetic phases. Ordered
magnetic moments µEr and µMn for Er and Mn, respectively, are given in units of µB , δ is given in
degrees, and τ is given in reciprocal-lattice units of 2π/c.

µ-
Er µ-

Mn δ- τ - µ+
Er µ+

Mn δ+ τ+

4.8(2) 1.8(1) 14.3(2) 0.1789(4) 3.1(2) 2.2(1) 13.7(2) 0.1963(4)

µavg
Er µavg

Mn δavg τavg RN
Bragg R-

Bragg R+
Bragg

3.9(3) 2.0(1) 14.0(2) 0.1876(6) 5.36 16.4 12.3

1.2 Neutron Powder Diffraction

Supplementary Figure 2 shows the neutron powder diffraction pattern for T = 200 K.
Rietveld refinements were made using one phase to describe the chemical structure
and two phases to describe the triple-spiral magnetic structure. Two magnetic phases
were used because, as described in the main text, the lineshapes of the magnetic-
Bragg peaks are split. For 200 K, two gaussian peaks and a background can be used
to describe the lineshape. The most straightforward way to model the data for the
Rietveld refinements is to assume two equally populated domains, each corresponding
to one of the slightly different values of τ = (0, 0, τ±). Thus, each magnetic phase
corresponds to either τ+ or τ− and we refined the values of the ordered magnetic
moments for Er (µEr) and Mn (µMn), τ , and the angle (Φ−δ) for each phase separately.
The results are given in Table 1. The RBragg values indicate acceptable agreement
between the triple-spiral model and the data. Refinements made allowing µEr and
µMn to have components along c did not yield sensible results.

1.3 Magnetic-Bragg Peak Lineshape Splitting

Supplementary Figure 3 compares (1, 0, l) cuts collected in the vicinity of Tspiral during
neutron diffraction experiments for two different single-crystal samples of ErMn6Sn6.
Fits of the primary-satellites’ lineshapes from our first experiment using gaussian-
peak components return a difference between the centers of the gaussian components
of ∆τ1 = 0.015 at T = 98 K and 0.017 at 103 K. ∆τ1 = 0.016 is obtained from our
second experiment for 100 K. The close agreement of ∆τ1 for two different samples
suggests that the lineshape splitting is intrinsic to the compound, and intrinsic to a
single magnetic domain, rather than arising from different domains hosting spirals
with slightly different periodicity.

1.4 Estimation of Hamiltonian parameters

Exchange parameters. Fits to the spin-wave dispersions from previous inelastic-
neutron-scattering (INS) data for TbMn6Sn6 (Tb166) provide a starting point for
estimating the various Mn-Mn and Mn-Er isotropic exchange constants defined in the
main text in Eq. (1). The values for Tb166, in meV, are; JMM

0 = −28.8, JMM
1 = −4.4,

JMM
2 = −19.2, JMM

3 = 1.8, and JMT = 1.8 meV [1, 2]. Here, JMM
2 is the dominant
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Supplementary Figure 3 ErMn6Sn6 single-crystal neutron diffraction cuts across (1, 0, l) in the
vicinity of Tspiral from our two experiments. Both samples reveal similar splittings of lineshapes the
satellite magnetic-Bragg peaks.

ferromagnetic (FM) interlayer coupling. The stability of spiral or ferrimagnetic (FIM)
states is then dependent on the balance of the competing JMM

1 and JMM
3 interac-

tions, which have opposite signs. We discuss this competition in terms of the ratios
x = JMM

1 /JMM
2 > 0 and y = JMM

3 /JMM
2 < 0. The Tb166 value of x = 0.23 is con-

sistent with estimates based on neutron diffraction and magnetization data for Y166,
so we retain this value. The Tb166 value of y = |−0.09| is smaller than the value of
y = |−0.12| reported for Y166. The smaller of the two y values is very close to the
stability range of the FIM phase and therefore can only stabilize long-period spiral
order. This is not consistent with experimental data in the spiral phase for Er166, so
we set y to the value reported for Y166, or JMM

3 = 2.3 meV.
The Mn-R interaction, JMR, is known to be antiferromagnetic (AFM) for the

heavy rare-earths and both INS data [1, 2] and density-functional-theory (DFT) cal-
culations [3] indicate that JMR decreases in magnitude from R = Gd → Tm. We
estimate the value of JME = 1.35 meV using INS data for Er166 and magnetiza-
tion data, as described below. This value is lower than reported values for Gd166
(JMG = 2 meV) and Tb166 (JMT = 1.8 meV) which is consistent with the expected
trend.

Mn easy-plane anisotropy. Mn has an easy-plane (planar) anisotropy with KM > 0.
The magnitude of KM in R166 compounds has been estimated to be in a range from
0.2 to 0.5 meV from a variety of experimental approaches; (1) fitting the spin gap of
Tb166 results in KM = 0.44 meV [2]; (2) reported from analysis of the magnetization
data as 0.47 meV for Tb166 [4] (3) reported to be 0.23 meV from the H ∥ c saturation
magnetization field of Gd166 [5]; (4) reported as 0.2 meV for Y166 [6].

For Er166, the best estimate of KM is obtained from the high-temperature magne-
tization data with H ∥ c, as shown in Fig. 7a of the main text. At temperatures where
the Er MAE is quenched (T ∼ 200 K), the critical field for ferrimagnetic alignment of
Mn and Er moments is approximately µ0Hc = 5 T. If this critical field is determined
solely by the MAE of the Mn ion, we estimate that KM ≈ µ0Hc/12M = 0.17 meV,
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where M = 7 µB is the onset of the magnetization plateau at 200 K. This value of KM

is on the low end of the range of the other R166 compounds and so we fix KM = 0.17
meV.

Er crystalline-electric-field parameters. The crystalline-electric-field (CEF) param-
eters Bm

l for different rare-earth ions scale according to the formula

Bm
l = ⟨rl⟩θlAm

l (1)

where θl is the Steven’s factor and ⟨rl⟩ is the average lth order radial moment, both of
which depend on the R ion. The parameter Am

l is intrinsic to the crystalline potential
and is expected to vary slowly across the R166 series.

From INS studies of Tb166, we are able to determine approximate values of A0
2 =

(4.1 meV)a−2
0 , A0

4 = −(7.0 meV)a−4
0 , and A0

6 ≈ 0 (where a0 is the Bohr radius).
Assuming the transferability of the CEF potential for the hexagonal R166s and using
Eq. (1), we obtain good starting values for the CEF parameters for the Er ion; B0

2 =
0.0075 meV, B0

4 = −0.00041 meV and B0
6 = 0. These values are reasonably consistent

with DFT studies of the RMn6Sn6 series [3] and slight refinement of these values are
described below. For Er166, magnetization measurements indicate an easy-axis along
the (1, 1, 0) direction in the hexagonal unit cell (see Ref. [7]) implying that the in-plane
anisotropy term B6

6 is positive (B6
6 > 0).

Global search. Next we describe estimates of Bm
l and JME for Er166 from com-

parison of magnetization and INS data. In this search, we fix the other parameters of
the model (i.e. JMM

i and KM). Supplementary Figure 4 shows data from INS mea-
surements of Er166 where we observe four CEF excitations out of the ground state at
T = 5 K. These excitations are not visible at 200 K due to thermal depopulation of
the ground state. The energies of the first four transitions were obtained from gaussian
fits to the peaks and are listed in Table 2.

As shown in Fig. 7a of the main text, an applied magnetic field along the hard
(0, 0, 1) direction will generate a first-order magnetization process (FOMP) where the
ground-state FIM structure jumps from spins ordered with their orientations in the ab-
plane (planar) to their orientations lying along the c-axis (uniaxial). The small value
of the critical FOMP field [µ0Hc = 0.7(2) T] indicates that the planar and uniaxial
configurations are nearly degenerate with a free energy difference of ∆F = Fc−Fab ≈
Mµ0Hc = 0.16(5) meV, where M = 4 µB/fu is the net magnetization per formula
unit in the FIM ground state.

We can use a combination of INS and magnetization data to refine our estimates
of these parameters. Supplementary Figure 5 shows a representative slice of a search
in the 4-D space of Bm

l and JME parameters. The indicated regions for the differ-
ent observables correspond to the values in Table 2. In Supplementary Figure 5, the
selected parameters are indicated by the red dot and provide good estimates of ∆F ,
E1, and E3, whereas agreement with E2 and E4 is less optimal. The black curve in
Supplementary Figure 4 compares the calculated CEF transitions from this parameter
set to the INS data. The main text demonstrates that our model with these parameters
displays reasonable agreement with the observed data and is valuable in interpreting
experimental results.
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Supplementary Figure 4 Comparison of inelastic-neutron-scattering (INS) data at T = 5 K and
200 K to calculations of the trace of the imaginary part of the local-ion magnetic susceptibility (black
line) using the parameters determined in Supplementary Figure 5. INS data were measured on the
ARCS spectrometer at the Spallation Neutron Source using an incident energy of 30 meV. Data are
summed over h = 0.25 to 0.75, k = −0.25 to 0.25, and l = −5 to 5 for the hexagonal reciprocal lattice.

Supplementary Table 2 Energies obtained from magnetization data [∆F(FOMP)] and
crystalline-electric-field (CEF) transitions (Ei) seen in inelastic-neutron-scattering data. These
energies are used to determine the Hamiltonian parameters for Er166. The numbers for the CEF
states are general labels starting from the ground state |1⟩.

Observable Energy (meV)

∆F (FOMP) 0.16(5)

E1(|1⟩ → |2⟩) 7.65(1)

E2(|1⟩ → |3⟩) 10.50(15)

E3(|1⟩ → |4⟩) 14.85(13)

E4(|1⟩ → |5⟩) 18.6(3)

1.5 Classical magnetic anisotropy energy

The classical magnetic anisotropy energy (MAE) for hexagonal Er166 is given by

Ktot = K1 sin
2 θEr +K2 sin

4 θEr +K3 sin
6 θEr (2)

+K ′
3 cos(6φEr) sin

6 θEr − 6KM sin2 θMn.

where θi and φi are the polar and azimuthal angles, respectively, describing the orien-
tation of the Er (i = Er) and Mn (i = Mn) magnetic moments. For Mn, we retain only
the first-order MAE term and for Er we assume that K3 = 0. The MAE constants for
Er are related to the Bm

l parameters, K1 = −3J (2)B0
2 − 40J (4)B0

4 , K2 = 35J (4)B0
4 ,
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Supplementary Figure 5 Global search for model parameters as a function of B0
2 and B0

4 for
fixed values of JME = 1.35 meV, B6

6 = 1.47 × 10−5 meV, and KM = 0.17 meV, and all other
exchange constants fixed as described in the text. Striped regions correspond to observables listed in
Table 2. The red dot shows a choice of parameters for B0

2 and B0
4 that best represents the first-order

magnetization process (FOMP) and the E1, and E3 crystalline-electric-field transitions.

and K ′
3 = J (6)B6

6 , where J (2) = J(J − 1/2), J (4) = J (2)(J − 1)(J − 3/2), and
J (6) = J (4)(J − 2)(J − 5/2).

We find that Ktot = 0 for a uniaxial ferrimagnet (FIM-c) with θEr = π and
θMn = 0 and Ktot = K1 + K2 − K ′

3 − 6KM < 0 for a planar ferrimagnet (FIM-
ab) with the in-plane easy-axis defined by θEr = θMn = π/2 and φEr = π/6. Using
our Er CEF parameters, we obtain K1 = 28.34, K2 = −26.45, K ′

3 = 0.83, and
6KM = 1.02 meV. The classical polar and planar MAE are plotted in Supplementary
Figures 6a and 6b, respectively, and demonstrate the near degeneracy of uniaxial and
planar configurations which arise from an almost complete cancellation of Mn and
Er MAE contributions. We find that the classical MAE slightly favors the FIM-c
phase (Ktot = 0.04 meV), whereas experimentally FIM-ab is the ground state and we
estimate Ktot ≈ −Mµ0HFOMP/2 = −0.08 meV from the FOMP field, as described
above.

Evaluation of the MAE using a mean-field approach does establish the FIM-ab
state as the ground state. Furthermore, orbital mixing of the CEF eigenstates reduces
µEr and leads to differences between the classical and mean-field results. This is illus-
trated by the small differences between the classical and mean-field curves shown in
Fig. 6a for a progressively tilted collinear-FIM structure with θMn = θ and θEr = π−θ
at T = 0 K. Similarly, Supplementary Figure 6b compares the classical and free-
energy results for the Er six-fold planar MAE, demonstrating that the easy axis is
rotated 30° away from a. Note that the CEF level mixing captured in the mean-field
approach leads to a sizable reduction of the planar MAE due to its dependence on the
sixth-order matrix elements of the angular-momentum operators.
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a

b

Supplementary Figure 6 Ground state magnetic anisotropy energy (MAE) of ErMn6Sn6 as a
function of a the polar angle (θ) and b the planar angle (φ) in both the classical limit (blue) and
from free energy calculations (red). In a, the separate contributions of Er (blue dash) and Mn (purple
dot) to the classical MAE are shown.

1.6 Mean-field description of the free energy

The typical mean-field decomposition of the exchange Hamiltonian Eq. (1) of the main
text is given by,

HMF
ex =JME

∑
⟨i<j⟩

(⟨si⟩ · Sj + si · ⟨Sj⟩ − ⟨si⟩ · ⟨Sj⟩)

+
∑
i,j

JMM
ij (⟨si⟩ · sj + si · ⟨sj⟩ − ⟨si⟩ · ⟨sj⟩) . (3)

We use these terms to generate local mean-field Hamiltonians for Er and Mn

HMF
Er = HEr −BEr · S− gJµBJ · µ0H (4)

and

HMF
Mn = HMn −BMn · s− gµBs · µ0H , (5)

where BMn = −2JME⟨S⟩ −
∑

i γiJMM
i ⟨si⟩ and BEr = −12JME⟨s⟩ are the self-

consistently determined molecular fields acting on Mn and Er, respectively. γi is the
coordination number for JMM

i .
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The self-consistent solution to the mean-field Hamiltonian is obtained by minimiz-
ing the free energy

F(T,Hz) = −kBT lnZEr − 6kBT lnZMn (6)

− 12JME⟨s⟩ · ⟨S⟩ − 3
∑
i

γiJMM
i ⟨si⟩ · ⟨s⟩ ,

where ZEr and ZMn are the partition functions for Er and Mn obtained from Eqs. (4)
and (5), respectively.

To simplify our analysis, we consider only uniaxial fields H ∥ c (i.e. Hz) and make
an approximation where the planar Er magnetic-anisotropy energy (MAE) given by
K ′

3 sin
6 θEr cos(6φEr) (where K ′

3 ∝ B6
6) is fixed at its minimum value of −K ′

3 sin
6 θEr

for any in-plane angle φEr. This is equivalent to an easy-plane anisotropy with nonzero
B0

6 , as the θ dependence plays a critical role in controlling the phase stability. Fur-
thermore, Fig. 6a in the main text shows that the true easy-plane limit (K ′

3 ≈ 0) is
valid at high temperatures (T > 100 K) due to rapid thermal softening of the planar
MAE upon warming. This approximation effectively describes the low-temperature
magnetic phases, such as FIM, where all moments lie in a vertical plane containing
the planar easy-axis and c-axis field directions.

Zero-field case. For easy-plane configurations [K ′
3 cos(6φEr) = const.] in zero field,

only the relative angles between spins matter. In the specific case of the ideal-triple-
spiral structure, the periodicity is defined by the angle Φ between alike layers in
adjacent cells (coupled by JMM

3 ) and the angle δ is between strongly coupled Mn
bilayers (coupled by JMM

2 ). Supplementary Figure 7 (and Fig. 1 of the main text)
shows the relative angles of spins in neighboring layers and their coupling constants. In
Supplementary Figure 7, the Er moment is arbitrarily chosen to point along (1̄, 0, 0),
bisecting the angle (Φ − δ) and the Mn moment directions. The Mn moments are
specified by layer designations A, B, A+, A-, and B- and their orientations are given
relative to the Er moment orientation. The spin vectors are

S = S(1̄, 0, 0) , (7)

sA = s

[
cos

(
Φ− δ

2

)
,− sin

(
Φ− δ

2

)
, 0

]
,

sB = s

[
cos

(
Φ− δ

2

)
, sin

(
Φ− δ

2

)
, 0

]
,

sA- = s

[
cos

(
3Φ− δ

2

)
,− sin

(
3Φ− δ

2

)
, 0

]
,

sA+ = s

[
cos

(
Φ+ δ

2

)
, sin

(
Φ+ δ

2

)
, 0

]
,

sB- = s

[
cos

(
Φ+ δ

2

)
,− sin

(
Φ+ δ

2

)
, 0

]
,
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Supplementary Figure 7 Geometry of spins in neighboring layers in the easy-plane triple-spiral
state. We place the Er spin (black) arbitrarily along the (1̄, 0, 0) direction and it’s molecular field is
determined by the JME coupling to the MnA (blue) and MnB (green) in the layers above and below.
The blue MnA spin experiences a molecular field from the MnA+ and MnA- (red), MnB- (yellow),
MnB (green) and the Er spin with the exchange parameters indicated in parentheses.

and Supplementary Figure 7 shows the relative angles of spins in neighboring layers
and their coupling constants.

In the zero-field case, expressions for the molecular fields are

BEr = −6JME (⟨sA⟩+ ⟨sB⟩) , (8)

= −12JME⟨s⟩ cos
(
Φ− δ

2

)
(1, 0, 0) ,

and

BMn = −2JME⟨S⟩ − 4JMM
0 ⟨sA⟩ − JMM

1 ⟨sB⟩ (9)

− JMM
2 ⟨sB-⟩ − JMM

3 (⟨sA+⟩+ ⟨sA-⟩) ,
= 2JME⟨S⟩(1, 0, 0)
−
(
4JMM

0 + 2JMM
3 cosΦ

)
⟨s⟩

×
[
cos

(
Φ− δ

2

)
,− sin

(
Φ− δ

2

)
, 0

]
− JMM

1 ⟨s⟩
[
cos

(
Φ− δ

2

)
, sin

(
Φ− δ

2

)
, 0

]
− JMM

2 ⟨s⟩
[
cos

(
Φ+ δ

2

)
,− sin

(
Φ+ δ

2

)
, 0

]
.

The resulting free energy per unit cell is given by

F = −kBT lnZEr − 6kBT lnZMn (10)

+ 12JME⟨s⟩⟨S⟩ cos
(
Φ− δ

2

)

10



− 3⟨s⟩2
[
4JMM

0 + JMM
1 cos(Φ− δ) + JMM

2 cos δ

+2JMM
3 cosΦ

]
,

where the thermally averaged spin magnitudes ⟨s⟩ and ⟨S⟩ are determined self-
consistently.

Vertical-field case. For a vertical magnetic field along the z (i.e. c) direction, we
maintain the double spiral angles δ and Φ and now introduce the polar angles of the
Er and Mn sublattices θEr and θMn. Similar to the definitions above, we assume that
the Er moment is pointed in the (1, 0, 1) plane and always negative in the x−direction.
The spin vectors are

S = S [− sin θEr, 0, cos θEr] , (11)

sA = s

[
sin θMn cos

(
Φ− δ

2

)
,− sin θMn sin

(
Φ− δ

2

)
, cos θMn

]
,

sB = s

[
sin θMn cos

(
Φ− δ

2

)
, sin θMn sin

(
Φ− δ

2

)
, cos θMn

]
,

sA- = s

[
sin θMn cos

(
3Φ− δ

2

)
,− sin θMn sin

(
3Φ− δ

2

)
, cos θMn

]
,

sA+ = s

[
sin θMn cos

(
Φ+ δ

2

)
, sin θMn sin

(
Φ+ δ

2

)
, cos θMn

]
,

sB- = s

[
sin θMn cos

(
Φ+ δ

2

)
,− sin θMn sin

(
Φ+ δ

2

)
, cos θMn

]
.

The corresponding molecular fields are given by similar expressions as above and
include an externally applied magnetic field along the z−axis.

BEr = −12JME⟨s⟩
[
sin θMn cos

(
Φ− δ

2

)
, 0, cos θMn

]
+µ0Hz(0, 0, 1) , (12)

BMn = −2JME⟨S⟩[− sin θEr, 0, cos θEr]

−4JMM
0 ⟨s⟩

×
[
sin θMn cos

(
Φ− δ

2

)
,− sin θMn sin

(
Φ− δ

2

)
, cos θMn

]
−JMM

1 ⟨s⟩

×
[
sin θMn cos

(
Φ− δ

2

)
, sin θMn sin

(
Φ− δ

2

)
, cos θMn

]
−JMM

2 ⟨s⟩

×
[
sin θMn cos

(
Φ+ δ

2

)
,− sin θMn sin

(
Φ+ δ

2

)
, cos θMn

]
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a b

Supplementary Figure 8 Free energies of the zero-field magnetic phases in ErMn6Sn6.
We calculate the phase stability of different planar (θEr = θMn = π/2) ferrimagnetic (FIM-ab), anti-
ferromagnetic, and spiral phases using a mean-field analysis of the easy-plane model for ErMn6Sn6.
a Free energy of different planar magnetic ground states at T = 0 K as a function of JME. b The
temperature dependence of the phase stability of the planar states with JME = 1.35 meV. The inset
to b shows the small free energy difference between the FIM-ab and triple-spiral phases.

−2JMM
3 ⟨s⟩

[
sin θMn cosΦ cos

(
Φ− δ

2

)
, . . .

. . . − sin θMn cosΦ sin

(
Φ− δ

2

)
, cos θMn

]
+µ0Hz(0, 0, 1) . (13)

Using the same notation, the free energy is

F = −kBT lnZEr − 6kBT lnZMn (14)

+ 12JMM
0 ⟨s⟩2 + 12JME⟨S⟩⟨s⟩

×
[
− sin θMn sin θEr cos

(
Φ− δ

2

)
+ cos θMn cos θEr

]
+ 3JMM

1 ⟨s⟩2
[
sin2 θMn cos(Φ− δ) + cos2 θMn

]
+ 3JMM

2 ⟨s⟩2
(
sin2 θMn cos δ + cos2 θMn

)
+ 6JMM

3 ⟨s⟩2
(
sin2 θMn cosΦ + cos2 θMn

)
.

Supplementary Figure 9 shows the evolution of the polar angles and total magne-
tization that result from minimization of the free energy for T = 0 and T = 125 K
as a function of applied field. Similar calculations were used to assemble the phase
diagram shown in Fig. 8 of the main text.

Classical energy states with planar anisotropy. States with non-zero planar
anisotropy or under in-plane magnetic fields can adopt distorted magnetic structures.
The moment directions can vary in a complex manner from layer-to-layer within a
large magnetic unit cell determined by the overall periodicity. Rather than attempt to
evaluate the self-consistent solutions to the free energy, where molecular fields must
be evaluated independently for each layer, we rather minimize the total energy of the
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a

b

Supplementary Figure 9 Evolution of different magnetic phases obtained from the minimization
of the free energy. Plots show the polar angles and total magnetization as a function of H ∥ c for a
T = 0 K and b T = 125 K.

form

E =

p∑
j=1

(
3JMM

1 s2 cos (ϕ2j−1 − ϕ2j) (15)

+ 3JMM
2 s2 cos (ϕ2j − ϕ2j+1)

+ 3JMM
3 s2 [cos (ϕ2j−1 − ϕ2j+1) + cos (ϕ2j − ϕ2j+2)]

+ 6JMEsS [cos (ϕ2p+j − ϕ2j−1) + cos (ϕ2p+j − ϕ2j)]

+K ′
3 cos (6ϕ2p+j)

− µBµ0Hx {3gs [cos (ϕ2j−1) + cos (ϕ2j)] + gJJ cos (ϕ2p+j)}
−µBµ0Hy {3gs [sin (ϕ2j−1) + sin (ϕ2j)] + gJJ sin (ϕ2p+j)}

)
.

Here, p is the number of unit cells containing an Mn-Er-Mn trilayer and j labels a
single unit cell. Mn and Er moments adopt a planar angle ϕi in each successive layer
in the stack with i = 1 to 2p and i = 2p + 1 to 3p, respectively, with open boundary
conditions. We find the minimum energy using the exchange parameters in Table 1 of

13



the main text and for different values of the in-plane anisotropy parameter K ′
3. The

mean periodicity is shown in Fig. 6b of the main text for a stack consisting of p = 36
unit cells (108 layers).
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