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Overview of Network-Based and Dynamical Systems-Based Approaches to Cell Fate 

reprogramming 

The growth of computational methods for constructing biological interaction networks (e.g., gene 

regulatory and signaling networks) from genome-wide expression data1–3 has led to the 

development of cell reprogramming methods within the framework of network biology. Network-

based approaches such as CellNet and ANANSE use gene expression profiles to construct gene 

regulatory networks (GRNs) and evaluate reprogramming experiments4,5. These algorithms score 

cellular reprogramming experiments by analyzing the extent to which a reprogrammed cell 

establishes the desired phenotype’s GRN and suggest transcription factors to induce the desired 

reprogramming. For example, CellNet was used to determine the reprogramming efficiency of 

fibroblasts to hepatocyte-like cells (iHeps) by comparing GRNs of fibroblasts, hepatocytes, and 

the reprogrammed fibroblasts6. CellNet analysis revealed that the reprogrammed cells did not 

exhibit the hepatocyte cell identity and suggested that downregulation of the transcription factor 

Cdx2 could drive these cells towards the hepatocyte-like state. 

However, a significant limitation of static network-based approaches is that cell reprogramming 

does not necessarily arise only from the network topology. A systems dynamics contain essential 

information for cellular reprogramming that is impossible to capture in a purely static view of cell 

phenotypes7. The dynamical systems framework can be used to derive a quantitative 

understanding of cellular reprogramming8–10, where each cell fate is a stable state (attractor) 

shaped by the architecture and the dynamics of its regulatory network10–13 (Supplementary Figure 

1a). Analyzing a mathematical model’s phase space of a system is an established dynamical 

systems-based framework for studying cell fate differentiation, tumorigenesis, and ultimately, the 

reversion of these processes14–19. For example, phase space analysis of an Ordinary Differential 

Equations model (ODE) of pancreatic cell fate regulation revealed branching points in pancreatic 

cell differentiation18. Then, transcription factor perturbations were simulated to study their effect 

on pancreatic cell differentiation trajectories in the system. These simulations uncovered that the 
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mechanism behind experimentally-observed exocrine pancreatic cell to beta-cell reprogramming 

required triggering the cell to pass through one of the branching points. Additional analysis 

revealed that sequentially perturbating the relevant transcription factors could improve 

reprogramming efficiency.  

In discrete modeling frameworks, such as Boolean networks modeling, the phase space can be 

studied by analyzing the attractor landscape (Supplementary Figure 1b). For instance, a 

quantitative evaluation of the attractor landscape was performed to study colorectal cancer 

tumorigenesis and its reversion in the work of Cho et al. and Kim et al. 15,16. In these works, the 

attractor landscape analysis was performed on a Boolean network model of colorectal cancer, 

and regions of the attractor landscape were associated with normal-like or malignant 

phenotypes15,16. Then, when single and double perturbations for all nodes in the network were 

simulated, the attractors were evaluated to determine if the perturbation shifted the system to the 

region associated with the normal-like phenotype, indicating potential targets for tumor 

reversion. In combination with a control theory-based approach, this attractor landscape analysis 

was recently applied in a Boolean Model of Basal-Like Breast Cancer Reprogramming, where 

targets that can induce basal-like breast cancer reprogramming and endocrine therapy sensitivity 

were identified20.  

One powerful method for identifying combinations of targets to guide induced pluripotent stem 

cell (iPSC) reprogramming is IRENE21, which combines both network-based and dynamical 

systems-based approaches. IRENE takes a multi-omics approach to constructing GRNs for 

various cell types, incorporating data such as transcriptomic, epigenetic, and enhancer-promoter 

interaction profiles. Next, the method infers logical rules for the models using ChIP-seq and 

protein-protein interaction data and performs stochastic simulations on the iPSC network. Finally, 

based on the probabilities generated from the simulations, IRENE identifies combinations of 

transcription factors that, when perturbed, activate the target cell type GRN by considering the 

number of epigenetic changes needed to shift the enhancer/promoter landscape to the target cell 



 6 

type. This tool was shown to increase reprogramming efficiencies for iPSC differentiation to 

melanocytes and natural killer cells and generated reprogramming targets for iPSCs to mammary 

epithelial cells.  

 

Supplementary Fig.1 Dynamical Systems and Control Theory View of Cell Fate 
Reprogramming. a The Waddington’s epigenetic landscape metaphor to visualize cell fate 
reprogramming: a cell evolves until it reaches a long-term steady-state or attractor (green circle) that 
can be associated with an observable phenotype (e.g., undesired phenotype). Cell fate 
reprogramming consists of shifting (yellow dashed arrow) the state of the cell from one trajectory 
towards another, which attractor state (purple circle) is associated with the desired phenotype. b 
Alluding to the Boolean network’s framework, the attractor landscape of a system represents all 
potential states of a system and its attractors. For a given attractor, its basin of attraction is the set of 
initial conditions leading to that attractor, as represented by the three different sections in the figure. 
The attractors and their basins of attraction can be associated with cell phenotypes. 
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Validation of NETISCE in in silico Studies of Cell Fate Reprogramming using the FVS 

Control in ODE and Boolean Models 

In these application examples, we compare the ability of NETISCE to correctly simulate 

perturbations on FVS control nodes to guide a system from an undesired initial state to the desired 

state for two in silico studies of cell fate reprogramming using the FVS control in Boolean and 

ODE models of Drosophila embryonic patterning.  

To assess the FVS control approach, Zanudo et al.22 used the Drosophila Melanogaster segment 

polarity network that guides gene expression during embryonic development. This study aimed 

to show the ability of the FVS control to steer the dynamics of a system towards any natural 

attractor in a validated model. With an established ODE23 and Boolean Model24 of the segment 

polarity gene network, the authors showed that fixing the values of the FVS nodes to their state 

in the correctly patterned attractor (the wild-type attractor) was sufficient to guide the system to 

the patterned attractor irrespective of the initial state of all other network nodes.  

The continuous ODE model of von Dassow et al.23 represents each cell as a hexagon with six 

relevant cell-to-cell boundaries (Supplementary Figure 6a). It includes 136 nodes representing 

mRNAs and proteins: four source nodes and 24 sink nodes, and 488 edges representing 

transcriptional regulation, translation, and protein-protein interactions. The nodes are 

characterized by continuous concentrations, whose rate of change is described by ordinary 

differential equations (ODE) involving Hill functions for gene regulation and mass action kinetics 

for protein-level processes and using 48 kinetic parameters. From Zanudo et al.22, we obtained 

the initial conditions that produce the wild-type attractor, the unpatterned attractor, and the precise 

combination of perturbations on the 48 FVS nodes that shifts the unpatterned initial state from the 

trajectory of the unpatterned attractor towards the wild-type patterned attractor (Supplementary 

Table 1). In addition, we considered as internal-marker nodes those used by Zanudo et al. to 

characterize the wild-type, unpatterned, and the controlled unpatterned-to-wild-type attractors: 

wg1(representing the wingless gene in the first cell) and en2 (engrailed in the second cell). 
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Supplementary Table 1: Summary of initial conditions that yield the wild-type or unpatterned 
steady state, and the configuration of perturbations on the FVS control nodes to shift the system 
from the unpatterned attractor towards the wild-type attractor in the ODE model of Drosophila 
segment polarity genes, reproduced from Zanudo et al.22. 

Initial condition leading to wild-
type steady state 

Initial condition leading to 
unpatterned steady state 

Perturbations on FVS control 
nodes to shift the unpatterned 
initial state to converge to the 
wild-type attractor (identified by 
Zanudo et al.22) 

wg /IWG in the 
first cell is at 
maximal 
concentration = 1 

Intra-cellular nodes 
have a 
concentration of 
0.05 in the first and 
third cell 

overexpression: 1 EWG 0, 
1 EWG 2, 1 EWG 4, 1 IWG 

en /EN in the 
second cell has 
concentration = 1 

Intra-cellular nodes 
have a 
concentration of 
0.15 in the second 
and fourth (zeroth) 
cell 

knock-out: 0 CN, 0 EWG 0, 
0 EWG 2, 0 EWG 4, 0 HH 0, 
0 HH 2, 0 HH 4, 0 IWG, 0 PTC 0, 
0 PTC 2, 0 PTC 4, 0 ptc, 1 CI, 
1 CN, 1 HH 0, 1 HH 2, 1 HH 4, 
1 PTC 0, 1 PTC 2, 1 PTC 4, 2 CI, 
2 CN, 2 EWG 0, 2 EWG 2, 
2 EWG 4, 2 HH 0, 2 HH 2, 
2 HH 4, 2 IWG, 2 PTC 0, 
2 PTC 2, 2 PTC 4, 3 CN, 
3 EWG 0, 3 EWG 2, 3 EWG 4, 
3 HH 0, 3 HH 2, 3 HH 4, 3 IWG, 
3 PTC 0, 3 PTC 2, 3 PTC 4, 3 ptc 

Source nodes (B) 
are fixed at 0.4 in 
each cell 

Membrane-localized 
nodes have 
concentration of 
0.15 for 
even-numbered 
sides in every cell 

 

Membrane-localized 
nodes have a 
concentration of 
0.05 for 
odd-numbered sides 
in every cell 

  

 

We tested the ability of NETISCE to correctly identify that the perturbations on FVS control nodes 

can shift the unpatterned initial state away from the unpatterned attractor and towards the wild-

type attractor. Therefore, we modified NETISCE to only consider the perturbation on FVS control 

nodes specified by Zanudo et al. Otherwise, NETISCE was run with default settings.  

K-means clustering was performed on the attractors generated from the wild-type and 

unpatterned initial states and the 100,000 randomly generated initial states. According to the 

elbow metric, the k-means optimality metrics returned an optimal k of k=3, and k=2 by the 

silhouette metric. NETISCE proceeded with k-means clustering with k=2. One cluster contained 
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the attractors generated from the wild-type initial states, and one cluster contained the attractors 

generated from the unpatterned initial states. The specified perturbation on FVS control nodes 

passed both filtering criteria and thus successfully shifted from the unpatterned to wild-type cell 

fate.  

The Boolean model of Albert and Othmer24 represents four cells as a repeating unit to reproduce 

wild-type stable cell patterning. This model contains 56 nodes and 144 edges, representing the 

four cells as hexagons with two cell-to-cell boundaries (Supplementary Figure 2). In this model, 

Zanudo et al. focused on hedgehog expression in cell 2 (hh2) and engrailed in cell 2 (eg2), which 

we consider internal-marker nodes. 

Zanudo et al. identified two initial conditions for network nodes that yielded either the wild-type 

patterned steady state or the unpatterned steady state. They identified an FVS consisting of the 

following nodes: 0_PTC, 0_hh, 0_wg, 1_PTC, 1_wg, 2_PTC, 2_hh, 2_wg, 3_PTC, and 3_wg. 

Using the Boolean Model, Zanudo et al. simulated the results of FVS and source node 

perturbations. From any arbitrary initial condition, including the unpatterned initial state, fixing the 

state of the FVS and source nodes to their values at the wild-type steady state resulted in the 

wild-type steady state (Supplementary Table 6).  
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Supplementary Figure 2: Drosophila Segment Polarity GRN. Purple edges indicate activating 
interactions, while blue edges indicate inhibitory interactions. Nodes highlighted in yellow are 
members of the FVS and source node set explored in Zanudo et al.22. 
 

Supplementary Table 2: Summary of the Boolean simulations of the Drosophila segment polarity 
gene network reproduced from Zanudo et al.22. 

Steady state Initial conditions Steady-state values 
Wild-type ON: hh2:ON 

en2: ON 
Unpatterned OFF: all nodes hh2: OFF 

en2: OFF 
Unpatterned initial state + FVS 
controlled 

ON: : 0_PTC, 0_hh, 0_wg, 
1_PTC, 1_wg, 2_PTC, 2_hh, 
2_wg, 3_PTC,3_wg 

hh2: ON 
en2: ON 

 

We again tested the ability of NETISCE to correctly identify that the perturbations on FVS control 

nodes can shift the unpatterned initial state away from the unpatterned attractor and towards the 

wild-type attractor. Like the ODE model, the k-means optimality metrics returned an optimal k of 

k=3, according to the elbow metric, and k=2 by the silhouette metric. NETISCE proceeded with 

k-means clustering with k=2, where one cluster contained the attractors generated from the wild-

type initial state, and one cluster contained the attractors generated from the unpatterned initial 
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state. The specified perturbation on FVS control nodes passed both filtering criteria and thus 

successfully shifted from the unpatterned to wild-type cell fate. These studies show that our 

attractor landscape estimation and SFA simulation framework in NETISCE successfully 

reproduces the in silico cell fate reprogramming studies using the FVS control in ODE and 

Boolean modeling frameworks.   
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Supplementary Table 3: Steady-state values for the study in Ascidian embryos’ cell fate 
specification. The steady-state values produced from SFA simulations for the seven internal-
marker nodes in the attractor from an unperturbed simulation and the attractors generated from 
the seven perturbations on the FVS control nodes that were experimentally verified in Kobayashi 
et al.25. The first column lists the name of the simulation: either unperturbed or the combination of 
perturbation to the FVS control nodes, where an uppercase letter indicates overexpression, and 
a lowercase letter indicates knockout. The column names are the internal-marker nodes for each 
tissue fate: Alp=endoderm, Bco=Brain, Celf.a=pan-neural, Epi1=epidermis, 
Fli/Erg.a=mesenchyme, Myl=muscle, Noto1=notochord. 
 

name Alp Bco Celf3.a Epi1 Fli.Erg.a Myl Noto1 
unperturbed 

-3.41E-05 1.87E-03 1.87E-03 2.18E-02 1.40E-03 8.98E-04 4.03E-04 

Adentz  
(Endoderm 
perturbation) 

1.18E-01 -4.25E-01 -4.25E-01 2.71E-01 -1.84E-01 -1.40E-01 1.17E-01 

adentZ  
(brain+pan-neural 
perturbation) 

-3.85E-01 4.25E-01 4.25E-01 2.71E-01 -2.37E-01 -4.16E-03 1.12E-01 

adeNtz  
(pan-neural 
perturbation) 

-5.24E-01 -4.25E-01 -4.25E-01 2.71E-01 -3.00E-01 -1.06E-01 2.41E-01 

adEntZ  
(mesenchyme 
perturbation) 

-2.63E-01 4.25E-01 4.25E-01 -1.56E-01 2.84E-01 -8.71E-02 -5.26E-03 

adentz  
(epidermis 
perturbation) 

-5.24E-01 -4.25E-01 -4.25E-01 2.71E-01 -3.00E-01 -1.24E-01 2.35E-01 

adenTz  
(muscle 
perturbation) 

-5.24E-01 -4.25E-01 -4.25E-01 2.71E-01 -3.00E-01 8.37E-02 2.59E-01 

aDentz  
(notochord 
perturbation) 

-3.79E-01 -4.25E-01 -4.25E-01 1.99E-01 -3.97E-01 -1.22E-01 9.43E-02 
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Supplementary Table 4: The differences between the internal-marker nodes’ values in the 
attractors generated from the seven experimentally verified perturbations on the FVS control 
nodes and the values in the unperturbed state for cell fate specification in Ascidian embryos. The 
values were calculated by subtracting the steady-state value in the unperturbed attractor from the 
steady-state value produced from the perturbation on the FVS control nodes. Positive values 
indicate that the specified gene is upregulated in the attractor produced from the perturbation on 
FVS control nodes compared to the unperturbed attractor. For a simulation of the perturbations 
on FVS control nodes to be considered successful, the steady-state gene expression value of the 
internal-marker node must be greater in the attractor produced by the perturbation on the FVS 
control nodes than the steady-state gene expression value in the attractor associated with the 
unperturbed state. The column names are the internal-marker nodes for each tissue fate: 
Alp=endoderm, Bco=Brain, Celf.a=pan-neural, Epi1=epidermis, Fli/Erg.a=mesenchyme, 
Myl=muscle, Noto1=notochord. The row names are the abbreviations of the combinations of 
perturbations on FVS control nodes (A/a=Foxa.a, D/d=Foxd, E/e= Erk signaling, N/n= Neurog, 
T/t=Tbx6-r.b, Z/z=Zic-r.b, uppercase indicates overexpression, lowercase indicates knockout). 
The tissue that was induced experimentally is listed in parentheses.  
 

name Alp Bco Celf3.a Epi1 Fli.Erg.a Myl Noto1 

Adentz  
(experimentally induced 
endoderm) 

0.118 -0.427 -0.427 0.249 -0.185 -0.141 0.117 

adentZ  
(experimentally induced 
brain+pan-neural) 

-0.385 0.423 0.423 0.249 -0.238 -0.005 0.112 

adeNtz  
(experimentally induced 
pan-neural) 

-0.524 -0.427 -0.427 0.249 -0.302 -0.107 0.24 

adEntZ  
(experimentally induced 
mesenchyme) 

-0.263 0.423 0.423 -0.178 0.283 -0.088 -0.006 

adentz  
(experimentally induced 
epidermis) 

-0.524 -0.427 -0.427 0.249 -0.302 -0.125 0.235 

adenTz  
(experimentally induced 
muscle) 

-0.524 -0.427 -0.427 0.249 -0.302 0.083 0.259 

aDentz  
(experimentally induced 
notochord) 

-0.379 -0.427 -0.427 0.177 -0.398 -0.123 0.094 
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Supplementary Table 5: Table of the fifteen perturbations on FVS control nodes that passed 
both filtering criteria for induced pluripotent stem cell reprogramming from primed to naïve 
pluripotency simulations when using seven internal-marker nodes. The first column contains the 
perturbation ID for the fifteen perturbations out of the 729 total possible perturbations. Columns 
two to seven contain the specified perturbation to each FVS control node: “up” denotes 
overexpression, “down” denotes knockouts, and blank cells represent no change to the node’s 
activity. The last three columns contain information about the number of overexpression and 
knockout perturbations and the total number of nodes perturbed in the considered FVS set. 
 

name Sox2 Nanog Gata6 Tbx3 Oct4 Klf4 # overexpression # knockouts total 
pert_445  up     1 0 1 
pert_418  up down    1 1 2 
pert_436  up  down   1 1 2 
pert_446  up    up 2 0 2 
pert_454  up  up   2 0 2 
pert_409  up down down   1 2 3 
pert_419  up down   up 2 1 3 
pert_427  up down up   2 1 3 
pert_437  up  down  up 2 1 3 
pert_455  up  up  up 3 0 3 
pert_473  up up   up 3 0 3 
pert_410  up down down  up 2 2 4 
pert_428  up down up  up 3 1 4 
pert_464  up up down  up 3 1 4 
pert_482  up up up  up 4 0 4 
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Supplementary Figure 3: Bar plots for each FVS control node in the fifteen perturbations that 
passed both filtering criteria for induced pluripotent stem cell reprogramming from primed to naïve 
pluripotency simulations when seven internal-marker nodes are used for Criterion 2. These plots 
describe the percentages of overexpression knockout perturbations or no change to activity for 
an FVS control node across the fifteen perturbation sets. The x-axis contains the denoted 
perturbation (down=knockout, up=overexpression, or no change). The y-axis denotes the 
percentage of knockout, overexpression perturbations, or no change to that node across all fifteen 
sets of perturbations on FVS control nodes.  
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Feature Importance Analysis in iPSC Reprogramming Machine Learning Classification 

NETISCE employs three machine learning classification algorithms to assess whether a given set 

of perturbations on an FVS set does shift the system from a given initial state to the desired cluster 

of attractors associated with the desired phenotype. We investigated how each algorithm 

classifies these perturbation sets on FVS control nodes by performing a Feature Importance 

Analysis for the Random Forest, Naive Bayes, and SVM classifiers (see Methods). In other words, 

we wanted to examine which network nodes and their steady-state expression values are critical 

determinants for classifying the attractors generated from perturbations on FVS control nodes. 

We obtained each machine learning classification method’s top 10 percent ranked features 

(Supplementary Table 6). We observe that the top features across all three classification 

algorithms are mutually exclusive. In addition, two of the highest-scoring nodes for SVM 

classification, Klf4, and Tbx3, are FVS control nodes. Note that only one node, Dusp6 had a non-

zero importance score for Naive Bayes classification. Interestingly, zero of the attractors 

generated from combinations of perturbations on FVS control nodes were classified to the ESC 

cluster by Naive Bayes (all 375 attractors that passed criterion 1 were classified to the ESC 

associated cluster by both SVM and Random Forest classifiers).   

Supplementary Table 6: Top 10% of important features for SVM, Naive Bayes, and Random 
Forest classification algorithms in iPSC network simulations. 

SVM Naive Bayes Random Forest 
Klf4 Dusp6 Pecam1 
Klf2  Lrh1 
Tbx3  Fgf4 

 
 
Network Revision Based on NETISCE Simulations 

Based on the Naive Bayes’ Feature Importance Analysis and classification results, we 

investigated if NETISCE was not correctly predicting the value of Dusp6 at the steady state. We 

observed that the gene expression value of Dusp6 was greater in the attractors generated from 

the  EpiSC initial states than in the attractors generated from the ESC samples. This observation 

disagreed with the literature, which states that high levels of Dusp6 maintain pluripotency26. 
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Additionally, if Dusp6 were considered a marker node, the perturbations on FVS control nodes 

would fail to pass criterion 2 because the steady-state expression values of Dusp6 would not shift 

to the expression values in the attractors generated from the ESC initial states. The disagreement 

between literature information and the inability to shift towards the desired state indicated that the 

network might be missing information to simulate Dusp6 accurately. We used the INDRA27 

database tool to search for literature and database information to determine if there was missing 

edge information between other network nodes and Dusp6. INDRA identified an inhibitory edge 

between Pitx2 and Dusp6. This edge was added to the network, and NETISCE simulations were 

re-computed. Indeed, the steady-state expression value of Dusp6 agreed with the literature 

expectation and was greater in the attractors generated from the ESC initial state data than the 

attractors generated from the EpiSC initial state data. With the modified network, 390 attractors 

generated from perturbations on FVS control nodes were classified to the cluster associated with 

the ESC phenotype by both SVM and Random Forest Classifiers. The Naive Bayes algorithm did 

not classify any attractors to the ESC-associated cluster. The 390 attractors comprised the same 

372 attractors generated by combinations of perturbations on FVS control nodes in the unmodified 

network simulations plus an additional 12 attractors. Interestingly, the same 15 perturbations on 

FVS control nodes that passed the second filtering criterion using the original network were the 

only combinations of perturbations on FVS control nodes to pass this criterion again in the 

modified network when using the set of 9 internal-marker nodes. Finally, for these 15 

combinations of perturbations on FVS control nodes that passed the second filtering criterion, the 

steady-state expression value of Dusp6 successfully shifted into the range of the attractors 

generated from the ESC initial state data. 
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Supplementary Data 1: 

Excel format. The 68 FVSes in the colorectal cancer signaling 
network. Each numbered row contains a 13-node FVS in the 
network. 
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Validation of Colorectal Cancer Network and SFA Simulation 

In this study of adaptive resistance to MAPK inhibitor therapy in CRC, the ultimate therapeutic 

goal is to decrease proliferation and increase apoptosis in tumor cells. In a method adapted from 

Beal et al.28, we verify that CRC tumors’ proliferation and apoptosis signatures are preserved 

under the SFA simulation of the generic CRC network for individual cell lines or tumors. The 

underlying concept is that each CRC tumor has specific values for genes related to apoptosis and 

proliferation based on their normalized expression data and mutational profiles (Supplementary 

Figure 4a). The genes related to apoptosis and proliferation within the network can be used as 

signatures of apoptosis and proliferation for the tumor. The corresponding values of these genes 

are used as a score for the apoptosis and proliferation signatures. We want to verify that after the 

network is simulated, the steady-state values of the signature genes maintain the original 

signature scores.  

First, we used the Molecular Signatures Database29 gene sets for “Apoptosis” and “G2M 

Checkpoint” (proliferation-related genes) to identify 12 genes related to apoptosis and ten genes 

related to proliferation within the CRC signaling network to be used for the apoptosis and 

proliferation signatures. Normalized gene expression data for 592 CRC tumors were obtained 

from The Cancer Genome Atlas30. The attractors were estimated with SFA for each tumor sample, 

initializing the network with the tumor’s data profile. Gene Set Variation Analysis31 was used for 

each patient tumor to compute apoptosis and proliferation signature scores for the normalized 

gene expression data and the attractor estimated from the expression and mutational data. 

Finally, the Spearman Correlation is calculated between the patient data signature score and the 

attractor signature score for apoptosis and proliferation signatures. The correlation coefficient for 

the proliferation and apoptosis signature scores was used to evaluate if the network and SFA 

simulations maintained the appropriate proliferation and apoptotic signatures for each CRC tumor. 

A strong correlation coefficient indicated that the network and simulations preserved the 

appropriate signatures and could be used to perform perturbations on FVS control nodes. The 
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signature scores from the patient data and the associated estimated attractors were strongly 

correlated for apoptosis signature nodes (R=0.76) and proliferation signature nodes (R=0.81) 

(Supplementary Figure 4b). We concluded that the network and simulation framework could 

simulate control node perturbations in the system. 

 
Supplementary Figure 4: Validation of Colorectal Cancer (CRC) Signaling Network and SFA 
simulation. a Overview of the network and simulation validation method, adapted from 
PROFILE28. Using CRC patient tumor data, the underlying concept is that each CRC tumor has 
specific values for genes related to apoptosis and proliferation based on their normalized 
expression data and mutational profiles. Our goal is to verify that the proliferation and apoptosis 
signatures of CRC tumors are preserved under the SFA simulation of the generic CRC network 
for individual cell lines or tumors. We used the Molecular Signatures Database29 to identify 
apoptosis and proliferation-related genes within the CRC signaling network. The corresponding 
values of these signature genes are used as a score for the apoptosis and proliferation signatures. 
Starting from patient tumor gene expression data from The Cancer Genome Atlas (TCGA), 
signature scores for the proliferation and apoptosis-related genes within the network are 
computed for each patient using Gene Set Variation Analysis31 (bottom branch). Next, using the 
network and SFA, an attractor is estimated for each patient, and the apoptosis and proliferation 
signature scores at the attractor state are computed (top branch). The spearman correlation is 
calculated between the patient data signature score and the attractor signature score for 
apoptosis and proliferation signatures. b Spearman correlation plots for the apoptosis and 
proliferation signature scores. The correlation coefficients indicate that the network and 
simulations preserved the signatures of apoptosis and proliferation. 



 21 

Supplementary Figure 5: Bar plots for each FVS control node in the 1,266 perturbations that 
passed both filtering criteria in the colorectal cancer adaptive resistance reversion simulations 
when twenty internal-marker nodes are used for Criterion 2. These plots describe the percentages 
of overexpression and knockout perturbations or no changes to activity for an FVS control node 
across the 1,266 perturbation sets. The x-axis contains the denoted perturbation 
(down=knockout, up=overexpression, or no change). The y-axis denotes the % of knockout, 
overexpression, or no change to that node across all fifteen sets of perturbations on FVS control 
nodes.  
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Feature Importance Analysis in CRC MAPKi Resistance Reprogramming Machine Learning 

Classification 

We analyzed the top 10 percent of ranked features for the three machine learning classification 

algorithms (Supplementary Table 7). All three classification methods contain key factors (either 

FVS control nodes or internal-marker nodes) within their top 10% of ranked features. Additionally, 

BRAF, DUSP1, and SOS1 are top features in both SVM and Naive Bayes classification, while 

CTNNB1 and CYCS appear as top features for both Naïve Bayes and Random Forest classifiers. 

Interestingly, two of the features selected by the Naive Bayes algorithm, DNA_damage, and 

EGFR, are either source nodes or directly below network source nodes, while the top features for 

Random Forest and SVM classification appear further downstream in signaling pathways in the 

network. 

Supplementary Table 7: Top 10% of ranked features for SVM, Naive Bayes, and Random Forest 
classification algorithms in CRC MAPKi Resistance Reprogramming simulations. 

SVM Naïve Bayes Random Forest 
BRAF BRAF MAP2K4 
MAP2K1 EGFR CYCS 
MAPK1 mTOR2 XIAP 
RPS6KA1 FOXO3 JAK2 
SOS1 CTNNB1 GRB2 
APRY1 CYCS ATF2 
GAB1 DIABLO SOS1 
HNF1B DNA_damage MAPKAPK2 
DUSP1 DUSP1 CTNNB1 
RAF1 E2F1 CDKN1A 
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Supplementary Figure 6: von Dassow Drosophila Segment Polarity Gene ODE model. a 
Drosophila Segment Polarity network. The nodes highlighted in yellow comprise the FVS. b The 
lower panel displays the time series simulation using 0% noise for internal-marker nodes wg_1 
and en_2. The top panel shows the time course results for the simulations of 1,000 wild-type initial 
states with 40% noise. For all noisy initial states, the steady-state values of wg_1 and en_2 are 
the same as those in the simulation with 0% noise. c We perform time-course simulations with 
the unpatterned initial conditions. The first panel shows the time-course results for wg_1 and en_2 
under the simulation of the unpatterned initial condition with 0% noise. In the second panel, the 
results of simulating the unpatterned initial condition with the FVS control show that the steady-
state values of the marker nodes shift to the values in the wild-type steady state. The third panel 
displays the results of simulations of the unpatterned initial conditions with 40% noise with the 
FVS control applied. 
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Supplementary Table 8: Summary of the NETISCE simulations of control in von Dassow 
Drosophila Segment Polarity Gene model with noisy initial states. 1,000 sets of three wild-type 
and three unpatterned initial states with increasing noise levels were provided as initial states for 
network nodes to NETISCE. The goal of these simulations was for NETISCE to correctly predict 
that the specified perturbations on FVS control nodes could shift the system from the unpatterned 
attractor to the wild-type attractor. The second column contains the number of the 1,000 sets per 
noise level that passed criterion 1. the second column contains the number of the 1,000 sets per 
noise level that passed criterion 2 and the percentage of the total that passed criterion 2 in 
parentheses. 
 

% noise # passing criterion 1 # passing criterion 2 
1% 1000 1000 (100%) 
5% 1000 996 (99.6%) 
10% 1000 987 (98.7%) 
20% 1000 969 (96.9%) 
30% 1000 926 (92.6%) 
40% 999 856 (85.6%) 
50% 965 763 (76.3%) 
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Supplementary Figure 7: Reprogramming Pancreatic Exocrine Cells to Beta-Cells. a In this 
study, we use NETISCE to identify PFVS that shift pancreatic exocrine cells to beta-cells. We 
initialize the system with gene expression data from exocrine cells (x0) and simulate combinations 
of perturbations on the FVS control nodes to shift the system to a state (yellow arrow leading to 
x′0) that leads to beta-cells (magenta circle). b Pancreatic cell fate differentiation GRN introduced 
in Zhou et al.18. Blue nodes are control nodes, and magenta nodes are internal-marker nodes. c 
Key nodes for the cell fate reprogramming. Presented here is the FVS control node set within the 
network. Four internal-marker nodes are used to identify targets to reprogram the system towards 
the beta-cell fate. The phenotypes associated with the internal-marker nodes are denoted in the 
second column.  
 
Reprogramming Pancreatic Exocrine Cells to Beta-Cells in NETISCE 

The Zhou et al. SDE model of pancreatic cell fate differentiation was used to simulate cell fate 

reprogramming from pancreatic exocrine cells to beta-cells18. After reproducing experimentally-

verified exocrine cell reprogramming to beta-cells through MafA, Pdx1, and Ngn3 overexpression, 

Zhou et al. identified that additional Pax4 overexpression and Ptf1a knockout could improve 

exocrine to beta-cell reprogramming efficiency. Microarray gene expression data for exocrine and 

beta-cells were obtained from Gene Expression Omnibus (GEO: GSE12025) and normalized 

using the Voom R package32. There were three replicates for each cell type. The pancreatic cell 

fate differentiation gene regulatory network contains 11 nodes and 34 edges (Supplementary 
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Figure 7b). Using NETISCE, we estimated the attractors from the exocrine and beta-cell 

normalized gene expression data and the 100,000 randomly generated initial states. On these 

100,006 attractors, we performed k-means clustering. The optimal number of clusters identified 

by the elbow and silhouette metrics was k=2. One cluster contained the attractors generated from 

the exocrine cell gene expression. The second cluster included the attractors generated from the 

beta-cell gene expression. 

NETISCE identified one FVS in the network (Supplementary Figure 7c), comprising six nodes: 

Mafa, Pax4, Pax6, Pou3f4, Ptf1a, and the “delta gene.” We simulated 324 combinations of PFVS. 

Of the 324 combinations of perturbations on FVS control nodes, 86 passed the machine learning 

classification filtering criterion. We used four internal-marker nodes (Supplementary Figure 7c): 

Pdx1, Mafa, Neurog (genes upregulated in beta-cells), and Ptf1a (gene upregulated in exocrine 

cells). The steady-state expression values of the internal-marker nodes in 31 of the 86 attractors 

calculated from the combinations of perturbations on FVS control nodes were in the range of gene 

expression values of the beta-cell-associated attractors and thus passed criterion 2 for all three 

replicates. The FVS contains only a subset of the nodes studied for exocrine cell fate 

reprogramming in Zhou et al.: MafA, Pax4, and Ptf1a. Consistent with their results, the attractor 

generated from the combination of Ptf1a knockout and MafA overexpression passed both filtering 

criteria. It is important to note that although the mathematical model of pancreatic cell fate 

differentiation is stochastic, the deterministic simulations in NETISCE capture the appropriate cell 

fate reprogramming behaviors. 
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Supplementary Table 9: Summary of the NETISCE simulations in Zhou’s Pancreatic Cell Fate 
Specification model with noisy initial states. 1,000 sets of three exocrine cell and three beta-cell 
normalized gene expression sets with increasing noise levels were provided as initial states for 
network nodes to NETISCE. The goal of these simulations was for NETISCE to correctly predict 
the 31 combinations of perturbations on FVS control nodes that shift the system from the exocrine 
cell fate to the beta-cell fate. The first column contains, per noise level, the number of the 1,000 
sets that passed criterion 1. The second column contains, per noise level, the number (and 
percentage) of the 1,000 sets that passed criterion 2. 

% noise # passing criterion 1 # passing criterion 2 
1% 1000 941 (94.1%) 
5% 1000 897 (89.7%) 
10% 1000 896 (89.6%) 
20% 1000 895 (89.5%) 
30% 1000 881 (88.1%) 
40% 1000 882 (88.2%) 
50% 1000 841 (84.1%) 
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