
Supplementary methods

Batch effects among replicate datasets

All MCF10A datasets used in our study had replicates, which could be combined to increase the examples

available for training and testing our machine learning methods/models. However, before doing this it was

important to determine if there were batch effects between those replicate dataset. We conducted a principal

component analysis (PCA) of the combined replicate data associated with high and low dose experiments, and

found no evidence of batch effects (Supplementary Fig. 1), and so, we merged the data from the replicates.

Processing of the datasets

One consequence of the experimental procedures that generated the MCF10A datasets was that kinase activity

measurements ceased when a cell divided. This meant that undivided time courses contained a fixed number

of measurements over the 49 hour duration of the experiment, whereas divided courses contained less. ML

algorithms often require fixed length input time courses. Padding, i.e., adding zeros or another pre-specified

value at the end of shorter time courses, is a commonly used approach to achieve this. However, in our case,

the existence of padding alone would have been indicative of the divided class.

We therefore truncated undivided time courses to match the length distribution of the divided ones in the

training set before applying padding. This was done by randomly sampling from the discrete distribution of

lengths of divided cell time courses in the High-dose (train) dataset, and randomly assigning them to the time

courses from the undivided cells. For each undivided time course, we removed all time points beyond this

sampled length, and then assigned the mean of the time course values until this point (mean padding) to its

right hand side so that all time courses–divided and undivided–were of equal length. Note that the ERK and

Akt time courses corresponding to a single divided cell were of the same lengths; we therefore sampled

lengths from one modality and applied it to both modalities of an undivided time course.

The RPE (test) dataset had several differences in the experimental process from the MCF10A data, including a

different reporter (Table 1). We therefore scaled the values in RPE (test) to be consistent with those in

High-dose (train). We did this by finding the median values in the time courses in both datasets to reduce the

impact of outlier values, and calculated the midpoint of the range, i.e. [max(median) + min(median)]/2. We

then linearly scaled the time courses in the RPE (test) dataset so that this resultant midpoint matched that of

High-dose (train). Implementation details are available in the code

(https://github.com/GauravPandeyLab/predicting-cell-division.git).
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Cross-validated performance analysis and model selection

We partitioned the High-dose (train) dataset into 10 folds that were kept consistent in the evaluation of all

methods tested. To reduce the effects of class imbalance, we undersampled all training folds to equalize the

sizes of the divided and non-divided classes. Our analysis considered three separate cases, using (i) only ERK

time courses, (ii) only Akt time courses, and (iii) both ERK and Akt time courses, with the aim of building

three final models to evaluate on our test datasets. Classification algorithms were trained on each set of nine

training folds, and used to make predictions on the remaining test fold. Predictions across all test folds were

concatenated before being evaluated. Evaluation of classification performance was based on the Fmax score

associated with the minority divided class. This measure, which is the maximum value of the F-measure

across all classification thresholds, has been suggested to be more reliable than other more commonly used

evaluation metrics for unbalanced class scenarios like ours [1, 2]. We also calculated the area under the

receiver operating curve, and for reference, the performance of a random classifier in our results (Fig. 2B-D).

At the beginning of the above evaluation process, a number of transformations were evaluated by assessing

the predictive performance of classifiers built using Ensemble Integration (EI) [3]. Transformations were

applied to ERK and Akt modalities separately to generate features which were used as input to EI, which

carried out the above cross-validation process internally, and generated performance scores for each ensemble

method considered, forming a distribution of performance scores (Fig. 2B). The most effective transformation

was identified as the one with the highest median EI performance across cases (i)-(iii), and selecting the most

frequent one. The final transformation + ensemble method for each course was determined to be the one with

the highest Fmax.

This best-performing method was compared to two benchmark algorithms: an LSTM-based [4] deep learning

algorithm, and XGBoost [5]. In the case of the LSTM model, we further partitioned each (outer) training fold

into 10 inner folds (nested cross validation) to optimize the number of training epochs and avoid overfitting (a

common issue with neural networks especially with a small number of samples). For each outer fold, inner

test folds were used to track the validation loss at each successive epoch, and the epoch with the lowest loss

was stored. The median of these epoch values was then taken across the inner folds. An LSTM model was

then trained (with this median epoch value) and evaluated on each time course and their combination in the

same cross-validation setup as described above.

For the best performing methods for cases (i)-(iii), we trained final models on the full High-dose (train) dataset

(all ten folds). We then evaluated these models on the held out test sets (Table 1). A more detailed overview of

the analysis performed in this study is shown in Supplementary Fig. 2.
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Ensemble Integration configuration

We used the recent Python eipy package [6] to train and evaluate ensembles using the EI framework [3].

Supplementary Table 1 lists the base and ensemble classification algorithms used within EI in this study.

Discrete wavelet transforms

Discrete wavelet transforms (DWTs) are a principled approach to decomposing time series into time and

frequency components simultaneously [7], unlike discrete Fourier transforms which represent time series in

the frequency domain alone. The DWT decomposes the signal into “approximation” and “detail” coefficients.

The approximation coefficients represent the coarse, low-frequency components of the signal, while the detail

coefficients capture the high-frequency details.

We took the approach of extracting low frequency information from the signal by performing repeated DWTs

as a cascade (Supplementary Fig. 3). We applied three Haar DWTs to each processed time series example

successively, discarding the high frequency detail component of the signal at each stage. The resulting low

frequency representation had time points spaced approximately 2 hours apart.

Interpretation of cell fate prediction models

We interpreted the final [ERK, Akt] model as follows. We began by applying a permutation feature

importance algorithm [8] to each base classifier model across both modalities. This algorithm (see

Supplementary Alg. 1) evaluates the change in Fmax score when randomly shuffling a feature column for a

particular time point, thereby breaking the relationship between the measurement at that time point and the

target class, yielding a measure of the former’s overall importance for making predictions. This process was

repeated several times for each time point, and the mean difference in performance recorded. These

importance means were then percentile ranked. Thus, we obtained a set of local feature (time point) ranks

(LFR) for each base classifier in the ensemble.

The LFR were independent of other base classifiers and, therefore, modalities. We needed to weight and

combine the LFR according to the importance of the base model predictions in order to calculate the

importance score of each time point for the final ensemble model. This model was based on the DWT+EI

logistic regression stacker (Results). Since the ensemble algorithms took probabilities as input (i.e. all features

had the same scale), we were able to gauge the importance of the base classifiers in the EI model by assessing

the magnitude of the learned coefficients of the logistic regression stacker. Thus, we percentile ranked the

absolute values of logistic regression coefficients, and used them as weights in a weighted average applied to

the LFR across base classifiers. This resulted in an importance score for each time point which varied between

0 and 1, with higher scores indicating greater importance.
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LSTM benchmark

There is substantial flexibility when constructing LSTM architectures, but we found that configurations with

large numbers of parameters were prone to overfitting, which was likely due to the relatively small amount of

training data available for this task. For this reason, we limited the number of layers in our LSTM benchmark,

as well as the number of units in each layer. This benchmark consisted of two hidden layers: a bi-directional

LSTM layer, followed by a fully connected layer with ReLU activation. Each of these layers contained 64 units.

We also used heavy dropout to regularize the network to further control overfitting.

We optimized the binary cross-entropy loss used in the benchmark using Adam optimization [9]. Full details

of the method used can be found in the GitHub repository.
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Supplementary figures

a b

Supplementary Figure 1: Assessment of batch effects among replicate datasets using Principal Components Analysis
(PCA). Similar clustering in the principal components implied that there are minimal batch effects between original and
replicate experiments for a. High-dose data and b. Low-dose data. We therefore combined original and replicate data to
increase the number of examples in this study and enhance the robustness of the findings.
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Supplementary Figure 2: Workflow overview of the analysis performed in this study.
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Supplementary Figure 3: Feature extraction from time courses using the discrete wavelet transform (DWT). We applied a
Haar DWT to the original signal to produce the first level of approximation and detail coefficients. We then applied
successive transformations to the approximation coefficients two more times as a cascade to obtain level 2 and 3
approximation and detail coefficients. We selected the level 3 approximation coefficients as features for input to our
classification models, since these coefficients retained the low frequency shape of the signal, while removing higher
frequency information including noise. This representation of the signal contained only 25 data points as opposed to 198
in the original signal, thus also helping with dimensionality reduction.
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Modalities included

[ERK, Akt] ERK Akt

Modalities included

[ERK, Akt] ERK Akt

Original signal Level 1 Level 2 Level 3 Level 4

Supplementary Figure 4: Cross-validated performance of EI-based cell fate classification methods for different levels of a
DWT cascade. The approximation coefficients at each level of the cascade were generated as detailed in Methods and
Supplementary Fig. 3. EI was then applied to these coefficients, and the constituent methods were evaluated in a
cross-validation setting in an identical way to that of the results presented in Fig. 2b. These results show that the level 3
approximation coefficients were the most predictive transformation to consider against other methods of time series
transformation.
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Supplementary Figure 5: Time courses of ERK and Akt C/N ratios in the processed datasets used in our study. We show
the median time course across the cells included in each dataset (lines), along with the associated median absolute
deviation (shaded interval). ERK and Akt modalities were available for the MCF10A datasets, but the RPE (test) dataset
included only ERK. The initial jump in kinase activity observed in all MCF10A datasets was due to the initial serum
starvation and subsequent growth factor treatment of cells in these experiments. Cells in the RPE (test) dataset were
asynchronously cycling in full growth media. Note that activity in the RPE (test) dataset is related to a FRET-based metric
and was therefore scaled.
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Supplementary Algorithm 1 Computation of importance scores for the [ERK, Akt] ensemble
model. This model used stacked generalization with logistic regression. The algorithm utilizes
sklearn.inspection.permutation_importance from the scikit-learn machine learning library [10], which is
a model agnostic interpretation method.

Data:
n_base_predictors: number of base predictors in the ensemble.
n_features: number of features across all modalities.
base_predictors: list of base predictors in the ensemble.
lr_coeffs: vector of length n_base_predictors containing the learned coefficients in the logistic regression
stacker. The larger the magnitude of the coefficient, the more important the corresponding base predictor.
Functions:
permutation_importance: the function sklearn.inspection.permutation_importance, which outputs an
feature importance measures for a single model.
Result:
weighted_importance: vector of length n_features containing feature importance scores between 0 and 1,
weighted according to the contribution of base predictors in the ensemble.

Calculate local model ranks (LMR) and local feature ranks (LFR):
LMR← vector of length n_base_predictors, containing percentile ranks of abs(lr_coeffs).
LFR← array of shape (n_features × n_base_predictors).
for m← 1 to n_base_predictors do

LFR[:, m]← percentile rank permutation_importance(base_predictor[m])
Calculate weighted_importance:
weighted_importance← empty vector with length n_features
for i← 1 to n_features do

for j← 1 to n_base_predictors do
rank_product_importance← LMR[j]× LFR[i, j]

weighted_importance[i]← mean(rank_product_importance[i, :])
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Supplementary tables

Method Base Ensemble
Logistic regression [11] ✓ ✓

Gaussian naive Bayes [11] ✓ ✓

k-nearest neighbours [11] ✓ ✓

Support vector machine [11] ✓ ✓

Decision tree [11] ✓ ✓

Random forest [11] ✓ ✓

Gradient boosting [12] ✓ ✓

Extreme gradient boosting [5] ✓ ✓

Multi-layer perceptron [11] ✓ ✓

Adaptive boosting [13] ✓ ✓

Ensemble selection∗ [14] ✗ ✓

Mean∗ ✗ ✓

Supplementary Table 1: Component methods of ensembles applied using Ensemble Integration [3]. Each ensemble
generated utilized all base classifiers listed. Unless starred the ensemble method is applied using stacked generalization
[11]. Specific parameters/hyperparameters used are given in the GitHub repository.
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