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Ruling out a tidal disruption event One issue that arises in understanding the origin of the most

luminous transients is the difficulty in distinguishing SLSNe from extremely bright tidal disruption

events (TDEs), i.e. transients powered by the destruction of a star passing within the tidal radius

of a supermassive black hole. ASASSN-15lh was previously thought to be the most luminous

known SN1, but subsequent studies argued that its properties were more consistent with a TDE

interpretation2, 3.

In the case of SN2016aps, we can clearly rule out a TDE explanation. Most TDEs show a

constant or even increasing temperature over time, whereas SN2016aps shows a decreasing tem-

perature typical of SN cooling (Extended Data Figure 1). The spectrum is also typical of SLSNe

IIn, in particular Lorentzian line profiles (Figure 2) and the evolution of the Hα equivalent width

with time (Extended Data Figure 5). SN2016aps is inconsistent at the ≈ 5σ level with having

occurred in the centre of its host, whereas a TDE would have occurred in the nucleus.

Comparison to SLSNe IIn Figures 2 and 3 show spectroscopic and photometric comparisons

with a number of SLSNe IIn. Although SN2016aps is more than twice as energetic as any of the

other events, there are a number of similar properties among the class. Considering only events

that emit & 1051 erg (SN2006gy, SN2003ma, SN2008am, SN2008fz, SN2015da, CSS121015) or

fade on a similar timescale to SN2016aps (SN2006tf, SN2010jl), all events show similar maxi-
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mum light spectra, with blue continua and dominated by roughly symmetric, scattering-broadened

(i.e. Lorentzian) Balmer lines. This similarity persists for most events4–8 throughout their evo-

lution, as the continuum cools and the equivalent widths of the lines increase. SN2006gy and

CSS121015 are exceptions. From around 90 days after explosion, SN2006gy displays a rather

asymmetric Hα line, with a serious of narrow P Cygni absorption lines from slow, unshocked

CSM9, whereas CSS121015 instead shows broad metal lines resembling10 SLSNe I. These events

may require a more complex CSM structure. However, the key point is that SN2016aps is not

unusual spectroscopically for a SLSN IIn.

The host galaxy environments provide another point of overlap between many of these

events. CSS121015, SN2008fz, SN2010jl and SN2006tf all occurred in dwarf galaxies, with ab-

solute magnitudes Mr ≈ −17 to −18 mag, comparable to SN2016aps. The host metallicities

estimated from emission line diagnostics are . 0.3 − 0.4Z� for SN2010jl11 and SN2008am5. In

contrast, SN2006gy, SN2003ma, and SN2015da occurred in more massive galaxies withM ∼ −21

mag. SN2006gy exploded close to the center of a galaxy hosting an active galactic nucleus,

whereas the others were significantly offset from the centers of their hosts4, 8. There was no evi-

dence of AGN variability in the host of SN2003ma in 7 years of pre-SN observations4. This will

be important in the next section, when we compare to a population of transients that seem to occur

exclusively in active galactic nuclei.

To summarise: of the eight SLSNe IIn that come closest to SN2016aps in photometric prop-

erties, all show similar maximum light spectra, with six showing similar spectra throughout the
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photospheric phases (nebular spectra are not available). Five events occurred in metal-poor or

dwarf galaxy environments. Four events satisfied both of these similarity criteria. The spectro-

scopic consistency is not surprising, as interaction with an opaque, hydrogen-rich circumstellar

shell can lead to similar spectra across a wide range of explosion parameters12. Pulsational PISN

mass ejections have been suggested as a plausible means to build up a massive CSM in other

events9. The key difference with SN2016aps is that the total energy and long timescale demand

an extremely high final explosion energy beyond what is possible with conventional core-collapse.

Thus while these events certainly form an observational class, and possibly a physical class if

the CSM is produced by the same mechanism, SN2016aps requires an extra ingredient: either a

significantly larger mass or an extremely energetic explosion.

Simulations of very energetic core collapse SNe leading to SLSNe exist13, 14, however the

explosion energy is often a free parameter in these models. One physically-motivated way to get

a large explosion energy is through rotation – either in the form of a magnetar central engine

accelerating the ejecta on the spin-down timescale15, or the launching of jets in a collapsar-like

model16. In the latter case at least, the explosion may be highly asymmetric17. Unfortunately, the

presence of dense CSM in events such as SN2016aps obscures the geometry of the underlying

ejecta.

Comparison to hydrogen-rich transients in active galactic nuclei (AGN) Recently a popula-

tion of extremely energetic hydrogen-rich transients have been discovered in the centres of active

galaxies6, 18, 19. In particular, PS1-10adi radiated19 ∼ 2 × 1052 erg. They have been interpreted by
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some authors6, 19 as most likely resulting from SNe interacting with dense material in the centres

of these galaxies, though they do not rule out TDEs as an alternative explanation. In this section

we argue that the latter interpretation is more likely, and that despite superficial spectral similarity,

the off-nuclear SN2016aps is distinct from these events.

Extended Data Figure 6 shows the spectrum19 of PS1-10adi at around 200 days after maxi-

mum, compared to our Gemini spectrum of SN2016aps at a similar phase. Although the strongest

features in both spectra are the Balmer lines, these lines show a red shoulder in PS1-10adi but

are symmetric (and slightly blueshifted) in SN2016aps, more typical20 of SLSNe IIn with electron

scattering in an expanding atmosphere. The line profiles, and the presence of narrow Fe II emis-

sion, are much more similar to PS16dtm18. This is another transient in an AGN, but in this case

there is strong evidence that the source is associated with the supermassive black hole, rather than

being a SN.

In particular, historical observations from XMM-Newton showed that the AGN is an X-ray

source, but observations with Swift during the optical flare showed that X-rays had faded by at

least an order of magnitude. A SN is unable to obscure the AGN accretion disk, but formation

of an atmosphere or disruption of the existing disk by a TDE naturally explains the X-ray fading.

Interestingly, PS1-10adi showed X-rays that appeared 5 years after the optical flare, which could

be due to the formation of a disk following the TDE, or an existing disk that is revealed after the

debris settles down (the inverse of the process that explains PS16dtm).

Another discriminant between SN2016aps and this population of nuclear transients is the
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lack of a mid-IR echo. All of these event studied to date19, including PS16dtm18, have shown very

bright mir-IR emission, detected by the Wide-field Infrared Survery Explorer (WISE), following

the optical flare21. This has been interpreted21 as a TDE signature, as the mid-IR luminosity in

these events is challenging to produce with a SN, but consistent with a dusty AGN torus. At the

distance of SN2016aps, a mid-IR echo of a similar brightness to that seen21 in PS1-10adi would

have been easily detectable, but no variability is seen in WISE data spanning ≈ 1000 days around

the optical peak.

The AGN torus model can also explain21 two further features of PS1-10adi. The Fe II emis-

sion can occur from sublimation of the same dust responsible for the mid-IR echo (note that narrow

Fe II can also arise from dense gas close to an accretion disk22). Furthermore, the observed optical

re-brightening ∼ 2000 days after the light curve peak (not typically seen in SNe) can arise when

an outflow driven by the TDE eventually collides with the torus.

As well as the locations within their host galaxies differing, the properties of the galaxies

themselves differ between SN2016aps and the nuclear events. The absolute magnitude of the

SN2016aps host is Mg ≈ −16.9mag, whereas the hosts of the other events are brighter by >

2.5 − 5mag, i.e. a factor 10 − 100 (note that these are also significantly brigher than most of the

SLSN IIn hosts discussed in the previous section). The peak luminosity of PS1-10adi is consistent

with the estimated Eddington luminosity of the associated AGN19, and the other nuclear events

are either less luminous or in brighter galaxies, i.e. all are likely radiating below the Eddington

luminosity for the AGN in these galaxies. In comparison, the luminosity of SN2016aps would be
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approximately 10× Eddington if it was associated with a supermassive black hole in such a faint

galaxy, assuming typical scaling of the black hole mass with the galaxy mass23. Thus while all

the nuclear events can be naturally accommodated within the context of black hole accretion, from

TDEs or otherwise, SN2016aps is much more likely a SN.

The interacting SN model proposed for the nuclear transients can account for the dense

CSM, either as a result of runaway mergers, an existing narrow-line region, and/or ionisation con-

finement in the AGN radiation field19. However, dense CSM is not the only requirement; a large

explosion energy Ek > Erad is also needed to power the light curve. We are not aware of any

reason why such explosions would occur preferentially near AGN. Most observed (SLSNe, long

gamma-ray bursts) and theoretical (PISNe) SNe with large explosion energies favour low metal-

licity environments24–26, quite unlike the centres of massive galaxies. Moreover, the integrated

radiation from PS1-10adi is somewhat uncomfortable for SN models, exceeding by a factor & 2

the maximum predicted emission for hydrogen rich SNe27. We therefore conclude that extremely

energetic nuclear transients are quite unlikely to be SNe, leaving SN2016aps as the most secure

case of a SN radiating > 5× 1051 erg.

Light curve models Models from the literature. We estimate the mass and energetics of SN2016aps

using analytic relations28 for the interaction of SN ejecta with a dense wind. The total radiative

energy released is given by

Erad = 0.44× 1050κ0.40.34E
1.2
51 M

−0.6
10 D0.8

∗ erg (1)
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where κ0.34 is the opacity in units of 0.34 cm2 g−1, E51 the kinetic energy in units of 1051 erg,

M10 is the ejected mass in units of 10M�, and D∗ ≡ 1000Ṁ/vw is the density parameter for

pre-explosion mass-loss with rate Ṁ in M� yr−1 and velocity vw in km s−1. Erad is obtained by

integrating the bolometric light curve. The luminosity is given by

L = 7.6× 1043κ−0.6
0.34 E

1.2
51 M

−0.6
10 D−0.2

∗ erg s−1. (2)

We divide these two equations to eliminate E51 and M10, and assume κ = 0.34 cm2 g−1 as ap-

propriate for electron scattering in hydrogen-rich material. This gives the useful relation D∗ ∝

Erad/L. i.e., a flatter light curve (longer time-scale) indicates a higher density. We find D∗ = 20.5.

This gives Ṁ & 0.1 − 10M� yr−1 for vw = 10 − 1000 km s−1, fully consistent with our result in

the main text and Figure 4 that used a different relation for the wind density29. Putting these values

back into either equation allows one to find E2
K/Mej.

We then find the interaction radius by putting these values into the relation

Rd = 4.0× 1014κ0.80.34E
0.4
51 M

−0.2
10 D−0.2

∗ cm, (3)

valid as long as the outer CSM radius is much greater than Rd. This gives Rd = 5.3 × 1015 cm,

which is reassuringly consistent with the blackbody radius of the continuum emission (Extended

Data Figure 1). This implies that most of the continuum emission comes from close to the contact

discontinuity.

Finally, the shock velocity is found using

Rd = 5.7× 1014κ0.34D∗vsh cm, (4)
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where vsh is in units of 104 km s−1. Putting in our earlier results gives vsh ∼ 4600 km s−1. Interest-

ingly, this means that the transition to a steeper light curve at ∼ 200 days (Figure 4) corresponds

to the doubling timescale of the shocked region.

We also compare to published SLSN IIn models from more realistic simulations12 in Figure

4. The data are reasonably consistent with models calculated for a CSM mass of 17.3 M� and

explosion energy between 3− 10× 1051 erg (3− 10 times larger than a canonical SN). The ejecta

mass in the model is 9.8 M�; the sensitivity to this parameter was not explored in that study.

However, we note that the steeper and earlier drop in the model luminosity compared to SN2016aps

may be an indication that a larger mass is needed to match this event.

Bayesian light curve fit. We fit a circumstellar interaction model to the observed UV and

optical photometry using MOSFIT: the Modular Open Source Fitter for Transients30. This is a

semi-analytic code employing a range of modules that can be linked together to produce model

light curves of astronomical transients, and determine the best fitting model parameters through

Bayesian analysis. The interaction model and its implementation in MOSFIT are described in a

number of previous works31–33.

We first demonstrate that the model gives a reasonable match to the light curve using the

parameters derived in the previous section. We take the lower limit on ejected mass and assume

Mej = 52M�, and the integrated shocked CSM mass29, MCSM = 40M�. We further assume

that the observed photospheric radius corresponds to the contact discontinuity (i.e. the inner CSM

radius), and the mass above this radius is set by our derived D∗ = 20.5 (with a corresponding wind
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profile for the CSM). We use n = 10 and δ = 1 for the ejecta outer and inner density profiles,

though are results are largely insensitive to these parameters. We set vej = 104 km s−1, larger than

our derived shock velocity, but required to give a total energy EK = 3.1 × 1052 erg and match

the peak luminosity. The result, shown in Extended Data Figure 2, gives a good match to the

observations.

Next we free these parameters to find the best fit and Bayesian posteriors for our parameters.

To sample the parameter space we used the affine-invariant ensemble method34, 35. We ran the

Markov Chain with 100 walkers for 25,000 iterations, checking for convergence by ensuring that

the Potential Scale Reduction Factor was < 1.2 at the end of the run36. Our model has 7 free

parameters: the masses of the star and CSM; the ejecta velocity; the inner radius of the CSM;

the density at this inner radius; the time of explosion; and a white-noise term parameterising any

unaccounted-for variance. We use the same priors as for SN2016iet37, with a few modifications.

We fix the opacity at κ = 0.34 cm2 g−1, appropriate for electron scattering in hydrogen-rich matter,

and the final continuum temperature at 6000 K based on our photometry (Extended Data Figure

1). If left free, the temperature posteriors always converged to this value anyway, so we fixed it to

speed up our model runs. We run one model for a shell-like (constant density) CSM, and one for a

wind-like (ρ ∝ r−2) CSM, but otherwise use the same priors for both models.

To further reduce the number of free parameters, we assume 100% efficiency in radiating the

deposited energy. This efficiency follows that used in similar model fits32; a lower efficiency would

require a correspondingly larger explosion energy. The large efficiency is warranted as this model
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assumes an extremely optically thick interaction and therefore applies only in the limit of large

masses. We note that for the analytic wind model29, which does not require a large CSM mass,

we used a lower efficiency of 50%, also guided by previous work38. Assuming 100% efficiency in

that model would reduce the mass-loss curves in Figure 4 by a factor of 2, resulting in a total mass

MCSM & 20M�.

We obtain a similarly good fit for either a wind or shell CSM. The Watanabe-Akaike Infor-

mation Criterion (WAIC)39, 40 is essentially indistinguishable between them, with WAIC= 147.0

for the shell and 147.6 for the wind model. We show the shell model in Figure 4 and the wind

model in Extended Data Figure 2. The posterior probability densities of the free parameters is

shown for both models in Extended Data Figure 3. In the wind model, some of the posteriors lie

close to the upper bounds of the priors.

Uncertainties in PISN rate estimates Both our PISN and PPISN rate estimates contain signif-

icant uncertainty, particularly in the f2 parameter (Methods). Furthermore, the MESA models

underpinning these calculations were computed at SMC metallicity. Retaining sufficient mass to

reach the pair-unstable threshold depends on mass-loss rates that are highly sensitive to metallicty.

Single star MESA models over a wider range in metallicity26 suggest that PISNe should not oc-

cur at all at solar metallicity. The host galaxy of SN2016aps likely has a metallicity intermediate

between the LMC and SMC. At the higher metallicity of the LMC, PPISNe can occur for stars

with initial masses & 120M�, while full PISNe require >& 300M�. On the other hand, rapid

rotation can lead to chemically homogeneous evolution and a larger core mass for a given initial
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mass, thus lowering these thresholds41. This also facilitates engine formation. Given these rather

large uncertainties, all rate estimates should be considered indicative only.

However it is instructive to compare them to the observed rates of strongly interacting

SNe. While literature estimates to date have been based on small numbers, the best current

measurement42 of the SLSN II rate is 150+151
−82 Gpc−3 yr−1, corresponding to ≈ 3 × 10−4 − 1 ×

10−3 per CCSN. This is in broad agreement with the post-merger PPISN rate. The discovery of

SN2016aps suggests that up to ∼ 10% of SLSNe IIn may exceed the energy budget of a typical

SN; the estimated rates are consistent with such events being those that form magnetars.

We also note that an alternative engine could be fallback onto a central black hole remnant43.

Detailed rate estimates are not available for this model, but it seems to require relatively fine-tuned

parameters in order to impact the observed light curve43.
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