Supplementary information

Evidence for a compact object in the aftermath of the extragalactic transient AT2018cow

In the format provided by the authors and unedited

Evidence for a Compact Object in the Aftermath of the Extragalactic Transient AT2018cow Dheeraj R. Pasham^{1*}, Wynn C. G. Ho², William Alston³, Ronald Remillard¹, Mason Ng¹, Keith Gendreau⁴, Brian D. Metzger⁵, Diego Altamirano⁶, Deepto Chakrabarty¹, Andrew Fabian⁷, Jon Miller⁸, Peter Bult^{4,9}, Zaven Arzoumanian⁴, James F. Steiner¹⁰ Tod Strohmayer⁴,
Francesco Tombesi^{4,9,11,12}, Jeroen Homan¹³, Edward M. Cackett¹⁴, Alice Harding¹⁵

¹Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA ²Department of Physics and Astronomy, Haverford College, 370 Lancaster Avenue, Haverford, PA 19041, USA ³European Space Agency (ESA), European Space Astronomy Centre (ESAC), Villanueva de la Cañada, Madrid, E-28691, Spain ⁴NASA Goddard Space Flight Center, Greenbelt, MD, USA ⁵Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027, USA ⁶Department of Physics and astronomy, University of Southampton, University Road, Southampton, SO17 1BJ, UK ⁷Institute of Astronomy, University of Cambridge, UK ⁸Department of Astronomy, 311 West Hall, 1085 South University Ave., Ann Arbor, MI 48109-1107 ⁹Department of astronomy, University of Maryland College Park, MD, 20742 ¹⁰Center for Astrophysics, Harvard & Smithsonian, Cambridge, MA, 02138 ¹¹Department of Physics, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133 Rome, Italy ¹²INAF – Astronomical Observatory of Rome, Via Frascati 33, 00040 Monte Porzio Catone, Italy ¹³Eureka Scientific, Inc., Oakland, CA 94602, USA ¹⁴Department of Physics and Astronomy, Wayne State University, 666 W Hancock, Detroit, MI 48201 ¹⁵Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545

*To whom correspondence should be addressed; E-mail: dheeraj@space.mit.edu

Supplementary Table 1: Upper limits on the fractional rms value of QPOs at various integer harmonics of 224 Hz (see Supplementary Figure 1).

Frequency range•	rms upper limit (coherence=5) [†]	rms upper limit (coherence=10) [†]	rms upper limit (coherence=20) [†]
$\frac{1}{2}$ × (224±16) Hz	30	25	23
$\frac{3}{2}$ × (224±16) Hz	41	32	27
2×(224±16) Hz	42	36	30

•The frequency range where the rms upper limit is computed. [†]The rms upper limit is computed for three different coherence (QPO centroid/QPO width).

Supplementary Figure 1: 2-D histograms of $\Delta \chi^2$ improvement (constant vs constant + Lorenztian) vs corresponding fractional rms of a QPO-like feature at half the observed frequency, i.e., between 104-120 Hz. These were derived using simulations (See sec. 3 of Methods for more details). The dashed vertical line in each panel corresponds to the 3σ (99.73%) level. The upper limit on fractional rms corresponds to the intersection of the histogram with the 3σ vertical line (see Supplementary Table. 1). The three panels correspond to three different coherence values (centroid frequency/width) of a QPO-like feature between 104 and 120 Hz.