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Figure S1. Algorithm performance for detecting behaviors with discriminated features.  

Based on the minimum P value method, our algorithm can effectively detect patients with 8 abnormal 

behaviors from a healthy population with good performance (incongruous binocular movement, AUC 

96.5%; poor fixation, AUC 95.8%; compensatory head position, AUC 93.7%; compulsive light gazing, 

AUC 91.4%; frowning, AUC 90.2%; strabismus, AUC 90.2%; squinting, AUC 90.1%; and nystagmus, 

AUC 86.9%), and detected 2 behaviors with acceptable performance (motionless fixation, AUC 74.6% 

and eye pressing, AUC 72.9%). Notes: AUC=area under the curve.  
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Figure S2. Standardized scenario for video recording.  

A. The standardized apparatus consisted of a recording stage, a curtain, a chair, a light (10 candelas/m2) 

and a video recorder. Both the stage and the curtain were used to eliminate external interferences.  

B. The video recorder was embedded in the middle of the stage with 1-meter ground height. The chair 

was fixed at a position of 0.55 meter facing the stage, to ensure that all the infants’ actions can be fully 

recorded.  

C. For each standardized procedure, the guardian sat in the chair, holding the infant facing the stage. Each 

infant was given a few minutes to adapt to the new surroundings and to be calm before recording. No 

hints or simulations were permitted during the process. The recording process lasted for more than 5 

minutes to ensure that the behavioral phenotypes could be completely and repetitively recorded.  
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Figure S3. The detailed architecture of the temporal segment network.  

A. For the temporal segment network, 1 input video was divided into 3 segments, and then, a short 

snippet was randomly selected from each segment. A two-stream network was arranged as follows and the 

class scores of different snippets were fused by the segmental consensus function. Predictions from all 

modalities were then fused to produce the final possibilities for classification.  

B. We adapted the BN-Inception-resnet-v1 architecture to the design of the two-stream network. The 

spatial stream network operated on RGB images, and the temporal stream network took a stack of 

consecutive optical flow fields as input. The warped optical flow field was applied to enhance the 

discriminative power. We did not use RGB differences as one of the inputs because our videos are in 

relatively lower contrast. For detailed network structure, we settled the stem as the first layer, followed by 

three parts consisting of 20 Resnets and 2 reduction modules. In the following layer, we incorporated the 

average pooling and dropout technique before outputting.  

Notes: RGB=Red-Green-Blue; BN=Batch Normalization.   
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Supplementary Tables 

Table S1. Ophthalmological conditions of the infants based on structural examinations. 

Diagnosis Sample size Percentage 

Pupillary membrane 10 0.24% 

Aphakic eye 1518 36.18% 

Retinal detachment 41 0.98% 

Microphthalmia 171 4.08% 

Microcornea 104 2.48% 

Congenital ptosis 4 0.10% 

PHPV 101 2.41% 

Lens dislocation 122 2.91% 

Congenital cataract 1542 36.75% 

Traumatic cataract 12 0.26% 

Healthy 571 13.61% 

The summarized characteristics of the ophthalmological conditions of the infants based on structural 

examinations are tabulated. Notes: PHPV=Persistent Hyperplastic Primary Vitreous.  
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Table S2. Overall data with age distribution based on visual conditions. 
Age Healthy Mild Severe Overall 

0-3 m 41 73 87 201 

3-6 m 31 83 81 195 

6-9 m 56 117 142 315 

9-12 m 85 151 178 414 

1-1.5 y 107 318 411 836 

1.5-2 y 121 406 551 1078 

2-2.5 y 81 459 143 683 

2.5-3 y 49 306 119 474 

Overall 571 1913 1712 4196 

 

We recruited 4,196 infants 0 to 3 years old. The summarized statistics with age distribution based on 

visual conditions are tabulated. Notes: m=months; y=years.  
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Table S3. Summary of the statistical indices of the algorithm performance. 
Primary screening AUC Sensitivity (%) Specificity (%) 

Mild vs. healthy 0.852 (0.804, 0.898) 83.7 (77.6, 88.7) 86.3 (73.7, 94.3) 

Severe vs. mild 0.819 (0.775, 0.858) 87.9 (81.9, 92.4) 80.4 (74.0, 85.9) 

Congenital cataract vs. healthy 0.930 (0.881, 0.960) 92.9 (87.3, 96.6) 92.2 (81.1, 97.8) 

Microcornea vs. healthy 0.899 (0.804, 0.964) 91.7 (61.5, 99.8) 86.3 (73.7, 94.3) 

Microphthalmia vs. healthy 0.864 (0.757, 0.936) 80.0 (51.9, 95.7) 88.2 (76.1, 95.6) 

Lens dislocation vs. healthy 0.862 (0.765, 0.944) 83.3 (51.6, 97.9) 84.3 (71.4, 93.0) 

Aphakic eyes vs. healthy 0.816 (0.756, 0.866) 81.3 (74.3, 87.1) 82.4 (69.1, 91.6) 

Leber’s amaurosis vs. healthy 0.909 (0.836, 0.962) 87.8 (73.8, 95.9) 92.2 (81.1, 97.8) 

Duane syndrome vs. healthy 0.891 (0.808, 0.955) 88.9 (70.8, 97.7) 94.1 (83.8, 98.8) 

Metabolic cataract vs. healthy 0.899 (0.805, 0.958) 89.5 (66.9, 98.7) 90.2 (78.6, 96.7) 

Disease-level diagnosis F1-measure Precision (%) Recall (%) 

Congenital cataract 0.900 (0.873, 0.922) 89.7 (85.7, 92.8) 90.3 (86.4, 93.3) 

Microcornea 0.878 (0.738, 0.959) 90.0 (68.3, 98.8) 85.7 (63.7, 97.0) 

Microphthalmia 0.849 (0.746, 0.922) 81.6 (65.7, 92.3) 88.6 (73.3, 96.8) 

Lens dislocation 0.870 (0.737, 0.951) 90.9 (70.8, 98.9) 83.3 (62.6, 95.3) 

Aphakic eyes 0.870 (0.874, 0.924) 90.4 (86.5, 93.5) 89.8 (85.8, 93.0) 

Behavior detection AUC Sensitivity (%) Specificity (%) 

Incongruous binocular movement 0.965 (0.920, 0.989) 96.7 (90.7, 99.3) 96.1 (86.5, 99.5) 

Poor fixation 0.958 (0.931, 0.979) 97.2 (94.2, 98.9) 94.1 (83.8, 98.8) 

Compensatory head position 0.937 (0.900, 0.967) 96.6 (92.7, 98.7) 90.2 (78.6, 96.7) 

Compulsive light gazing 0.914 (0.876, 0.943) 92.8 (88.9, 95.7) 88.2 (76.1, 95.6) 

Frowning 0.902 (0.855, 0.940) 89.7 (83.9, 94.0) 88.2 (76.1, 95.6) 

Strabismus 0.902 (0.876, 0.924) 94.2 (92.0, 96.0) 84.3 (71.4, 93.0) 

Squinting 0.901 (0.860, 0.933) 85.7 (80.5, 90.0) 92.2 (81.1, 97.8) 

Nystagmus 0.869 (0.827, 0.904) 82.8 (77.7, 87.2) 86.3 (73.7, 94.3) 

Motionless fixation 0.746 (0.678, 0.813) 70.3 (61.3, 78.2) 72.6 (58.3, 84.1) 

Eye pressing 0.729 (0.646, 0.803) 72.6 (59.8, 83.2) 70.6 (56.2, 82.5) 

The 95% CIs on the metrics are provided in parentheses. Notes: AUC=area under the curve.  



8 
 

Study Population Details 

All 4,196 infants were recruited from 3 populations with various settings: 1) The National Visual 

Screening Project (NVSP) is a population-based study focused on children in communities; 2) the 

Childhood Blindness Project of South China (CBP-SC) is a multicenter collaboration consisting of 

tertiary hospitals and primary clinics; 3) the Vision of Infants in Guangzhou (VI-GZ) is conducted at 

Zhongshan Ophthalmic Center, the largest specialized eye hospitals in China. These projects have 

covered populations from communities, clinics, tertiary hospitals, and specialized centers.  
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Definitions of the Behaviors 

Strabismus and Nystagmus were defined according to the 11th Revision of the International 

Classification of Diseases (ICD-11) Beta Draft.  

Incongruous binocular movement was presented as interocular incompatibility of eye movement. 

Eye rubbing was defined as smoothly rubbing using the back of the hand; Eye pressing was defined as 

aggressively pressing using fingers; Eye poking was defined as forced poking using fingertips directly to 

eyeball. 

Compulsive light gazing was defined as gazing directly at the light for more than 5 seconds.  

Compensatory head position was defined as the head out of the normal primary straight head position, 

including chin up, chin down, tilting of the head to the right or left, face turns to the right or left, or a 

combination of any of these head positions. 

Motionless fixation was defined as fixation that lasted longer than 5 seconds, accompanied with vacant 

expressions.  

Poor fixation was indicated by irregular sequential saccadic or rotary eye movements with no obvious 

objectives.  

Frequent blinking was defined as forced blinking with an interval of less than 2 seconds between blinks. 

Squinting was indicated by constant and forced squint in one or both eyes. 

Frowning was defined as eyebrows becoming drawn together, presenting a forced watching action.  

The magnitudes of behaviors were defined as follows: strabismus and nystagmus are given in terms of the 

occurrence pattern (intermittent or persistent); incongruous binocular movement, compulsive light gazing, 

compensatory head position, motionless fixation, and poor fixation are given in terms of the average 

persistent period; frequent blinking is given in terms of the mean frequency during the blinking process; 

eye rubbing, pressing, poking, squinting, and frowning are given in terms of the mean frequency during 

the recording process.  
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Detailed Dominance Analysis 

Dominance analysis, as proposed by Azen and Traxel1, was applied to determine the relative importance 

of each predictor in a multiple regression problem. This analysis is especially important in the presence of 

a large dataset that includes intercorrelation components, with 3 unique advantages: 1) dominance 

analysis considers a pairwise fashion for measuring relative importance; 2) all relative subset models are 

considered when comparing predictors; 3) this analysis provides dominant and alternative predictors to be 

ranked from “most important” to “least important”. Dominance analysis has been identified a particularly 

useful approach2,3. 

Specifically, dominance analysis defines the additional contribution of any given predictor to a given 

subset model as the change in R2 (in our regressions, McFadden R2) when the predictor is added to the 

model. The general dominance weight for each predictor is calculated from the McFadden R2 statistic. 

The measure of McFadden R2 varies naturally between 0 and 1 and is independent of the units of 

measurement of the variables. The general dominance weight of a variable represents its contribution to 

variance explained and importance in multivariable regression, including the direct effect and effect when 

combined with other variables in the regression3.   
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Detailed Algorithm Information 

Overall architecture. For the temporal segment network (TSN), 1 input video was divided into 3 

segments, and then, a short snippet was randomly selected from each segment. The samples were 

distributed uniformly along the temporal dimension. The spatial stream network operates on a single red-

green-blue (RGB) image, and the temporal stream network takes a stack of consecutive optical flow fields 

as input. The warped optical flow field was applied to enhance the discriminative power of TSN. To 

mitigate the overfitting problem, several strategies (cross modality pretraining, regularization techniques, 

and data augmentation) were designed during the training process. 

Two-stream network. The batch normalization (BN)-inception-Inception-resnet-v1 architecture was 

employed in the design of the two-stream networks. We settled the stem as the first layer, followed by three 

main parts of the hidden layers. In the first part, we applied 5 Resnets and 1 reduction module. In the second 

part, we additionally settled 10 Resnets with 1 reduction module. In the third part, we used 5 Resnets followed 

by average pooling and dropout techniques. For output, we utilized the final classification possibility for 

further analyses instead of any computational classifier. All details of the Inception-resnet-v1 can be found in 

ref4. 

Cross modality pretraining. For spatial networks (RGB images as input), the model was pretrained on 

the ImageNet as initialization. For the optical flow field, a cross modality pretraining technique was 

utilized due to their different visual aspects and distributions. We did not use RGB differences as one of 

the inputs because our videos are in relatively lower contrast. 

First, optical flow fields were discretized into the interval (0 to 255) by a linear transformation. This 

step made the range of optical flow fields the same as the RGB images. Then, we modified the weights of 

the first convolution layer of the RGB models to handle the input of the optical flow fields. Specifically, 

we averaged the weights across the RGB channels and replicated this average by the channel number of 

the temporal network input. 

Regularization techniques. After the initialization with pretrained models, the mean and variance 

parameters of all BN layers (except the first layer) were frozen. As the distribution of the optical flow is 

different from the RGB images, the mean and variance of the activation value of the first convolution 

layer was re-estimated accordingly. Additionally, an extra dropout layer was added after the global 

pooling layer in BN-Inception architecture, with the dropout ratio set as 0.8 for spatial stream networks 

and 0.7 for temporal stream networks. 

Data augmentation. The corner cropping and multiscale cropping were exploited for data augmentation. 
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In the corner cropping technique, the extracted regions were selected from only the corners or the center 

of the image. In the multiscale cropping technique, the size of the input image or optical flow fields was 

fixed at 256×340, and the width and height of the cropped region were randomly selected from {256, 224, 

192, 168}. These cropped regions were resized to 224 × 224 for network training.   
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