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Supplementary Discussion 

Quantification of interaction energy and displacement energy for two-body droplet 
chasing. To measure the energies associated with the predator-prey interaction of a droplet pair, 

we measured both the change in the droplet separation distance with time, 𝛿𝑟
𝛿𝑡ൗ  , and the 

velocity of the midpoint between the droplets, 𝑣௠௜ௗ௣௢௜௡௧, as a function of the inter-particle 
distance, 𝑟. At droplet separations larger than 130 μm, the droplet velocities due to solute-
mediated interactions were small compared to the drift velocity, so we only measured 
interactions for droplets closer than 130 μm and considered droplets at larger separations to be 
isolated. To minimize contributions from drift in the calculations, we measured 𝑣௠௜ௗ௣௢௜௡௧ and 
𝛿𝑟

𝛿𝑡ൗ  for isolated droplets (which do move from drift) and subtracted those values from velocity 

measurements for interacting droplets at small separation distances so that we isolate the 
component of the droplet speed that is due to chemotactic interactions. We averaged 𝑣௠௜ௗ௣௢௜௡௧ 

and 𝛿𝑟
𝛿𝑡ൗ   as a function of drop separation distance attained from 3 to 5 separate experiments 

using bins of 1 μm in inter-droplet separation.  
 At low Reynolds numbers, the energy associated with the interaction between two 

droplets 𝐸௜௡௧௘௥௔௖௧௜௢௡ equals the area under the curve 𝛿𝑟
𝛿𝑡ൗ  versus 𝑟 times the drag constant 𝐶஽, 

where we took the drag constant to be equal to the Stokes’ drag multiplied by a dimensionless 
factor C that corrects for flow inside the droplet and proximity of the droplet substrate. Note that, 
because the correction for proximity to the substrate strongly depends on the distance between 
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the droplet and the substrate, we cannot easily estimate the magnitude of C but instead assume 
that it is constant between experiments and just report interactions scaled by this dimensionless 

factor.  We thus found 
ா೔೙೟೐ೝೌ೎೟೔೚೙

஼
ൌ 6𝜋𝜂𝑎 ׬ 𝛿𝑟

𝛿𝑡ൗ 𝑑𝑟
௥ୀஶ

௥ୀଶ௔ , where 𝜂 ൌ 0.89 mPa s is the viscosity 

of the aqueous solution and 𝑎 is the droplet radius. The sign of this interaction energy does not 
indicate whether energy was consumed or produced, but rather whether the interaction was 
repulsive (positive) or attractive (negative). The energy associated with the displacement of the 

midpoint of the chasing pair is 
ா೏೔ೞ೛೗ೌ೎೘೐೙೟

஼
ൌ 6𝜋𝜂𝑎 ׬ 𝑣௠௜ௗ௣௢௜௡௧𝑑𝑟

௥ୀஶ
௥ୀଶ௔ . The sign of the 

displacement energy indicates the direction of the chase, where we arbitrarily defined a positive 
displacement energy to correspond to a chase in which the fluorinated oil is prey (as seen in 
Figure 2). 
 

Quantification of interaction parameters for simulations. We compared experimentally 
observed cluster dynamics of bromooctane (BOct) droplets mixed with ethoxynonafluorobutane 
(EFB) or methoxynonafluorobutane (MFB) droplets with overdamped particle dynamics 
simulations of particles interacting through chemotactic forces. We used the form of the speed of 

droplet 1 due to chemotactic forces exerted by droplet 2: 𝑣ଵଶሬሬሬሬሬሬ⃗ ൌ 𝐶ଵଶ
௥భమሬሬሬሬሬሬ⃗

|௥భమሬሬሬሬሬሬ⃗ |య that was predicted by 

Soto and Golestanian(21), where 𝑟ଵଶሬሬሬሬሬ⃗  is the center-to-center separation between drop 1 and 2 and 
𝐶ଵଶ is an interaction constant with units μm3/s. Soto and Golestanian assume that the Péclet 
number of the particles is small (i.e. fast diffusive transport of solute compared to advective 
transport due to the motion of the particle) so that the particles only interact via spherically 
symmetric concentration profiles with no hydrodynamic disturbances. Then 𝐶ଵଶ ൌ 𝑀ଵ𝐴ଶ, where 
the mobility, M, is a measure for the speed a particle acquires in a given solute gradient and the 
activity, A, is a measure for the rate of solute production or consumption on the particle’s 
surface.  

In our experiments, the Péclet number 𝑃𝑒 ൌ ௩ ௔

஽
~ 1 to 10, estimated for droplets with a 

radius  𝑎 ൎ 35 μm, moving at  𝑣 ൎ 20 μm/s and assuming that the relevant solute are oil-filled 
micelles with diffusion constant 𝐷~10ିଵଵ𝑚ଶ/𝑠. For high Péclet numbers, hydrodynamic 
disturbances do quantitatively affect the solute-mediated interactions and 𝐶ଵଶ depends on the 
particle velocity; when the Péclet number exceeds a critical Péclet number of 4, the particles are 
predicted to self-propel due to these hydrodynamic deformations of the solute concentration 
profiles (28). Indeed, we found a subset of BOct droplets to self-propel, confirming that the 
Péclet number of our droplets is close to 4. Surprisingly, the subset of self-propelled droplets 
were below a typical size of approximately 40 μm in diameter, whereas the Péclet number is 
predicted to increase with size (for reaction-limited solute production) or be size independent 
(for diffusion limited solute production) but not decrease with size (16). We do not have an 
explanation for this observation. 

Despite this high Péclet number where hydrodynamic effects will quantitatively impact 
solute-mediated interactions, we found that the speed of a droplet in the gradient of its neighbor 
still roughly scales with distance as 1/r2. This observation suggests that for droplet pairs under 
fixed conditions we can extract effective interaction parameters 𝐶ଵଶ to use in simulations to 
recapitulate the qualitative dynamics of droplet pairs, but those effective parameters cannot be 
interpreted as the product of a mobility and activity directly because they also contain 
hydrodynamic contributions.  
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To compare the multibody simulations directly with experiments, we set out to extract 
these effective interaction constants, 𝐶௤௣ and 𝐶௣௤ from observed two-body droplet interactions, 
where we introduce the convention that “p” indicates the predator (BOct) and “q” indicates the 
prey (EFB or MFB). 𝐶௤௣ determines the speed 𝑣௤௣ሬሬሬሬሬሬ⃗  with which a prey droplet moves due to the 
chemotactic interaction with a predator, and 𝐶௣௤ similarly determines the predator speed 𝑣௣௤ሬሬሬሬሬሬ⃗   due 
to the interaction with a prey droplet. To this end, we tracked droplet positions during two-
droplet encounters between a predator and a prey and measured the component of the velocity of 

the prey that points away from the midpoint between the prey and predator: 𝑣௤௣ ൌ
௩೜ ሬሬሬሬሬ⃗ ∙ሺ௥೜ሬሬሬሬ⃗ ି௥೛ሬሬሬሬ⃗ ሻ

|௥೜ሬሬሬሬ⃗ ି௥೛ሬሬሬሬ⃗ |
 , 

where 𝑟௤ሬሬሬ⃗  and 𝑟௣ሬሬሬ⃗  are the position of the prey and predator droplet respectively. The speed 𝑣௤௣ is 
positive if the prey moves away from the predator and negative if the prey moves toward the 
predator. Supplementary Fig. 1 shows that a graph of 𝑣௤௣ versus the inverse squared droplet 
separation 𝑟௤௣

ିଶ is approximately a straight line from which we extracted the interaction constant 
𝐶௤௣ using the Matlab least squares fitting procedure. Similarly, we measured the interaction 
constant 𝐶௣௤ from a curve of the experimentally measured 𝑣௣௤ versus 𝑟௤௣

ିଶ.  
 

 
Supplementary Fig. 1. Measurements of the two-droplet interaction constants 𝐂𝐪𝐩 and 𝐂𝐩𝐪 
for encounters between BOct drops and either EFB or MFB droplets. a, Approach speed of 
BOct droplets near EFB droplets. b, Escape speed of EFB droplets near BOct droplets. c, 
Approach speed of BOct droplets near MFB droplets. d, Escape speed of MFB droplets near 
BOct droplets. The data in each plot are measured from three separate two-droplet encounters. 
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The speed versus distance curves were binned with 1 μm bins. The data represent the average 
speed per bin and the error bar represents the standard deviation. 

 
We did not observe interactions of sufficient strength between two prey drops to measure 

𝐶௤௤, which determines the speed of prey due to interactions with another prey, or between two 
predator droplets to measure 𝐶௣௣, which determines the speed of a predator due to interaction 
with another predator. To find those two interaction parameters 𝐶௤௤ and 𝐶௣௣, we measured the 
distance between two predator drops, 𝑟௣௣, in a cluster of two predators and one prey as shown in 
Supplementary Fig. 2. This distance 𝑟௣௣ is set by a balance of the component of the speeds of 
the predators toward each other due to their interaction with the prey and the speeds of the 
predators away from each other due to mutual predator-predator repulsion: 

 𝐶௣௣

𝑟௣௣
ଶ ൌ

𝐶௤௣sin ሺ1
2 𝜃ሻ

𝑟௤௣
ଶ . Eq. S1 

 
Here 𝜃 is the angle the two predators and the prey make with each other, 𝑟௣௣ is the center-to-
center distance between the predators, and 𝑟௤௣ is the center-to-center distance between the 
predator and prey, which at contact is given by the sum of predator and prey radii. The distances 
𝑟௤௣ and 𝑟௣௣ were measured from the cluster geometry and 𝐶௤௣ was independently measured from 
two-body chasing interactions as just previously described, so that we can calculate 𝐶௣௣. We 
realize that this is a rough estimate of 𝐶௣௣ because 𝐶௤௣ was measured from a speed vs. distance 
curve, where hydrodynamic effects play a role, whereas this measurement of 𝐶௣௣ is based on a 
static geometry as a consequence of balancing forces where hydrodynamic effects do not play a 
role. Finally, we find 𝐶௤௤ using the fact that the four interaction constants 𝐶௤௤, 𝐶௤௣,  𝐶௣௤and 𝐶௣௣ 
are related through: 

 𝐶௤௤ ൌ
஼೜೛஼೛೜

஼೛೛
. Eq. S2 

 
The relation in Equation S2 uses the fact that the interaction constant 𝐶ଵଶ ൌ ఓభఈమ

஽
 depends on the 

mobility of droplet 1, 𝜇ଵ, which determines the speed of the droplet in a solute gradient due to 
the Marangoni effect and on the activity 𝛼ଶ, that represents the rate at which molecules are 
produced or consumed at the surface of droplet 2(21). This activity divided by the diffusion 
constant of the solute, D, determines the solute gradient that causes droplet 1 to move. Using this 

definition we find that 
஼೜೛஼೛೜

஼೛೛
ൌ

ఓ೜ఈ೛ఓ೛ఈ೜஽

ఓ೛ఈ೛஽మ ൌ
ఓ೜ఈ೜

஽
ൌ 𝐶௤௤. We list the interaction values we found 

for interactions between BOct and EFB or MFB droplets in Supplementary Table 1. 
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Supplementary Fig. 2. Spacing between predator droplets when two predators chase a 
single prey. a, Two BOct droplets chasing a single EFB droplet. The BOct droplets nearly touch. 
b, Two BOct droplets chasing an MFB droplet. The spacing between two BOct droplets is much 
larger than in a similar cluster with an EFB droplet. Scale bars are 100 μm. 
 
Supplementary Table 1. List of experimentally determined interaction parameter values 
obtained from two-body chasing encounters of BOct droplets with EFB or MFB droplets as 
well as the specific value of each parameter used in the simulations. Results of the 
simulations with the given parameters are shown in Figure 4. The parameters used in the 
simulations were chosen from within the experimentally determined range to yield droplet 
dynamics that most closely matched the experiment.  
 BOct and EFB BOct and MFB 
 Experiment Simulation Experiment Simulation 
Cpp (104 μm3/s) -4.8 ± 1.6 -4.8 -4.8 ± 1.6 -4.9 
Cpq (104 μm3/s) 2.3 ± 0.4 2.3 2.9 ± 0.4 2.5 
Cqp (104 μm3/s) -7.8 ± 0.4 -7.8 -4.2 ± 0.4 -3.8 
Cqq (104 μm3/s) 3.7 ± 0.4 3.7 3.2 ± 1.0 4.2 
 
 

We initialized the simulations of multi-body droplet interactions by placing np predator 
and nq prey drops on positions that match the positions in an experiment. Then, we calculated the 
speed 𝑣௣ሬሬሬሬ⃗  of each predator drop p and prey drop q, 𝑣௤ሬሬሬሬ⃗ , by summing the contributions of each other 
droplet to the phoretic velocity as 

 𝑣௣ሬሬሬሬ⃗ ൌ ෍ 𝐶௣௣
𝑟ప௣ሬሬሬሬ⃗

|𝑟ప௣ሬሬሬሬ⃗ |ଷ ൅ ෍ 𝐶௣௤
𝑟ఫ௣ሬሬሬሬ⃗

|𝑟ఫ௣ሬሬሬሬ⃗ |ଷ

௡೜

௝ୀଵ

௡೛

௜ୀଵ,௜ஷ௣

, Eq. S3 

 𝑣௤ሬሬሬሬ⃗ ൌ ෍ 𝐶௤௣
𝑟ప௤ሬሬሬሬ⃗

|𝑟ప௤ሬሬሬሬ⃗ |ଷ ൅ ෍ 𝐶௤௤
𝑟ఫ௤ሬሬሬሬ⃗

|𝑟ఫ௤ሬሬሬሬ⃗ |ଷ

௡೜

௝ୀଵ,௝ஷ௤

௡೛

௜ୀଵ

, Eq. S4 

 
Here i and j are indices that designate predator and prey drops respectively. The displacement in 
a time step 𝑑𝑡 is then given by 𝑑𝑟 ൌ 𝑣⃗𝑑𝑡. We chose the time step 𝑑𝑡 such that it was always 
smaller than the smallest drop radius divided by the largest possible speed for a given set of 
initial conditions. Typically, 10-2 s < 𝑑𝑡 < 10-3 s. We chose the number of time steps n based on 
the length of the experimentally observed interaction and n typically varied from n = 103 to 
n=104. We treated the droplets as hard spheres and resolve overlap using inelastic collisions. 
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 Because we measured three of the four interaction constants directly, 𝐶௣௣, 𝐶௤௣,𝐶௣௤ and 
calculated the fourth constant 𝐶௤௤ from Equation S2, we can directly compare our simulations 
with the experiments. We tuned the parameters used in the simulations within the uncertainty 
range of the measured values to match the experimentally observed dynamics as closely as 
possible.  
 

Trochoidal trajectories. Based strictly on the concept of chemotactic forces, we would 
expect that a predator droplet chasing after prey would always move in a straight line, assuming 
no other forces from neighboring droplets are introduced. Instead, we commonly observed 
trochoidal trajectories with a steady pitch for BOct chasing of either EFB or MFB, as shown in 
Figure 4B. Such trajectories were most often observed when the BOct droplets were small, 
under approximately 40 µm diameter. Based on the observation that BOct droplets become self-
propelled and move at a significantly faster velocity when they shrink to a diameter below about 
40 µm (Extended Data Fig. 6), we speculate that the reason for this trochoidal motion is that the 
BOct predator drop moves along the prey’s surface during the chase due to its self-propulsion. 
This rearrangement of the predator on the surface of the prey causes the prey droplet to turn in 
response, because it always moved away linearly from the predator, leading to a redirect of the 
chase direction.  

Extended Data Fig. 7 shows the absolute speed of a predator and prey droplet in a 
typical trochoidal chase. The predator drop indeed moved slightly faster than the prey; however, 
this phenomenon should cause the pair to swim in circles, not along trochoidal trajectories. We 
also observe that the speed of the chasing pair depends on its orientation (resulting in oscillations 
in speed over time) which causes the chasers to move along a trochoidal rather than a circular 
trajectory. We speculate that a possible cause of this orientation-dependent speed could be 
symmetry breaking due to the trail of oil-filled micelles left behind by the chasing pair. It has 
also been proposed that hydrodynamic effects could be responsible for symmetry breaking if 
swimmers are hydrodynamic pushers (11); the flow profile shown in Extended Data Fig. 5 is 
consistent with a pusher geometry, making this explanation plausible as well.  
 

Efficiency of chasing driven by oil exchange. We consider here the motion of a pair of 
droplets that exchange oil with one another through the aqueous Triton X-100 surfactant phase, 
where the two droplets consist of iodo-n-alkanes of differing n. The iodoalkanes are miscible in 
any ratio so that, when the droplets are in close proximity, there is iodoalkane transport from the 
droplet through the surfactant solution phase into the neighboring droplet and vice-versa. For 
droplets of different iodoalkanes, this oil exchange is asymmetric such that there is a net oil 
transport between droplets. The asymmetric oil transport drives chasing and propels the motion 
of the droplet pair with speeds of 20 μm/s or more through coupling with the local droplet 
interfacial tensions and the Marangoni effect.  

To estimate the efficiency of this propulsion mechanism, we assume that the mixing of 
the two oils is ideal and ignore contributions from the surface energy. The assumption that the 
mixing is ideal is reasonable because the two oils are miscible in any ratio and are chemically 
very similar. Any enthalpic effects that are ignored would most likely only decrease Gibbs free 
energy of mixing, rendering this estimate of the propulsion efficiency a lower boundary. For 
droplets of similar diameter, any contributions of the surface energy to the Gibbs free energy 
change of oil exchange would be small. To calculate the efficiency, we compare the Gibbs free 
energy of mixing with the displacement work of the pair of droplets. To simplify the calculation, 
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we consider specifically the input power (i.e. the Gibbs free energy of mixing per unit time) with 
the output power, which is related to the velocity of the droplets. 

We make an order of magnitude estimate of the output power 𝑃௢௨௧ from the velocity of 
the chasing droplet pair, assuming that the drag on these droplets is the Stokes’ drag and ignoring 
modifications due to the proximity of the wall, nearby droplets, and the fact that the drops are 
fluid; thus, the force exerted on a droplet pair, 𝐹௣௔௜௥, causing it to move with a velocity 𝑣௣௔௜௥ is 
𝐹௣௔௜௥ ൎ 6 π 𝜂 𝑎 𝑣௣௔௜௥, where η ൌ 0.89 mPa ∙ s is the viscosity of the aqueous surfactant solution 
and 𝑎 is the radius of the droplets. The power consumption by the pair of droplets is then simply 
the force exerted on the droplets multiplied by the distance over which the force was applied and 
divided by the time it took to cross that distance, so we find 
 
 𝑃௢௨௧ ൎ  6 π 𝜂 𝑎 𝑣௣௔௜௥

ଶ Eq. S5 
 
For example, for droplets with a diameter of 70 μm that move at 20 μm/s, the dissipated power 
is 𝑃௢௨௧ ൎ 2.3 ൈ 10ିଵ଺ J/s. This power required to move the pair of droplets comes from a 
change in the Gibbs free energy of mixing of the two oils, ∆௠௜௫𝐺 ൌ െ𝑇∆௠௜௫𝑆, where we assume 
ideal mixing and ignore interfacial contributions. For a binary mixture, the entropy gain is 
∆௠௜௫𝑆 ൌ െ𝑛 𝑅 ሺ𝑥 lnሺ𝑥ሻ ൅ ሺ𝑥 െ 1ሻ lnሺ𝑥 െ 1ሻሻ, where 𝑛 represents the amount of mixed oil in 

moles, 𝑅 ൌ 8.314 ୎

୫୭୪ ୏
 is the ideal gas constant, and 𝑥 is the mole fraction of one oil in the other 

after mixing. The maximum energy gain corresponds to mixing of equal molar amounts of oil in 
a 1:1 mixture, where 𝑥 ൌ 0.5 and the entropy of mixing simplifies to ∆௠௜௫𝑆 ൌ െ𝑛 𝑅 lnሺ2ሻ such 
that the Gibbs free energy of mixing is 
 
 ∆௠௜௫𝐺 ൌ  െ𝑛 𝑅 𝑇 lnሺ2ሻ Eq. S6 

 
Equation S6 gives an estimate of the Gibbs free energy change associated with the transition 
from pure droplets of two different oils to equimolar mixed oil droplets. The Gibbs free energy 
of this exchange divided by a typical timescale over which the exchange occurs, ∆𝑡, gives the 
power production available to move the droplet pair. Assuming that the slowest step in the oil 
exchange process is transport into the aqueous phase, we estimate the oil exchange time from the 
measured solubilization rates of individual droplets, given in Figure 3B. We estimate that the oil 
exchange time is the time in which the volume of one droplet can be replaced entirely due to the 

combined transport rates of both droplets:  ∆𝑡 ൎ 𝑉଴  ቀௗ௏భ

ௗ௧
൅ ௗ௏మ

ௗ௧
ቁ

ିଵ
, where 𝑉଴ is the droplet’s 

initial volume and 
ௗ௏భ

ௗ௧
 and 

ௗ௏మ

ௗ௧
 are the measured solubilization rates of both droplets. The average 

power produced by oil mixing (𝑃௜௡) is the Gibbs free energy change of mixing divided by the 
mixing time, 𝑃௜௡ ൌ ∆௠௜௫𝐺/∆𝑡. Substituting for ∆௠௜௫𝐺  using Eq. S6 and substituting for ∆𝑡, we 
find 

 𝑃௜௡ ൌ െ
1
𝑉଴

 ൬
𝑑𝑉ଵ

𝑑𝑡
𝑛ଵ ൅

𝑑𝑉ଶ

𝑑𝑡
𝑛ଶ൰ 𝑅 𝑇 lnሺ2ሻ Eq. S7 

 
As an example, we measured that a pair consisting of one iodononane droplet and one 
iodopentane droplet with diameters of approximately 70 μm moves at 18 μm/s, so that the 
power required to move the pair is approximately 𝑃௢௨௧ ൌ 1.9 ൈ 10 ିଵ଺ J/s. Individually, the 
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iodononane and iodopentane droplets solubilize at rates of  
ௗ௔

ௗ௧
ൌ 3.05 nm/s and 

ௗ௔

ௗ௧
ൌ 3.85 nm/

s, respectively. We use fact that the droplet size does not change significantly over the timescale 

on which chasing occurs such that 
ௗ௏

ௗ௧
ൌ 4𝜋𝑎ଶ ௗ௔

ௗ௧
, and find n for each iodoalkane individually by 

dividing the droplet volume over the molecular volume of the oil 𝑣௠ ൌ ெೢ

ఘ
 where 𝑀௪ is the oil 

molecular weight and 𝜌 the density. We estimate a power production 𝑃௜௡ ൌ െ 1.2 ൈ 10 ିଽ J/s 
using Eq. S7. This value a posteriori validates our assumption to ignore interfacial contributions 
which cannot exceed the interfacial free energy of the droplet 𝐺௜௡௧௘௥௙௔௖௜௔௟ ൎ 𝐴 𝛾 ൎ 6 ∗ 10ିଵଵ 𝐽, 
estimated for the surface of a 70 μm droplet, 𝐴 ൌ 1.5 ∗ 10ି଼ 𝑚, and  an interfacial tension 
of iodoalkane oils in aqueous 0.5 wt% Triton X solution never exceeding 𝛾 ൎ 4 ∗ 10ିଷ𝑁/𝑚 as 
determined by pendant drop measurements.  

Comparing 𝑃௢௨௧ and 𝑃௜௡ we find an efficiency 𝜖 ൌ 1.6 ൈ 10 ି଻ . In conclusion, we find 
that the lower boundary of the swimming efficiency of the pairs of droplets described in this 
report is on the order of 10ି଻ which is two orders of magnitude higher than the typical 
efficiencies of 10ିଽ found for colloidal Janus swimmers whose motion is driven by the 
decomposition of hydrogen peroxide(25). 

 
Microscopic mechanism behind droplet motion. There are two known microscopic 

mechanisms through which fluid particles can move in a solute concentration gradient, both 
driven by the molecular interactions between the solute and the surface of the particle (14). One 
mechanism relates to the chemophoretic contribution which involves a slip layer near the surface 
and a corresponding velocity difference between the surface of the particle and the fluid near the 
surface. This is the only contribution that matters for concentration-driven motion of solid 
particles, because a solid surface cannot flow. The surface of fluid particles, on the other hand, 
can flow, such that a gradient in solute concentration resulting in surface tension variation along 
the droplet surface can also drive motion of the particle by causing the fluid interface to move – 
i.e., the Marangoni effect. This mechanism does not have a fluid velocity jump across the 
interface but rather a stress jump, the Marangoni stress.  

This distinction suggests that one could experimentally determine whether a given 
fluid particle’s motion is caused by Marangoni or chemophoretic effects by measuring the fluid 
flow inside and outside the droplet. In practice, however, one would need to measure the flow 
velocity at distances to the interface comparable to the slip layer thickness, which is very 
challenging; this slip layer is on the order of the length scale of the microscopic interactions 
between the solute and the surface, which is typically in the 1-10 nm range. This length scale is 
smaller than the size of most tracer particles used to measure the flow and beyond the optical 
resolution used for imaging such that this is not a feasible experimental strategy. However, we 
can theoretically estimate which effect is likely to dominate using order of magnitude estimates 
of both contributions that have been comprehensively described in (14) and summarized in a 
very intuitive way in (15). The overall speed of the droplet 𝑣 given by these two contributions 
is 𝑣 ൌ െ𝑀′ 𝛻𝐶 with 

 𝑀ᇱ ൎ
േ𝑘஻𝑇𝑎𝜆 േ 𝑘஻𝑇𝜆ଶ 3𝜂௜

2𝜂଴

2𝜂଴ ൅ 3𝜂௜
, Eq. S8 

 
where 𝑘𝐵 is the Boltzmann constant, 𝑇 the temperature 𝑎 the particle radius, 𝜆 the lengthscale of 
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the interaction between the solute and the particle surface, 𝜂𝑖 the viscosity of the fluid in the 
particle and 𝜂0 the viscosity of the fluid outside the particle. The first term in this equation 
represents the Marangoni contribution and the second term represents the chemophoretic 
contribution. From this equation, one can identify (as Anderson and Izri et al. did) that the 
Marangoni contribution dominates when 𝑎

𝜆
≫ 𝜂𝑖

𝜂0
, whereas the chemophoretic effect dominates 

when  𝑎
𝜆

≪ 𝜂𝑖
𝜂0

. Typically, the length scale of interactions of the solute is on the order of the length 

scale of the solute, so on the order of 1 – 10 nm. So, for droplets on the length scale of several 
microns, the chemophoretic effect would only play a significant role when the viscosity of the 
droplet is 103 times higher than that of the continuous phase. For our specific case, 𝜆 ൎ 10 nm, 
𝑎 ൐ 10 μm, 𝜂𝑖 ൎ 𝜂𝑜 ൎ 1 mPa ൉ s, so that the contribution of the Marangoni effect dominates by 
more than a thousand-fold. We therefore conclude that the microscopic mechanism for the 
chasing motion of the droplets described in our experiments is the Marangoni effect. 

Finally, we estimate the magnitude of the surface tension difference between the front 
and the back of the droplet that would lead to the typical speeds of 20 µm/s assuming that the 
Marangoni effect is the dominant responsible mechanism. We then compare this interfacial 
tension difference to the overall interfacial tension of the droplets as a sanity check. The speed of 
a droplet due to the Marangoni effect is (40): 
 

 𝑣 ൌ 𝑀∇c  with  𝑀 ൌ ௔

ଶఎబାଷఎ೔

ௗఊ

ௗ௖
.  Eq. S9 

 
Here 𝑀 is the droplet’s mobility, c the solute concentration, and 𝛾 the interfacial tension. 

Assuming a linear concentration gradient (∇c ൌ ௗ௖

ௗ௥
) we can rewrite Equation S9 to find the 

interfacial tension gradient across the droplet as a function of its speed: 
 
 

 
𝑑𝛾
𝑑𝑟

ൌ
𝑣ሺ2𝜂଴ ൅ 3𝜂௜ሻ

𝑎
 

 
Eq. S10 

 

Using a typical speed of 20 µm/s, a droplet radius of 35 µm, and 𝜂଴, 𝜂௜ ൎ 1, we find that 
ௗఊ

ௗ௥
ൎ

2.9 mN/mଶ so that the difference in surface tension between the front and the back of the droplet 

is approximately ∆𝛾 ൎ ௗఊ

ௗ௥
2𝑎 ൎ 0.2 ∗ 10ିଷ mN/m. This is small compared to the typical 

interfacial tensions of iodoalkane oils in aqueous 0.5 wt% Triton solution which fall in the range 
of 1 to 4 mN/m as measured by pendant drop tensiometry, rendering the Marangoni effect a 
plausible mechanism for the observed droplet motion. 
 


