In the format provided by the authors and unedited.

A marine heatwave drives massive losses from the world's largest seagrass carbon stocks

A. Arias-Ortiz^{1*}, O. Serrano^{2,3}, P. Masqué^{1,2,3}, P. S. Lavery^{2,4}, U. Mueller², G. A. Kendrick^{3,5}, M. Rozaimi^{2,6}, A. Esteban², J. W. Fourqurean^{5,7}, N. Marbà⁸, M. A. Mateo^{2,4}, K. Murray⁹, M. J. Rule^{3,9} and C. M. Duarte^{8,10}

¹Institut de Ciència i Tecnologia Ambientals and Departament de Física, Universitat Autònoma de Barcelona, Barcelona, Spain. ²School of Science & Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup, WA, Australia. ³The University of Western Australia Oceans Institute, The University of Western Australia, Crawley, WA, Australia. ⁴Centre of Advanced Studies of Blanes (CEAB-CSIC), Blanes, Spain. ⁵The School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia. ⁶School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia. ⁷Department of Biological Sciences and Marine education and Research Center, Florida International University, Miami, FL, USA. ⁸Global Change Research Group, IMEDEA (CSIC-UIB) Institut Mediterrani d'Estudis Avançats, Esporles, Mallorca, Spain. ⁹Department of Biodiversity, Conservation and Attractions, Kensington, WA, Australia. ¹⁰Red Sea Research Center (RSRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia. *e-mail: Ariane.arias@uab.cat

Supplementary Discussion

Dry bulk density (DBD) of seagrass sediments sampled in Shark Bay had a wide range, from 0.06 to 1.86 g cm⁻³, with median and mean values (0.96 g cm⁻³ and 0.94 ± 0.01 g cm-3, respectively) similar to those found in carbonate systems and in seagrass sediments worldwide $(1.03 \pm 0.02 \text{ g cm}^{-3})^1$. Spatially, DBD increased westwards towards Peron Peninsula (Supplementary, Fig. S1), opposite to C content, with which it was negatively correlated ($\rho = -0.69$; $P \le 0.001$) (Supplementary, Table S1). Grain size was dominated by medium sands (30% on average), followed by fine and coarse sands (21% and 20%, respectively on average). Mean particle diameter (d50) increased with depth (ρ = 0.25; $P \le 0.001$), though spatially it did not show a significant correlation with longitude, similarly than exposure (measured as sand:mud ratio) ($\rho = -0.48$; P = 0.08 and $\rho = -0.36$; P=0.2, respectively). DBD was strongly negatively correlated with C, and positively correlated with sediment depth, particle size (d50) and sand:mud ratio. On the contrary, the correlation between particle size and C was weak ($\rho = -0.13$; $P \le 0.05$) and between exposure and C was not significant (P > 0.05) (Supplementary, Table S1), suggesting that the seagrass-derived C plays a large role in sediment C storage than does the accumulation of fine, organic-rich allochthonous particles².

C burial rates are driven by sedimentation and by the C content available for storage. The high sediment C stocks in the Wooramel Bank and Faure Sill (average top meter: 245 \pm 33 Mg C ha⁻¹; average last 4,000 cal yr BP: 514 \pm 45 Mg C ha⁻¹) were supported by a 1.6-fold and 2-fold faster accretion of sediments (2.8 - 1.1 mm yr⁻¹ compared to the 1.7 - 0.5 mm yr⁻¹ measured in meadows at Peron Peninsula), in the shortand long-terms, respectively, and by a 2.7-fold higher concentration of C relative to the other sites surveyed (Table 1)³. The rapid sediment accumulation rates would have contributed to higher accumulation and preservation of C after burial⁴ due to the prevention of oxygen exchange and limitation of redox potentials, which reduce remineralization⁵. This, together with the recalcitrant nature of seagrass-derived C⁶ available for storage led to the formation of these organic-rich sediment deposits within South Wooramel and Faure Sill seagrass banks.

Supplementary Figures

Figure S1. Spatial distribution of sediment properties. (a) Dry bulk density (DBD) and (b) d50 (median diameter of particles) measured in seagrass sediments of Shark Bay.

Figure S2. Percentage contribution of seagrass, seston and macroalgae and terrestrial matter to the sediment organic carbon (C) pools in Shark Bay.

Figure S3. Relationship between extrapolated and measured organic carbon (C) stocks. (a) From 25 cm to 100 cm in sediment cores ≥ 1 m depth; (b) Accumulated over the last 2,000 to 4,000 yr in cores dating $\ge 4,000$ cal yr BP.

Supplementary Tables

Table S1. Spearman correlation coefficients between sediment organic carbon (C) concentration (%) and physicochemical and biological variables determined in seagrass cores of Shark Bay. *** $P \le 0.001$, ** $P \le 0.01$, * $P \le 0.05$, NS, $P \ge 0.05$; significant correlations ($P \le 0.05$) in bold (ρ value).

	n	Depth	DBD	%C	$\delta^{13}C$	d50	% Mud	%Sand	Sand:Mud
Depth	1102		***	***	***	***	NS	NS	NS
DBD	1102	0.32		***	***	***	***	***	***
%C	1102	-0.24	-0.69		***	*	NS	NS	NS
δ^{13} C	854	-0.26	-0.25	0.34		***	***	***	***
d50	369	0.25	0.29	-0.13	-0.20		***	***	***
% Mud	369	-0.06	-0.31	0.03	0.31	-0.72			***
%Sand	369	0.06	0.31	-0.04	-0.31	0.72			***
Sand:Mud	369	0.06	0.29	-0.02	-0.31	0.71	-0.98	0.98	

Table S2. Sediment δ^{13} C descriptive statistics estimated for the entire length (no older than 4,000 cal yr BP) of the seagrass sediment cores and putative sources of organic carbon (C) in Shark Bay. Same labels are used for cores with same coordinates sampled ~10 m apart from one another.

	Sections	δ¹³C(‰)						
Core ID	n	Mean	SD	Minimum	Median	Maximum		
W1	21	-12.9	0.4	-13.8	-12.9	-12.2		
W2	23	-12.8	0.6	-13.6	-12.9	-11.3		
W3	38	-15.1	2.0	-19.9	-14.8	-11.5		
W4	7	-13.2	0.3	-13.8	-13.1	-12.9		
FS1	31	-13.9	1.3	-15.7	-14.5	-11.6		
FS2	25	-13.6	1.5	-15.6	-13.7	-10.3		
FS3	25	-12.7	1.1	-15.5	-12.6	-9.6		
FS4	24	-12.3	1.4	-13.9	-13.0	-9.9		
FS5	25	-13.0	1.0	-14.5	-13.2	-10.9		
FS6	24	-12.3	1.1	-14.3	-12.3	-10.3		
FS7	34	-13.8	1.0	-15.2	-14.0	-10.9		
FS8	37	-13.5	0.8	-16.3	-13.3	-12.4		
FS9	41	-12.4	1.4	-18.9	-12.3	-9.9		
FS10	10	-11.1	0.9	-12.5	-11.3	-9.0		
FS11	21	-12.9	2.1	-21.1	-12.8	-9.3		
FS12	24	-13.3	1.0	-14.5	-13.5	-9.6		
FS13	37	-12.2	0.8	-13.6	-12.4	-8.9		
FS14	32	-12.8	1.0	-15.6	-12.8	-11.2		
FS19	29	-14.2	1.0	-15.8	-14.3	-12.1		
P1	5	-14.1	0.2	-14.4	-14.1	-13.9		
P1	4	-12.6	0.9	-13.3	-12.9	-11.3		
P1	5	-12.5	0.8	-13.6	-12.2	-11.8		
P1	5	-16.2	1.2	-18.0	-16.3	-15.1		
P1	5	-15.7	1.6	-17.8	-16.0	-13.7		
P1	5	-16.3	1.2	-17.5	-16.3	-14.3		
P2	5	-14.4	0.8	-15.7	-14.0	-13.9		
P2	5	-15.2	1.7	-18.0	-14.8	-13.5		
P2	5	-14.4	0.8	-15.1	-14.5	-13.0		
P2	5	-12.8	1.2	-14.1	-12.5	-11.7		
P2	5	-13.2	0.5	-13.8	-13.0	-12.7		
P2	5	-13.4	1.0	-14.5	-14.0	-12.2		
P3	24	-11.7	0.7	-12.7	-11.9	-10.0		
P4	27	-13.0	1.1	-14.3	-13.4	-9.7		
P5	34	-14.0	1.3	-15.8	-14.4	-9.9		
P6	30	-14.9	2.2	-18.5	-15.3	-9.3		
P7	31	-12.9	1.7	-15.8	-13.1	-10.0		
P8	17	-16.0	2.5	-21.3	-16.0	-12.4		

Table S2 continued								
Р9	28	-13.0	1.1	-14.4	-13.5	-10.8		
P10	22	-12.4	3.6	-21.1	-11.1	-8.9		
P11	23	-13.7	1.1	-16.1	-13.8	-12.0		
P12	50	-12.3	1.8	-16.6	-12.0	-8.9		
Seagrass mean*		-9.41	±	1.32	Burkholder et al. 2011 ⁷			
Macroalgae mean		-18.12	±	3.93	Burkholder	Burkholder et al. 2011 ⁷		
Seston		-19.3	±	2.05	Cawley et al. 2012 ⁸			
Wooramel riv	-25.08			Cawley et	t al. 2012 ⁸			

* Mean of all seagrass organs from tropical and temperate species in the Bay.

Table S3. Top meter sediment organic carbon (C) stocks, location and main features of sampled seagrass meadows. Number of deep-cores, water column depth and sediment depth after compression corrections. Same labels are used for cores with same coordinates sampled ~10 m apart from one another.

Coro ID	Latitude		Cito	Water depth	Seconda Streeting	Core length	Top meter C stock
Core ID			Site	(m)	Seagrass Species	(cm)	(Mg C ha ⁻¹)
W1	-25.9526	114.1838	Wooramel Bank	3.0	Amphibolis spp	232	111
W2	-25.9230	114.1458	Wooramel Bank	1.5	Amphibolis spp	205	124
W3	-25.9626	114.1561	Wooramel Bank	1.5	Amphibolis spp	199	220
W4	-25.8500	114.1020	Wooramel Bank	3.2	Amphibolis spp	206	322
W5	-25.7413	114.0746	Wooramel Bank	1.0	Halodule uninervis, Amphibolis antarctica	103	169
W6	-25.7448	114.0797	Wooramel Bank	0.9	Halodule uninervis, Amphibolis antarctica	55	185
W7	-25.9565	114.1741	Wooramel Bank	4.3	Halodule uninervis, Amphibolis antarctica	138	162
W8	-25.8940	114.1140	Wooramel Bank	3.0	Halodule uninervis	100	235
FS1	-25.8476	113.8352	Faure Sill	1.5	Posidonia australis	323	50
FS2	-25.8474	113.8356	Faure Sill	1.5	Posidonia australis	311	49
FS3	-25.8426	113.8359	Faure Sill	1.5	Posidonia australis	275	32
FS4	-25.7719	113.8227	Faure Sill	0.5	Posidonia australis	249	72
FS5	-25.7723	113.8236	Faure Sill	0.5	Posidonia australis	269	54
FS6	-25.7726	113.8250	Faure Sill	0.5	Posidonia australis	256	113
FS7	-25.9747	114.1240	Faure Sill	2.5	Posidonia sinuosa	202	91
FS8	-25.9789	114.0684	Faure Sill	2.5	Amphibolis spp	207	111
FS9	-25.8894	113.8410	Faure Sill	3.0	Posidonia australis, Amphibolis antarctica	263	101
FS10	-25.8893	113.8412	Faure Sill	3.0	Posidonia australis, Amphibolis antarctica	75	81
FS11	-25.8894	113.8409	Faure Sill	4.0	Posidonia australis, Amphibolis antarctica	83	313
FS12	-25.8900	113.8407	Faure Sill	4.0	Amphibolis antarctica	230	39
FS13	-25.7870	113.8516	Faure Sill	2.0	Posidonia australis	261	104
FS14	-25.7870	113.8518	Faure Sill	2.0	Posidonia australis	146	118

Table S3	continued						
FS15	-25.9306	114.0961	Faure Sill	1.7	Amphibolis antarctica	99	180
FS16	-25.8746	113.9992	Faure Sill	0.7	Amphibolis antarctica	99	86
FS17	-25.9378	113.9364	Faure Sill	2.0	Amphibolis antarctica	109	281
FS18	-25.8513	113.9380	Faure Sill	2.0	Halodule uninervis, Amphibolis antarctica	139	168
FS19	-25.8449	113.7821	Faure Sill	2.0	Amphibolis antarctica	274	31
P1	-25.7942	113.7224	Peron Peninsula	0.5	Posidonia australis	27	45
P1	-25.7942	113.7224	Peron Peninsula	0.5	Posidonia australis	27	62
P1	-25.7942	113.7224	Peron Peninsula	0.5	Amphibolis antarctica	27	30
P1	-25.7942	113.7224	Peron Peninsula	0.5	Amphibolis antarctica	27	26
P1	-25.7942	113.7224	Peron Peninsula	0.5	Posidonia australis	27	51
P1	-25.7942	113.7224	Peron Peninsula	0.5	Amphibolis antarctica	27	29
P2	-25.7927	113.7189	Peron Peninsula	1.0	Amphibolis antarctica	27	42
P2	-25.7927	113.7189	Peron Peninsula	1.0	Amphibolis antarctica	27	47
P2	-25.7927	113.7189	Peron Peninsula	1.0	Amphibolis antarctica	27	42
P2	-25.7927	113.7189	Peron Peninsula	1.0	Posidonia australis	27	57
P2	-25.7927	113.7189	Peron Peninsula	1.0	Posidonia australis	27	63
P2	-25.7927	113.7189	Peron Peninsula	1.0	Posidonia australis	27	58
Р3	-25.9358	113.5277	Peron Peninsula	1.5	Posidonia australis	246	70
P4	-25.9668	113.5387	Peron Peninsula	2.0	Amphibolis antarctica	251	54
P5	-26.0021	113.5546	Peron Peninsula	3.0	Amphibolis antarctica	248	150
P6	-25.6071	113.5883	Peron Peninsula	1.5	Amphibolis antarctica, Posidonia spp	289	30
P7	-25.6209	113.5897	Peron Peninsula	1.5	Amphibolis antarctica, Posidonia spp	273	137
P8	-25.6914	113.5986	Peron Peninsula	2.5	Amphibolis antarctica	99	59
P9	-25.7524	113.6733	Peron Peninsula	2.0	Amphibolis antarctica, Posidonia spp	259	44
P10	-25.8635	113.4928	Peron Peninsula	1.5	Posidonia sinuosa	275	110
P11	-25.7419	113.4157	Peron Peninsula	2.0	Amphibolis antarctica	214	23
P12	-25.7779	113.4483	Peron Peninsula	1.5	Posidonia australis	280	194

Table S4. Estimates of seagrass sediment thicknesses accumulated over the last 4,000 cal yr BP based on radiocarbon results. The total thickness of sediments surveyed and the age of the bottom sections are indicated, together with the % of sampled sediment thickness encompassing the last 4,000 yr.

Core ID	Total thickness surveyed (cm)	Age of bottom section (cal yr BP)		Estimate thickness (E	d sed (4,00 8P)	liment 0 cal yr	% of sampled sediment thickness encompassing 4,000 cal yr BP	
W3	199	3404	±	444	234	±	18	85
W4	206	1911	±	587	431	±	84	48
FS7	202	1367	±	54	591	±	11	34
FS9	263	3563	±	123	295	±	9	89
FS13	261	3757	±	96	278	±	5	94
FS14	146	1117	±	61	523	±	16	28
P5	248	5816	±	159	171	±	1	145
P7	273	4125	±	86	265	±	1	103
P8	99	2538	±	68	156	±	1	63
P10	275	6989	±	227	157	±	5	175
P12	280	3777	±	170	296	±	10	94

Supplementary References

- 1. Fourqurean, J. W. *et al.* Seagrass ecosystems as a globally significant carbon stock. *Nat. Geosci.* **5**, 505–509 (2012).
- 2. Serrano, O. *et al.* Can mud (silt and clay) concentration be used to predict soil organic carbon content within seagrass ecosystems? *Biogeosciences* **13**, 4915–4926 (2016).
- 3. Arias-Ortiz, A. et al. A marine heat wave drives massive losses from the world's largest seagrass carbon stocks [dataset]. Edith Cowan University. http://dx.doi.org/10.4225/75/5a1640e851af1 (2017).
- 4. Serrano, O. *et al.* Key biogeochemical factors affecting soil carbon storage in Posidonia meadows. *Biogeosciences* **13**, 4581–4594 (2016).
- 5. Keil, R. G. & Hedges, J. I. Sorption of organic matter to mineral surfaces and the preservation of organic matter in coastal marine sediments. *Chem. Geol.* **107**, 385–388 (1993).
- 6. Trevathan-Tackett, S. M. *et al.* Comparison of marine macrophytes for their contributions to blue carbon sequestration. *Ecology* **96**, 3043–3057 (2015).
- 7. Burkholder, D. A., Heithaus, M. R., Thomson, J. A. & Fourqurean, J. W. Diversity in trophic interactions of green sea turtles Chelonia mydas on a relatively pristine coastal foraging ground. *Mar. Ecol. Prog. Ser.* **439**, 277–293 (2011).
- 8. Cawley, K. M., Ding, Y., Fourqurean, J. & Jaffé, R. Characterising the sources and fate of dissolved organic matter in Shark Bay, Australia: A preliminary study using optical properties and stable carbon isotopes. *Mar. Freshw. Res.* **63**, 1098–1107 (2012).