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Supplementary Note 1: Definitions of droughts based on plant accessible soil water 

(PASW) 

For a grid cell with longitude i and latitude j at month m of the year t, we calculated the 
PASW for PFT f as follows, 

                          m
1

PASW ( , , , ) ( ) SW
s

i i

i

n

s s
s

i j t f w f
=

= ∑                                       (S1.1) 

where ( )
isw f is the root fraction of PFT  f at soil layer Si . See Supplementary Note 7 for details 

of root distribution within different ESMs.  SW
is  is the soil water (kg/m2) at soil layer Si . For a 

specific month m and a specific PFT f at the grid cell with longitude i and latitude j, we 
calculated the 2nd, 5th and 10th percentiles of PASW (i.e., (2)PASW ( , , )m i j f , (5)PASW ( , , )m i j f , 

and (10)PASW ( , , )m i j f ) based on the empirical probability function estimated from values of 

PASW ( , , , )m i j t f with t=1, …,150 for the historical period of year 1850-1999. These percentiles 
were then used to define droughts for all the study period during 1850-2099 (t=1, …, 250). 
Specifically, we identified month m of year t is drought month if 

             PASW ( , , , )m i j t f < (10)PASW ( , , )m i j f , for  t=  1,…, 250,              (S1.2) 

and expected GPP for these drought months is significant lower than expected GPP for non-
drought months. Namely, we have, 

           E(GPP ( , , , ) ) E(GPP ( , , , ) )d nd
m mi j t f i j t f< ,                                     (S1.3) 

where dt  indicates years as defined as droughts and ndt indicates years as defined as non-drought 
based on eq. (S1.2).  We used the Welch Two Sample t-test1 to test if E(GPP ( , , , ) )d

m i j t f  is 

significant lower than E(GPP ( , , , ) )nd
m i j t f  at significance level of 0.01. For the non-drought 

impacted months, we chose one out of every 5 years to reduce the impact of temporal auto-
correlations among samples on the statistical test. See Supplementary Figs. 11-12 for the number 
of months selected for the drought analysis. We further classified the drought months into mild 
droughts if  

        (5) (10)PASW ( , , ) PASW ( , , , ) PASW ( , , )m m mi j f i j t f i j f≤ < ,                 (S1.4) 

moderate droughts if 

        (2) (5)PASW ( , , ) PASW ( , , , ) PASW ( , , )m m mi j f i j t f i j f≤ < ,                    (S1.5) 

and extreme droughts if 
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                  (2)PASW( , , , ) PASW ( , , )mi j t f i j f< .                                          (S1.6) 

If the same year t was are identified as droughts for different PFTs (e.g., 1f  and 2f ) for month m, 
then the drought category was defined based on the PFT with the lowest p-value of Welch Two 
Sample T-test for eq. (S1.3), which had the strongest control of PASW on GPP.    
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Supplementary Note 2: Smoothing spline and stand error estimation 

 The smoothing spline is a method of fitting a smooth curve to a set of 

noisy observations2. The spline is used to minimize an objective function that considers both 

goodness of fit of the curve to observations and smoothness of the curve. Namely, we have 

                                   
1

( , ) ( ( )) ''( )
n

i i
i

L s y s x s x dxλ λ
=

= − +∑ ∫  ,                      (S2.1) 

where L is the objective function of spline S(x) with a smoothness compensation cost ofλ , given 

observations of ( ix , iy )[i=1, …,n]. ''( )s x  is the second derivative of the spline that represents  

the smoothness of the curve.  The solution of the above objective function is the spline s that 

minimize L given a specific value of λ . The smoothing spline is a linear estimator3. Namely, 

there is a n by n smoother matrix H(λ )={ ( )ijh λ  } [i, j=1, …,n] that transform the response 

vector Y = < iy >[i=1, …,n]  into a vector of fitted value S = < ˆ( )is x >[i=1, …,n] 3. Specifically, 

                                      ( )S H Yλ= .                                                          (S2.2) 

The term ( )ijh λ  determines how much influence of jy  on the fit to iy  (i.e., ˆ( )is x ).  Following 

linear regressions, ( )iih λ is generally termed leverage values that measure the impact of iy  on the 

fit to iy  (i.e., ˆ( )is x ). Using the leverage values, we were able to estimate the standard error of 

the spline ŝ( )ix  using the jackknife residuals as follows2, 

 
ˆ( )ˆ V( )

1
i i

i ii
ii

y s xh
h

σ −
=

−
,                                          (S2.3) 

where V (·) indicates the function of variance.   

 In our study, the above response variable iy  was the modeled output (i.e., GPP, 

temperature, air humidity, precipitation or radiations) from 1850-2099 for a specific month, 

while the dependent variable ix  represented years. For a specific month m in a grid cell at 

https://en.wikipedia.org/wiki/Smooth_curve
https://en.wikipedia.org/wiki/Observation
https://en.wikipedia.org/wiki/Observation
https://en.wikipedia.org/wiki/Observation
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longitude i and latitude j, we had a spline mS ( , )i j  based on model outputs ( , , )mY i j t  during years 

1850-2099.  Namely, 

                                       mS ( , ) ( ( , )) ( , )m mi j H i j Y i jλ= .                               (S2.4) 

where ( , )mY i j =< ( , , )mY i j t >. [ ]
1 2 1, 2  ,  1,  , 2( ( , )) 50{ ( ( , ))}m t tH i j h i j t tλ λ = …= .   

Correspondingly, its standard error at time t was estimated as follows, 

(s) ˆ( , , ) ( , , )ˆ ( , , ) V( )
1

m m
m tt

tt

Y i j t s i j ti j t h
h

σ −
=

−
.               (S2.5) 

In order to reduce the impact of temporal autocorrelation on standard error estimation, we only 

chose one out of every 5 years of ( , , )mY i j t and ˆ ( , , )ms i j t [t=1, …, 250] to estimate

ˆ( , , ) ( , , )V( )
1

m m

tt

Y i j t s i j t
h
−
−

.  

Many statistical packages are available to compute the smoothing spline. In this study, 

we used the “smooth.spline” function in R package2 to estimate splines in view that it is simple 

and fast and thus suits well for large scale applications like we conducted in this study. The 

“smooth.spline” function automatically selects the best λ by leave-one-out cross-validations.  

Namely, the code used all the data except with one observation xi left out to build a candidate 

s’(x) given a specific 'λ . This s’(x) was then used to predict the leave-out observation iy  and 

assess its fit.  The process was repeated for each of the observational data and finally assessed the 

overall model fit to all the data given the cost coefficient 'λ .  
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Supplementary Note 3: Estimation of drought impacts 

The grid-cell-specific drought-associated change (or deviation) in model output Y for 

month m ( (d) ( , , )md i j t ) was estimated based on the difference between the drought month GPP 

and its spline estimation. Namely, 

                                 (d)ˆ ˆ( , , ) ( , , ) ( , , )d d d
m m md i j t Y i j t s i j t= − ,                                    (S3.1) 

where ( , , )d
mY i j t  is the modeled output for a specific drought month m in a grid cell at longitude 

i and latitude j.   

 The global change in model output Y by a specific type of droughts [ (d)ˆ ( )d p ] for a period 

p from year 0pT  to year pT  can then be summarized as follows, 

                                0
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,        (S3.2) 

where ( )vI i, j is the indictor function for vegetation (1 with vegetation and 0 without vegetation). 

( )dI i, j,t  is the indictor function for the specific drought (1 with drought and 0 without drought).

( )A i, j  is the area (m2) of grid cell at longitude i and latitude j.  The corresponding standard 

errors of (d)ˆ ( )d p , (d)ˆ ( )sp pσ ,  were then estimated as follows, 
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where ( ) 2ˆ ( , , )d
m i j tσ is the variance of  (d)ˆ ( )md i, j,t . It was estimated as follows, 

( ) 2 (d) ( ) 2ˆˆ ˆ( , , ) ( ( , )) ( , , )d s
m m mi j t V d i j i j tσ σ= + ,                                      (S3.4) 
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where (d)ˆ( ( , ))mV d i j  is the sample variance of (d)ˆ ( , , )md i j t . ( ) 2ˆ ( , , )s
m i j tσ  was estimated from eq. 

(S2.5).  
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Supplementary Note 4: Importance of different factors to drought-associated GPP 

anomalies 

Using eq. (S2.4) in Supplementary Note 2,  for drought month m as defined by PASW of 

PFT f  , we estimated mean PASW[ PASW ( , , , )ms i j t f ],  GPP [ GPP ( , , , )ms i j t f ], air temperature 

[ TAS ( , , , )ms i j t f ],  air humidity [ HURS ( , , , )ms i j t f ],  precipitation [ PR ( , , , )ms i j t f ],  and 

radiation [ RSDS ( , , , )ms i j t f ].  Then, using eq. (S3.1) in Supplementary Note 3, we estimated the 

drought-associated deviations (or anomalies) for drought month m and PFT f  in PASW  

[ PASW ( , , , )md i j t f ],  in GPP [ GPP ( , , , )md i j t f ], in air temperature [ TAS ( , , , )md i j t f ],  in air 

humidity [ HURS ( , , , )md i j t f ], in precipitation [ PR ( , , , )md i j t f ],  and in radiation  

[ RSDS ( , , , )md i j t f ]. To understand the impact of different climate and environmental factors on 

the GPP anomalies, we applied a multilinear regression to values of GPP ( , , , )md i j t f with 

different climate variables at the global scale for years within a specific 25-year period (t).  

Meanwhile vegetation composition and status (e.g., leaf area index) could also play a very 

important role on GPP deviation (or anomaly) associated with droughts. In this study, we were 

not able to compile comprehensive complete vegetation states for all models due to the limitation 

of CMIP5 outputs and thus we used the mean GPP estimated by eq. (S2.4) [i.e., GPP ( , , , )ms i j t f ] 

to approximate the vegetation status.  Specifically, we had 

         0GPP ( , , , ) f(PASW) f (TAS) f (HURS) f(RSDS) f(PR) f(Veg)md i j t f a= + + + + + + ,              (S4.1) 

where  

    
11 12 13f (PASW) PASW ( , , , ) PASW ( , , , ) PASW ( , , , ) PASW ( , , , )m m m ma d i j t f a s i j t f a d i j t f s i j t f= + +                 (S4.2) 

    21 22 23f (TAS) TAS ( , , , ) TAS ( , , , ) TAS ( , , , ) TAS ( , , , )m m m ma d i j t f a s i j t f a d i j t f s i j t f= + + ,                (S4.3) 

    
31 32 33f (HURS) HURS ( , , , ) HURS ( , , , ) HURS ( , , , ) HURS ( , , , )m m m ma d i j t f a s i j t f a d i j t f s i j t f= + + ,             (S4.4) 

     
41 42 43f (RSDS) RSDS ( , , , ) RSDS ( , , , ) RSDS ( , , , ) RSDS ( , , , )m m m ma d i j t f a s i j t f a d i j t f s i j t f= + + ,               (S4.5) 

     
51 52 53f (PR) PR ( , , , ) PR ( , , , ) PR ( , , , ) PR ( , , , )m m m ma d i j t f a s i j t f a d i j t f s i j t f= + + ,                               (S4.6) 

      
61f (Veg) GPP ( , , , )ma s i j t f= .                                                                                                  (S4.7) 
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We used the proportion of variance (R2) explained by the multilinear region in eq. (S4.1) 

to assess the overall contribution of climate variables and vegetation states for drought month m 

as defined by PASW of PFT f . For easier presentation, we calculated a single value of R2 for a 

specific 25 year period weighted by the number of droughts events across different months and 

PFTs.   

To estimate the overall impact of all climate variables, we calculated the R2 of the 

following model, 

   0GPP ( , , , ) f(PASW) f (TAS) f (HURS) f(RSDS) f(PR)md i j t f a= + + + + + .                (S4.8) 

To estimate the impact of individual climate variables, we calculated the R2 of the following 
models, 

                      0GPP ( , , , ) f(PASW)md i j t f a= + ,                                                               (S4.9) 

                       0GPP ( , , , ) f(TAS)md i j t f a= + ,                                                                 (S4.10) 

                      0GPP ( , , , ) f(HURS)md i j t f a= + ,                                                               (S4.11) 

                      0GPP ( , , , ) f(RSDS)md i j t f a= + ,                                                                (S4.12) 

                      0GPP ( , , , ) f(PR)md i j t f a= + .                                                                     (S4.13) 

                     0GPP ( , , , ) f (Veg)md i j t f a= + .                                                                    (S4.14)  
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Supplementary Note 5: Statistical tests 

5.1 Statistical tests for drought-associated GPP reductions 

We assumed that there were two types of errors associated the estimated drought-

associated GPP reductions at the global scale. The first type of error comes from the error in 

estimation from our smooth spline ( spe ). The second type of error comes from the model 

structure ( mde ). In order to test if the drought associated GPP reduction are significantly different 

between periods 1p and 0p  , we decomposed the GPP reduction using the follow equation, 

       1 0 1 0 md,GPP 0 1 sp,GPP 1GPP( , ) GPP( , ) GPP( , ) ( , , ) ( , )d p k d p k d p p e p p k e p k= + ∆ + +                         (S5.1) 

where GPP( , )d p k is the estimated GPP reduction by a specific type of droughts (e.g., mild, 

moderate and extreme droughts) during period p  for model k.  1 0GPP( , )d p p∆  is the difference 

in drought associated GPP reduction between periods 0p  and 1p .  md,GPP 0 1( , , )e p p k  is the random 

error in 1 0GPP( , )d p p∆ due to model structure difference. To relax the impact of parametric 

distribution on the statistical tests, we assumed that md,GPP 0 1e ( , , )p p k  followed an empirical 

cumulative distribution function (ECDF) estimated from the deviation of ensemble mean for 

each model.  Namely, 

                   md,GPP 0 1 1 0
ˆ ˆ( , , ) ~ ECDF( GPP( , ) GPP( , ) ) { 1,..., }mde p p k d p k d p k k N− =                    (S5.2) 

where mdN  is the total number of models. We assumed a Gaussian distribution for sp,GPPe ( ,k)p  in 

view that deviations from the fitted spline of GPP generally followed a Gaussian distribution. 

Namely, we have 

                             sp,GPP 1e ( , )p k ~ G(0,  2
,GPP 1( , )sp p kδ )                                                      (S5.3) 

with  2
sp,GPP 1( , )p kδ  estimated from eq. (S2.5).  

 Meanwhile, the drought-associated GPP reduction during period 0p for model k in eq. 

(S5.1), 0GPP( , )d p k ,  was decomposed as follows, 
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                0 0 md,GPP 0 sp,GPP 0GPP( , ) GPP( ) ( , ) ( , )d p k d p e p k e p k= + + ,                           (S5.4) 

where 0GPP( )d p  is the “true” GPP reduction for period 0p . md,GPP 0( , )e p k  is the error in GPP 

reduction results from model structure for period 0p . Similar to md,GPP 0 1( , , )e p p k  in eq. (S5.1), 

we assumed that md,GPP 0e ( , )p k  followed an empirical cumulative distribution function (ECDF) 

estimated from the deviation of ensemble mean for each model.  Namely, 

                 md,GPP 0 0
ˆe ( , ) ~ ECDF( GPP( ,k) ) { 1,..., }mdp k d p k N=                                (S5.5) 

Similar to eq. (S5.3), we assumed a Gaussian distribution for sp,GPP 0( , k)e p . Combining eqs. (S5.1) 

and (S5.4), we had 

   
1 0 1 0 md,GPP 0 md,GPP 0 1 sp,GPP 0 sp,GPP 1GPP( , ) GPP( ) GPP( , ) e ( , ) e ( , , ) ( , k) ( ,k)d p k d p d p p p k p p k e p e p= + ∆ + + + + .        (S5.6) 

Under the null hypothesis that there is no difference in drought-associated GPP reduction 

between period p0 and p1, we have  

                        1 0GPP( , ) 0d p p∆ = .                                                                     (S5.7) 

Based on eq. (S5.1) and (S5.4), the ratio of 1( , )d p k to 0( , )d p k under null hypothesis [ (0)τ ] can 

be calculated as follows, 

                 
0 md,GPP 0 md,GPP 0 1 sp,GPP 0 sp,GPP 1

1 0 md,GPP 0 sp,GPP 0(0)

GPP( ) ( , ) e ( , , ) ( , ) ( , )
GPP( ) ( , ) ( , )

mdN

k

md

d p e p k p p k e p k e p k
d p e p k e p k

N
τ =

+ + + +
+ +

=
∑ .                   (S5.8) 

In order to test if there is a significant difference in drought-associated GPP reduction between 

the two periods, we estimated the sample cumulative probability distribution of (0)τ , (0)ˆ ( )F τ ,  by 

drawing 10,000 samples for (0)τ . Then the p-value of our hypothesis test was calculated as 

follows, 

                         (0)ˆ ˆ( )p F τ τ= ≥ ,                                                                           (S5.9) 

with  
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1

1 0

ˆGPP( , )
ˆGPP( , )ˆ

mdN

k

md

d p k
d p k

N
τ ==

∑
.                                                         (S5.10) 

ˆGPP( , )d p k was estimated from eq. (S3.1).  The procedure of random sample drawing for (0)τ is 

as follows. First, we drew one random sample for md,GPP 0( , )e p k , md,GPP 0 1( , , )e p p k , sp,GPP 1( , k)e p , 

and sp,GPP 0( , k)e p  [k=1,…, mdN ] from their specific distributions. The 0( )d p  was estimated from 

the mean values of drought-associated GPP reduction during period 0p  (i.e., 0( , )d p k ). Second, 

we calculated the test statics (0)τ  from eq. (S5.8).  We repeated the above two steps for 10, 000 

times and then estimated the p-value from eq. (S5.9). 

         Based on eqs. (S5.1) and (S5.4), we can construct different statistical metrics (e.g., ratio of 

percentage reduction for different periods) and testing their significance by drawing random 

samples given the null hypothesis similar to eq. (S5.7).    

5.2 Statistical tests for drought risks 

The occurrence probability of a specific drought can be decomposed as follows,  

     1 0 1 0 md 0 1( , ) ( , ) ( , ) e ( , , )p k p k p p p p kγγ γ γ= + ∆ + ,                                (S5.11) 

where ( , )p kγ is the estimated occurrence frequency of a specific type of droughts (e.g., mild, 

moderate and extreme droughts) for period p of model k. 1 0( , )p pγ∆  is the drought frequency 

difference between periods 0p  and  1p .  md 0 1e ( , , )p p kγ  is the error associated with 1 0( , )p pγ∆

due to model structure differences. Meanwhile, the term 0( , )p kγ  in eq. (S5.11) was decomposed 

as follows, 

                            0 0 md 0( , ) ( ) e ( , )p k p p kγγ γ= + ,                                                     (S5.12) 

where 0( )pγ is the “true” frequency with a specific type of droughts (e.g., mild, moderate and 

extreme) for period 0p . mde (p, )kγ  is the error associated with model structures. Combining eqs. 

(S5.11) and (S5.12), we had 
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                     1 0 md 0 1 0 md 0 1( , ) ( ) e ( , ) ( , ) e ( , , )p k p p k p p p p kγ γγ γ γ= + + ∆ +  .                           (S5.13) 

To relax the impact of parametric distribution on the statistical tests, we assumed that md 1e ( , )p kγ  

and md 0 1e ( , , )p p kγ  followed an empirical cumulative distribution function (ECDF) estimated 

from the deviation of ensemble mean from for each model.  Namely, 

                     md ˆe (p, ) ~ ECDF( ( ,k) ( ) ) { 1,..., }mdk p p k Nγ γ γ− = ,                          (S5.14) 

and  

                   
md 0 1 0 1 0 1ˆ ˆe ( , , ) ~ ECDF( ( , ) ( , ) ( ( ) ( ))) { 1,..., }mdp p k p k p k p p k Nγ γ γ γ γ− − − = ,          (S5.15) 

where ( )pγ  is the mean drought occurrence frequency across models at time period p and mdN  

is the total number of models.  

In order to test if the drought occurrence frequency in the future during years 2075-2099 

(period p1) is statistically significant from the past during years 1850-1999 (period 0p ) , we 

checked the mean ratio of drought reduction for period 1p to that for period 0p  as follows,  

   
0 md 0 1 0 md 0 11

1 0 md 01 0

( ) e ( , ) ( , ) e ( , , )ˆ( , )
( ) e ( , )ˆ( , )

mdmd NN

kk

md md

p p k p p p p kp k
p p kp k

N N

γ γ

γ

γ γγ
γγτ ==

+ + ∆ +
+

= =
∑∑ .                         (S5.16) 

Under the null hypothesis that there is no difference in drought occurrence frequency between 

period 0p  and 1p , we had 

                    1 0( , ) 0p pγ∆ =                                                                          (S5.17) 

Thus, the ratio under null hypothesis can be estimated as follows, 

0 md 0 md 0 1

1 0 md 0(0)

( ) e ( , ) e ( , , )
( ) e ( , )

mdN

k

md

p p k p p k
p p k

N

γ γ

γ

γ
γ

τ =

+ +
+

=
∑

.                                                   (S5.18) 
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In order to test if there is a significant difference in drought occurrence between the two periods, 

we estimated the sample cumulative probability distribution of (0)τ , (0)ˆ ( )F τ ,  by drawing 10000 

samples for (0)τ .  Then the p-value of our hypothesis test was calculated as follows, 

                         (0)ˆ ˆ( )p F τ τ= ≥ ,                                                            (S5.19) 

with  

                       

1

1 0

ˆ( , )
ˆ( , )ˆ

mdN

k

md

p k
p k

N

γ
γτ ==

∑
.                                                              (S5.20) 

ˆ( , )p kγ is the estimated drought occurrence frequency during period p for model k.  The specific 

procedure of random sample drawing for (0)τ is as follows. First, we drew one random sample for 

md 1e ( , )p kγ  and  md 0e ( , )p kγ   [k=1,…, mdN ] from their specific Gaussian distributions. 0( )pγ  

was estimated from the mean values of drought-associated GPP reduction during period 0p  (i.e., 

( )pγ ). Second, we calculated the test statics (0)τ  from eq. (S5.18). We repeated the above two 

steps for 10, 000 times and estimated the p-values from eq. (S5.19).  

  The approach laid out in this section can be similarly applied to other variables that do 

not contain the error resulting from spline estimation as we did not assume any parametric 

distributions for the structural error term.  
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Supplementary Note 6: Soil moisture limitation functions in Earth System Models 

Function 1:  soil moisture factor 
s| |

1
(1.0 )wbe θ θ

β
− −

=
−

 ,  where wθ  is the wilting soil moisture for 

plants ; oΨ  is the soil water potential that plant’s stomata fully open; sθ  is the mean soil 

moisture in the rooting zone; b  is a constant coefficient. β  is applied  to the canopy stomatal 

conductance (m/s). See Abramopoulos et al.4 and Friends and Kiang5 for details. 

 

Function 2:  soil moisture factor 
1

( )( ) min( ,1.0)
lN

s w

l o w

lr l θ θβ
θ θ=

−
=

−∑ ,  where wθ  is the wilting soil 

water content for plants ; ( )s lθ is the soil water content at soil layer l;  oθ  is the soil water content 

that plants fully open their stomata; ( )r l  is the root fraction in the soil layer l;  lN is the number 

of soil layers. β is applied  to the maximum photosynthetic capacity . See Bonan 6,  Cox et al 7 

and Krinner et al8   for details. 

 

Function 3:  soil moisture factor with 22β δ δ= −  with 
1

( )( ) min(1.0, )
lN

s w

l f w

lr l θ θδ
θ θ=

−
=

−∑  ,  where 

wθ  is the wilting soil water content for plants ; ( )s lθ is the soil water content at soil layer l;  fθ  is 

the soil water content at field capacity; ( )r l  is the root fraction in the soil layer l;  lN is the 

number of soil layers. β is applied  to the maximum photosynthetic capacity as represented by 

maximum carboxylation rate, Vc,max (µmol CO2/m2 leaf/s). See Arora9 for details. 

 

Function 4:  soil moisture factor
1

( ) ( ) ( )( ) max( , 0)( )
( )

lN
w s sat ice

l o sat

l l lr l
w l

θ θβ
θ=

Ψ −Ψ −
=

Ψ −Ψ∑  ,  where wΨ  is 

the wilting soil water potential (Mpa) for plants ; oΨ  is the soil water potential that plants fully 

open their stomata; ( )s lΨ  is the soil water potential (Mpa) at soil layer l;  ( )sat lθ  is the saturated 
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volumetric water content;  ( )ice lθ is the water-equivalent volumetric  content for ice;  ( )r l  is the 

root fraction in the soil layer l;  lN is the number of soil layers. β is applied  to the maximum 

photosynthetic capacity as represented by maximum carboxylation rate, Vc,max (µmol CO2/m2 

leaf/s). See Oleson et al. 10 for details. 

Function 5:  soil moisture factor d

s

ET
ET

β = , where dET  is the water demand based on air 

humidity and photosynthesis;  and sET  is the water supply from soil depending on plant wilting 

moisture, current soil water availability and plant structural parameters (root density, plant 

height,  sapwood mass, root and xylem conductance).  β is applied  to the canopy stomatal 

conductance (m/s).  See Milly et al 11 for details. 

Function 6:  soil moisture factor
1

( )( ) max( , 0)
lN

w s

l w

lr lβ
=

Ψ −Ψ
=

Ψ∑  ,  where wΨ  is the wilting soil 

water potential (Mpa) for plants ; ( )s lΨ  is the soil water potential (Mpa) at soil layer l;   ( )r l  is 

the root fraction in the soil layer l;  lN is the number of soil layers. β is applied  to the canopy 

stomatal conductance (m/s). See Abramopoulos et al  4 for details. 

 

Function 7:  soil moisture factor (1) (2)min(max( , ),1.0)s w s w

o w o w

θ θ θ θβ
θ θ θ θ

− −
=

− −
  ,  where wθ  is the 

wilting soil water content for plants ; ( )s lθ is the soil water content at soil layer l (l=1 for soil 

layer at top 50 cm, l = 2 for soil layer at 50-100cm );  oθ  is the soil water content that plants fully 

open their stomata. β is applied  to the maximum photosynthetic capacity . See Sato et al 12 for 

details.  
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Supplementary Note 7: Root distributions in Earth System Models 

7.1: GFDL model 

The root distribution in GFDL land model follows an exponential distribution13. Specifically, the 

root cumulative density function, f(z), is as follows, 

                                          ( )f z e λλ −=                                                                    (S7.1) 

where λ  is a PFT specific parameter that determine the shape of root distributions. λ  is set as 

3.85  for grass, crops and pastures; 6.25 for cold evergreen trees and  3.45 for temperature 

deciduous and 3.85 for tropical evergreen. The CMIP5 outputs of PFT fractions do not 

differentiate between different types of trees. Therefore, we used the vegetation map from Milly 

et al11 to mask out the cold evergreen trees and use an average value of 3.64  (λ ) for all other 

trees as their root distributions are fairly close. We do acknowledge that there are potential 

distribution changes of the cold evergreen trees in the future simulations; however, we expect 

that the impact will be small as the future change are small compared to the overall 

distribution11.  

7.2: GISS model 

The cumulative root distribution in GISS land model follows a power function as follows, 

                        
1.0

( )
1.0 1.0

b b

b

az az
F z

az

 <= 
≥

                                              (S7.2) 

where a and b is set as 12.5 and 0.9 for tundra, 0.9 and 0.9 for grasses, 0.8 and 0.4 for shrubs, 

0.25 and 2.0 for woodland, deciduous and evergreen trees, and 1.1 and 0.4 for rainforests, 

respectively.  

7.3: HadGEM2 model 

The root distribution in HadGEM2 model also follows an exponential distribution as specified in 

eq. (S6.1). The parameter λ  is set as 0.67 for broad leaf trees, 2.0 for needle leaf trees, and 4 for 

grasses and shrubs14. 
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7.4: INMCM model 

The root distribution in INMCM land model follows a step function15,16. The root density is set 

as 5 for the top 10 cm and 1 for other 10-cm layers. The root depth varies across different PFTs. 

In this study, we set it as 0.5 meter for grass and crops, and 2.0 meter for shrubs, and 1.0 for trees 

based on the values of majority of PFTs within grass, shrubs or trees as CMIP5 did not output 

the PFT fractions.  

7.5: MIROC model 

MIROC model does not explicitly simulate the root distribution12. Instead, it uses the maximum 

of soil water availability among two soil layers: 1-50cm or 50-100cm. Therefore, wet set the root 

distribution as 1.0 for first layer (0-50cm) and 0 for second layer (50-100cm) if there is more 

water in first layer. If there is more soil water in the second layer, then we set root distribution as 

0.0 for first layer and 1.0 for second layer.   

7.6: NorESM model 

The root distribution in NorESM follows an exponential distribution as described in the 

Community Land Model (CLM)17. The root fraction in each soil layer ( ( )r z ) is calculated using 

the following equation, 

    
, 1 , 1 , ,

, 1 , 1

0.5( )
( )

0.5( )

h i h i h i h i

h i h i

aZ bZ aZ bZ
s

aZ bZ
s

e e e e i N
r z

e e i N

− −

− −

− − − −

− −

 + − + <= 
+ =

                                (S7.3) 

where ,h iZ is the depth from soil surface to the interface between soil layer i and i+1. The values 
of a and b for 17 PFTs were obtained from Table 8.3 from CLM technique note17.   
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Supplementary Table 1 | Earth System Models and their configurations used in this study 

Model Name Full Name Institute Fire Res. N*1 Dynamic 

vegetation 

Soil 

moisture 

function*2 

Land Model  Source 

GFDL-ESM2G Geophysical Fluid Dynamics Laboratory Earth System 

Model with Generalized Ocean Layer Dynamics 

(GOLD) component 

Geophysical Fluid Dynamics 

Laboratory 

Yes 144x90 No Yes 5 LM3.0 11,18,19 

GFDL-ESM2M Geophysical Fluid Dynamics Laboratory Earth System 

Model with Modular Ocean Model version 4.1 

Geophysical Fluid Dynamics 

Laboratory 

Yes 144x90 No Yes 5 LM3.0 11,18,19 

GISS-E2-H NASA Goddard Institute for Space Studies Model E, 

version 2, coupled with HYCOM ocean model 

NASA Goddard Institute for 

Space Studies 

No 144x90 No No 6 GISS-LS 5,20-22 

GISS-E2-H-CC NASA Goddard Institute for Space Studies Model E, 

version 2, coupled with HYCOM ocean model, with 

an interactive carbon cycle 

NASA Goddard Institute for 

Space Studies 

No 144x90 No No 6 GISS-LS 5,20-22 

GISS-E2-R NASA Goddard Institute for Space Studies Model E, 

version 2, coupled with the Russel ocean model 

NASA Goddard Institute for 

Space Studies 

No 144x90 No No 6 GISS-LS 5,20-22 

GISS-E2-R-CC NASA Goddard Institute for Space Studies Model E, 

version 2, coupled with the Russel ocean model, with 

an interactive carbon cycle 

NASA Goddard Institute for 

Space Studies 

No 144x90 No No 6 GISS-LS 5,20-22 

HadGEM2-CC Hadley Global Environment Model, version 2 - 

Carbon Cycle 

Met Office Hadley Centre No 192x145 No Yes 2 MOSES II 

/TRIFFID 

5,20-22 

HadGEM2-ES Hadley Global Environment Model, version 2 - Earth 

System 

Met Office Hadley Centre No 192x145 No Yes 2 MOSES II/ 

TRIFFID 

5,20-22 

INMCM4 

 
Numerical Mathematics Climate Model, version 4.0 Numerical Mathematics Climate 

Model, version 4.0 

No 180x120 

 

No Yes 2 - 15,16,23 

IPSL-CM5A-LR Institut Pierre-Simon Laplace Coupled Model, version 

5, coupled with NEMO, low resolution 

Institut Pierre Simon Laplace 

Climate Modelling Centre 

Yes 96x96 No Yes 2 ORCHIDEE  

IPSL-CM5A-MR Institut Pierre-Simon Laplace Coupled Model, version 

5, coupled with NEMO, medium resolution 

Institut Pierre Simon Laplace 

Climate Modelling Centre 

Yes 144x143 No Yes 2 ORCHIDEE 8,24 

IPSL-CM5B-LR Institut Pierre-Simon Laplace Coupled Model, version 

5 with new atmospherical physics, low resolution 

Institut Pierre Simon Laplace 

Climate Modelling Centre 

Yes 96x96 No Yes 2 ORCHIDEE 8,24 

MIROC-ESM Model for Interdisciplinary Research 

on Climate, Earth System Model 

Japan Agency for Marine-Earth 

Science and Technology, 

Atmosphere and Ocean Research 

Institute, and National Institute 

for Environmental Studies 

No 128x64 No Yes 7 MATSIRO/ SEIB-

DGVM 

12,25 

MIROC-ESM(CHEM) Model for Interdisciplinary Research 

on Climate, Earth System Model with an atmospheric 

chemistry component (CHASER 4.1) 

Japan Agency for Marine-Earth 

Science and Technology, 

Atmosphere and Ocean Research 

Institute, and National Institute 

for Environmental Studies 

No 128x64 No Yes 7 MATSIRO/ SEIB-

DGVM 

12,25 

NorESM1-M Norwegian Earth System Model, intermediate 

resolution 

EarthClim Yes 144x96 Yes No 4 CLM4 26,27 

NorESM1-ME*3 Norwegian Earth System Model, intermediate 

resolution with biogeochemical cycling 

EarthClim  Yes 144x96 Yes No 4 CLM4 26,27 

Notes: 1-Whether the model incorporates nutrient dynamics; 2- See Supplementary Note 6 for details of the soil moisture limitation functions.  
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Supplementary Fig. 1 | Temporal Changes in proportion of variance in GPP reductions associated 
with droughts contributed by different factors under greenhouse gas emission scenario RCP8.5. We 
considered the contributions by monthly plant accessible soil water (PASW) (a), temperature (b), 
humidity (c), radiation (d), the vegetation (e), and the combination of all factors (f). See Supplementary 
Note 4 for details of the calculations. 
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Supplementary Fig. 2 | Temporal Changes in percentage of variance in GPP reductions associated 
with droughts contributed by different factors under greenhouse gas emission scenario RCP4.5. We 
considered contributions from monthly plant accessible soil water (PASW) (a), temperature (b), humidity 
(c), radiation (d), vegetation (e), and the combination of all factors (f). See Supplementary Note 4 for 
details of the calculations.  See Supplementary Table 1 for the abbreviations of 13 selected Earth system 
models. 
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Supplementary Fig. 3 | Temporal changes in mean global GPP relative to the historical period of 
1850–1999. We considered both high (RCP 8.5; a) and intermediate (RCP 4.5; b) greenhouse gas 
emission scenario. The relative GPP was calculated on a model-specific basis, dividing the GPP over a 
specific period by that over the historical period, projected by 13 Earth System models for the vegetated 
lands. The p-values were calculated to check if there is a significant difference between future period of 
2075–2099 and historical period of 1850–1999 using the approach laid out in Supplementary Note 5.1. 
See Supplementary Table 1 for the abbreviations of 13 selected Earth system models. 
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Supplementary Fig. 4 | Temporal changes in mean GPP during drought months (kg C/m2/month) 
relative to the historical period of 1850–1999. The relative GPP was calculated on a model-specific 
basis, dividing the GPP over a specific period by that over the historical period. The p-values were 
calculated to check if there is a significant difference between future period of 2075–2099 and historical 
period of 1850–1999 using the bootstrap sampling approach laid out in Supplementary Note 5.2.  
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Supplementary Fig. 5 | Temporal changes of percentage reduction in GPP (%) associated with all 
droughts. We considered GPP reduction under both high (RCP 8.5; a) and intermediate (RCP 4.5; b) 
greenhouse gas emission scenario, projected by 13 Earth System models over the vegetated lands. The 
dotted horizontal line shows the mean value during 2075–2099. The p-values were calculated to check if 
there is a significant difference between future period of 2075–2099 and historical period of 1850–1999 
(one side test assuming a larger magnitude of GPP reduction in the future) using the bootstrap sampling 
approach laid out in Supplementary Note 5.1. See Supplementary Table 1 for the abbreviations of 13 
selected Earth system models. 
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Supplementary Fig. 6 | Temporal changes of percentage reduction in GPP associated with droughts 
relative to the historical period of 1850–1999. The relative values were calculated on a model-specific 
basis, dividing percentage change in GPP per year for a specific period by that over the historical period. 
Positive values indicate droughts increase GPP while negative values indicate droughts decrease GPP. 
Values of <-1 indicate stronger impact of drought on GPP compared to the historical period; while values 
>-1 indicate weaker impact of drought. The dotted line shows the mean relative value during 2075–2099. 
The p-values were calculated to check if the percentage reduction for future period of 2075–2099 is 
significantly larger than the historical period of 1850–1999 using the bootstrap sampling approach laid 
out in Supplementary Note 5.1. 
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Supplementary Fig. 7 | Spatial distribution of GPP anomalies during 1975-1999 relative to the 
period of 1850–1999. The relative anomalies were calculated on a model specific basis,  dividing grid-
cell-specific mean annual GPP anomaly (kg C/m2/ year) during 1975–1999 associated with different 
types of droughts by the global mean annual GPP reduction over vegetated land (kg C/m2/ year) for the 
historical period of 1850–1999.  The relative anomalies were multiplied by (-1) to indicate that droughts 
decrease GPP, with -1 indicating the reference global mean GPP reduction for the historical period. 
Hence, values < -1 (shades of red) indicate that the magnitude of GPP reduction was larger than the 
global mean GPP reduction during the historical period of 1850–1999, while values > -1 (light blue) 
indicate that the magnitude of GPP reduction was smaller. The drought-associated changes in GPP 
projected by different models were interpolated to a reference spatial resolution [1.125 o (longitude) x 
0.9375o (latitude)] for mapping purposes. 



Supplementary Fig. 8 | Maps of coefficient of variation (CV) for drought frequency during 2075–
2099 relative to the historical period of 1850–1999. The CV was calculated from the ensemble of 13 
ESMs. The relative frequencies were calculated on a model- and grid-cell-specific basis, dividing the 
mean drought frequency per year (drought events/year) during 2075–2099 by that over the historical 
period. See Fig. 2 for maps of mean values. 

  



 

Supplementary Fig. 9 | Maps of coefficient of variation (CV) for anomalies in GPP associated with 
droughts during 2075–2099 relative to the historical period of 1850–1999. The CV was calculated 
from the ensemble of 13 Earth System models. The relative anomalies in GPP were calculated on a model 
specific basis, dividing the grid-cell-specific mean annual GPP change (kg C/m2/ year) during 2075–2099 
by the global mean of annual GPP change (kg C/m2/ year) over the vegetated land for the historical period 
of 1850–1999. See Fig. 4 for maps of mean values.  

  



 

Supplementary Fig.  10 | Temporal change in standard deviation of mean global GPP at different 
time periods relative to the historical period of 1850–1999. The standard deviations were calculated 
under both high (RCP 8.5; a) and intermediate (RCP 4.5; b) greenhouse gas emission scenario, 
aggregated over vegetated lands for each selected Earth System models. The p-values were calculated to 
check if there is a significant difference between future period of 2075–2099 and historical period of 
1850–1999 using the bootstrap sampling approach laid out in Supplementary Note 5.2. See 
Supplementary Table 1 for the abbreviations of 13 selected Earth system models. 
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Supplementary Fig.  11 | Spatial distribution in number of months analyzed for drought impacts on 
GPP projected by 13 Earth System models under greenhouse gas emission scenario RCP 8.5.  A 
month was selected for analysis only if GPP values of this month for the years with PASW less than 
the10th percentile (defined based on the historical period of 1850–1999) were significantly lower than the 
rest of years during 1850–2099 at the significance level of 0.01. See Supplementary Note 1 for details of 
the statistical test. 

 

 

 



 

Supplementary Fig.  12 | Spatial distribution in number of months analyzed for drought impacts on 
GPP projected by 13 Earth System models under greenhouse gas emission scenario RCP 4.5.  A 
month was selected for analysis only if GPP values of this month for the years with PASW less than 
the10th percentile (defined based on the historical period of 1850-1999) were significantly lower than the 
rest of years during 1850–2099 at the significance level of 0.01. See Supplementary Note 1 for details of 
the statistical test. 

 


