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Note 1. Model-Observation comparison of seasonal cycle of sea surface chlorophyll 

Results of a comparison of phytoplankton phenology between ESM2M and observational data 

are summarized in Figure. S1–S4, and Extended Data Figure 1. 

We first present biome-averaged normalized seasonal cycles of sea surface chlorophyll (Chl) 

to compare ESM2M and observations focusing on the phase of the seasonal cycle (Fig. S1), 

namely the main focus of this study. The analysis reveals that the model reproduces the 

observed phase of the seasonal cycle of phytoplankton relatively well, but that there are some 

limited regions where the model simulation is less satisfactory, especially in the high latitudes 

of the Southern Hemisphere (SI_SPSS, SA_SPSS, SP_SPSS, S_ICE) and the northern Indian 

Ocean (NI_STPS). Correlation coefficients of the daily climatology of the modeled and 

observed seasonal cycles also are small in these ocean regions (Fig. S2). An important source 

of these biases might be in large part due to biases in the simulated seasonal cycle for the 

physical state of the model. The overly intense summer stratification bias and associated warm 

sea surface temperature in the Southern Ocean in this model (Dunne et al., 20121) can lead to 

anomalous accumulation of biomass in the sub-surface layer and can induce the apparent 

autumn bloom when the mixed layer (ML) deepens, as seen in Figure S1r, S1s, and S1t. 

While there are such phase biases in the seasonal cycle of Chl considered as a biome-mean, the 

model captures well the spatial structure of both phytoplankton bloom phase and amplitude 

characteristics (Fig. S3). In the Northern Hemisphere, the model reproduces the observed 

meridional structure of a gradual delay in bloom peak and initiation as latitude increases from 

the mid- to high-latitudes. In the Southern Hemisphere, the model shows spatial patterns that 

are similar as the observations, with relatively uniform bloom peak timing in the mid-latitude 

oceans, and with a marked transition to the Antarctic circumpolar current region. However, as 

seen in Figure S1, there is an overall early bias in the circumpolar current region. 
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The relative standard deviations in Figure S2 provide us with information about the model-

observation difference in the amplitude of the seasonal cycle in Chl. As the standard deviation 

in Figure S2 is normalized by the corresponding observations in each biome, the closer the 

value is to unity (dotted line in the figure), the better the model represents the observed 

amplitude of the seasonal cycle. In the STSS of the South Pacific and South Indian Ocean, the 

modeled seasonal amplitude is almost three times larger than that in the observations. The 

model tends to underestimate the magnitude of the phytoplankton bloom in coastal regions, 

and slightly overestimates the magnitude in the open ocean, although the model reproduces 

well the overall spatial pattern (Fig. S3e, and S3f). This is undoubtedly largely due to the fact 

that the model used in this study has low-resolution and does not reproduce the small spatial-

scale coastal processes, such as coastal-open ocean water exchange and atmospheric deposition 

of terrestrial-origin materials. 

Extended Data Figure 1 demonstrates that, in a biome mean sense, the ensemble spread of the 

30-member ESM2M Large Ensemble successfully reproduces the magnitude of the natural 

variability in the observed features of bloom phenology. On the other hand, model 

underestimates observed natural variability in bloom magnitude in many biomes (Fig. S4). This 

as may as well be a consequence of low-resolution models not being able to reproduce 

processes with small spatiotemporal scales that can drive extreme phytoplankton variability. 

As the Time of Emergence (ToE, Methods) in this study is estimated using the ratio of the 

forced trend (ensemble mean, signal) to the background natural variability (ensemble standard 

deviation, noise), this gives us a degree of confidence that the ToE estimated by using future 

projections with ESM2M is relatively reliable for phenological aspects of the phytoplankton 

bloom (initiation and peak timing), but it should be noted that the ToE for the bloom magnitude 

may be underestimated. 
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A comparison of the interannual variability in the phytoplankton bloom phenological features 

and magnitude in each biome is shown in Extended Data Figure 1 and Figure S4. This analysis 

reveals that both phenological and magnitude features have large internal variability in 

observations, and that the observational records are still too short to detect the forced 

(anthropogenic) long-term trend. 
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Fig. S1 | Biome map and normalized climatological annual cycle of surface chlorophyll 
concentrations from satellite observations (MODIS Aqua) and from the ESM2M Large 
Ensemble simulations. For the observational time series (red), median and 0.1/0.9 quantile 
values of a 17 years record (2003-2019) are calculated at each day of the year. For model time 
series (black), after resampling that uses information based on missing data in observational 
records, median and 0.1/0.9 quantile values of 17 years times 30 ensemble members are 
calculated. To compare the observations and the model by focusing on phase rather than 
amplitude, the time series is normalized by the 0.9 quantile value of each annual cycle. It 
should be noted that the x-axis is shifted so that the spring in each hemisphere is located in 
the middle of the panels. The period shaded in light orange is the period during which the 
bloom is recognized as a spring bloom in this study. 
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Fig. S2 | ESM2M skill in reproducing the climatological (2003-2019 mean) annual cycle of 
surface chlorophyll concentrations from remote-sensing products. Correlation between 
ESM2M’s annual cycle and the observed annual cycle, standard deviation of ESM2M’s annual 
cycle relative to standard deviation of the observed seasonal cycle (𝜎"#$%$/𝜎'()), and root-
mean-square difference between ESM2M’s annual cycle and the observed annual cycle 
divided by the standard deviation of the observed seasonal cycle (RMSD/ 𝜎'() ) are 
represented as the azimuthal angle, the radial distance from the origin, and the distance from 
the point on the x-axis labeled as observations (black star), respectively. After resampling the 
model data based on missing data information in observational records, these three metrics 
are calculated from both individual members (circles) and ensemble median (stars) for each 
biome. 
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Fig. S3 | Climatological mean (2003-2019) phytoplankton bloom timing (initiation and peak, 
[calendar month]) and magnitude [mg m-3] from remote sensing products (MODIS Aqua) 
and from the ESM2M large ensemble simulations. The bloom initiation and peak timing are 
defined based on phytoplankton accumulation rates (𝑟 ≡ , -.(012)

,4
), and the magnitude is the 

surface chlorophyll concentration at the timing of the bloom peak (see Methods). In this 
comparison, individual ensemble members are resampled by removing output corresponding 
to spatiotemporal coordinates of missing data from the observational record, and 
subsequently the timing and magnitude are estimated for each member. 
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Fig. S4 | Biome-aggregated observational and ESM2M time series of bloom magnitude 
anomalies relative to the satellite observational period means (2003-2019). The shadings on 
the lines represent the two standard deviation range of the 30 ensemble members of ESM2M. 
Time of emergence (ToE) of the biome-aggregated changes in the bloom magnitude are 
shown in the vertical lines. For the case where there is no corresponding vertical line in the 
panel, the magnitude change will not be emergent by the end of simulation period. It should 
be noted that the model time series are created without the resampling process in order to 
be consistent along the time-dimension of the model output from year 1990 to the end of the 
simulation (year 2100). 
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Note 2. Computing the accumulation rate budget from monthly output 

Following the formulations of the biogeochemical component of GFDL-ESM2M (TOPAZ2; 

Dunne et al., 20132), we calculated terms in the accumulation rate budget equation separately 

for three phytoplankton groups from monthly model outputs. In TOPAZ2, phytoplankton 

biomass is prognostically computed based on nitrogen. As the phytoplanktonic nitrogen is 

instantly converted to carbon units using a fixed organic C:N ratio (106:16), we employ the 

more widely used terminology of the chlorophyll to carbon ratio (𝜃), instead of the nitrogen-

chlorophyll ratio.  

When using temperature and nutrient concentration fields, the temperature limitation and 

nutrient limitation for phytoplankton growth are calculated as follows:  

𝑇278 = 𝑒;.;=>? , (S1) 

  

𝑁AB278 = MinF𝐿𝑖𝑚AB
JKL + 𝐿𝑖𝑚AB

JNO, 𝐷𝑒𝑓AB
SKO , 𝐷𝑒𝑓ABTUV,  

𝑁WX278 = MinF𝐿𝑖𝑚WX
JKL + 𝐿𝑖𝑚WX

JNO, 𝐷𝑒𝑓WX
SKO , 𝐷𝑒𝑓WXTUV, (S2) 

𝑁Y7278 = MinF	𝐷𝑒𝑓Y7
SKO, 𝐷𝑒𝑓Y7TUV,  

where 𝐿𝑖𝑚7
JKL , 𝐿𝑖𝑚7

JNO , 𝐷𝑒𝑓7S , and , 𝐷𝑒𝑓7TU  represent limitations and deficiencies of 

individual nutrients (Nitrate, ammonia, phosphate, and iron) which are parametrized based on 

uptake velocities, and subscription 𝑖 indicates phytoplankton groups (𝑖 = 𝑆𝑝, 𝐿𝑔, 𝑎𝑛𝑑	𝐷𝑖 for 

small, large, and diazotrophic phytoplankton). The nutrient- and temperature-limited growth 

rates for three phytoplankton groups are  

𝑃7b8 = 𝑃7b8cd𝑁7278𝑇278 , (S3) 

where 𝑃7b8cd are constants of the maximum growth rate given by Geider et al. (1997)3. The 

chlorophyll-carbon ratio is calculated using the nutrient and temperature limited growth rate 

and irradiance averaged over the KPP boundary layer with 24-hr memory (𝐼𝑅𝑅8U8),  
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𝜃7 = 𝜃787g +
hi
jklmhi

jin

opFhi
jklmhi

jinV
qirssjtj

uvi
wj

, (S4) 

where 𝜃787g  is a function of nutrient limitation (𝑁7278), and 𝜃78cdand 𝛼7 are given constants for 

the three phytoplankton groups. Although chlorophyll concentrations are also available from 

standard model output, we can reconstruct chlorophyll concentrations from the calculated 

chlorophyll-carbon ratio to check whether the above calculations are valid,  

𝐶ℎ𝑙7 = |o;=
o=
} 𝜃7𝑃7. (S5) 

The light limitation for phytoplankton is modeled after Geider et al. (1997)3 with some 

modifications by Dunne et al. (2013b)2, 

𝐿7278 = 1 − 𝑒
m
qi�irss
vi
wj . (S6) 

And the phytoplankton growth rate is given as  

𝜇7 =
Si
wjWi

�ij

op�
= Si

wjkl

op�
𝑇278𝑁7278𝐿7278 . (S7) 

On the other hand, the phytoplankton loss rate is parameterized as a function of temperature 

and phytoplankton biomass concentrations: 

𝑙AB = Min � o
∆4
,

��?�ijS��
u

S∗FS��pSjinV
�,  

𝑙WX = Min | o
∆4
, 𝑔𝑟𝑎𝑧𝑒 ∗ 𝑃WX}, (S8) 

𝑙Y7 = Min | o
∆4
, 𝑔𝑟𝑎𝑧𝑒 ∗ 𝑃Y7},  

𝑔𝑟𝑎𝑧𝑒 =
��?�ij�

v���v�i
v∗ �

�
L
�

v���v�i
v���v�i�vjin�

|S��
u pS�i

u }
�
u

.  

Although this parametrization for the phytoplankton loss doesn’t include some well-known 

processes that have confirmed from observations and laboratory experiments (e.g., viral lysis), 

the phytoplankton concentration-based parametrization of the loss rate by grazing 

(proportional to concentration to the 2nd and 4/3rd power for small/diazotrophic plankton and 



 11 

large phytoplankton, respectively) can allow to represent tight coupling between phytoplankton 

growth and predation by zooplankton4, as seen in recent observational records. Therefore, net 

accumulation by decrease in the loss rate due to the phytoplankton concentration change (e.g., 

by deepening of the mixed layer) can happen in the model even without increase in the growth 

rate.  

Using Equations S4, S7, and S8 with ML depth (ℎ), the accumulation rate budget equation 

(Equation 1 in Main text and Eq. M2 in Methods) can be obtained: 

, -.(012)
,4

≡ 𝑟 ≈ ∑ �(𝜇7 − 𝑙7) +
, -.(hi)
,4

� 𝛾7>
7�o − , -.(1)

,4
  

≡ 𝜇 − 𝑙 +
𝑑 ln(𝜃)
𝑑𝑡 −

𝑑 ln(ℎ)
𝑑𝑡  

(S9) 

where	𝐶ℎ𝑙  is sum of chlorophyll concentrations of three groups (𝑐ℎ𝑙 = ∑ 𝐶ℎ𝑙7>
7�o ), and 𝛾7 

represents the concentration ratio for each group (𝛾7 = 𝐶ℎ𝑙7/𝐶ℎ𝑙). In this analysis, to avoid 

overestimation of the light limitation term due to using monthly outputs of irradiance fields, 

we first calculated the growth rate as the residual of the accumulation rate budget equation 

(Equation S9), and then estimated the light limitation term from the estimated growth rate and 

nutrient- and temperature-limitation terms (Equation S7). 
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Table 1 | List of variables and constants in Note 2 

Symbol Name Unit 
𝑃7 Phytoplankton biomass mol N kg-1 

𝜃7 Chlorophyll to Carbon ratio g Chl  g C-1 

𝜃787g, 	𝜃78cd Minimum/Maximum 𝜃7 g Chl  g C-1 

𝑇278 Temperature limitation Dimensionless 
𝐿7278 Light limitation Dimensionless 
𝑁7278 Nutrient limitation Dimensionless 

𝑃7b8 Nutrient- and Temperature-limited 
growth rate s-1 

𝑃7b8cd Maximum 𝑃7b8 s-1 
𝐿𝑖𝑚7

JKL , 𝐿𝑖𝑚7
JNO  Nitrate/Ammonium limitation Dimensionless 

𝐷𝑒𝑓7
SKO , 𝐷𝑒𝑓7

SKO  Phosphorus/Iron deficiency Dimensionless 
𝐼𝑅𝑅 Irradiance W m-2 

𝐼𝑅𝑅8U8 Irradiance averaged over the KPP 
boundary layer with 24-hr memory W m-2 

𝛼7 Light harvest coefficient gC gChl-1 m2 W-1 s-1 
𝜇7 Phytoplankton growth rate s-1 
𝑙7 Phytoplankton loss rate s-1 

𝜁 Photorespiration loss (0.1) Dimensionless 
𝜆; Grazing rate constant at 0ºC s-1 

𝑃87g Minimum phytoplankton concentration 
threshold for grazing mol N kg-1 

𝑃∗ Pivot phytoplankton concentration for 
grazing allometry mol N kg- 
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Fig. S5 | Climatologies and future changes in the environmental drivers regulating the light 
limitation for phytoplankton growth at timing of bloom initiation. Present-day (1990–2010) 
mean (a) mixed layer depth and (b) sea surface irradiance and relative change in (c) mixed 
later depth and (d) sea surface irradiance from present day to future (2080–2100) periods in 
the month of bloom initiation (c.f., Fig. 1a). The changes are values relative to present day 
mean fields, or equivalently, divided by present day means.  
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Fig. S6 | Relative contributions in the accumulation rate budget analysis to shift in timing 
of the bloom initiation. In addition to relative contributions from phytoplankton growth rate 
and loss rate change individually, relative contributions of the three driving processes 
(decoupling between changes in growth and loss rate; ∆𝜇 − ∆𝑙, change in temporal variation 
in mixed layer depth (MLD); −∆	𝑑lnℎ/𝑑𝑡 , and change in Chl:C variation; ∆	𝑑ln𝜃/𝑑𝑡) are 
shown. Relative contributions are the ratio of (1) the time-integrated RHS terms of Equation 
M5 over the period between bloom peak timing for the present day and the future to (2) the 
term on the LHS (Equation M6).  
 
 
 

 
Fig. S7 | Relative contributions in the accumulation rate budget analysis to shift in timing 
of the bloom peak. Same as Fig. S6, but for bloom peak timing. 
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Fig. S8 | Decomposition of future changes in time-integrated growth and loss rate over the 
period between future and present-day bloom initiation. Growth rate change (∆𝜇) and loss 
rate change (−∆𝑙 ) can be decomposed into temperature-, nutrient-, and light-limitation 
terms, and temperature-limitation and biomass terms, respectively (Equations M7 and M8). 
 
 
 

 
Fig. S9 | Decomposition of future changes in time-integrated growth and loss rate over the 
period between future and present-day bloom peak timing. Same as Fig. S8, but for bloom 
peak timing. 
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