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Supplementary Notes 1 | Limitations of the current study 

We note two main limitations of this study. First, the effects of urban climate-H&C biophysical 

feedbacks revealed by this study are likely a dampened signal because of our monthly-based 

analysis. We use monthly data to build the emulators because of the sparse availability of the 

required daily data in CMIP6 archive. Evidence exists in the literature that the nonlinear 

behavior could be more substantial in certain hours of day1–3 and certain regions of a city4. This 

means an amplified peak energy demand during heat wave events5 and future higher emission 

scenarios6, further increasing the risk for energy infrastructure. Second, the biophysical 

feedbacks modeled in this study are likely conservative for regions with humid summers. The 

effect of humidity is captured in the urban canyon of the CLMU, but cooling energy demand for 

the dehumidification of indoor air is not captured. Studies considering the one-way climate to 

energy effect suggest the humidity effect is more pronounced at the building level7 and becomes 

less so at neighborhood or larger scales8. Including humidity in statistical models for electricity 

demand projections could add an additional 10% increase to electricity demand in the 

southeastern United States by the end of the century9. These results will likely be different if 

future two-way interactions between climate and energy are considered, as the anthropogenic 

heat from the additional energy consumption for dehumidification will strengthen the positive 

feedback loop. 
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Supplementary Notes 2 | Non-climatic drivers of biophysical feedbacks 

Despite the importance of climate-induced biophysical feedbacks in affecting urban H&C energy 

demand, it has been largely ignored in existing literature, especially at the global scale. Thereby, 

this study aims to investigate the climate-driven effects alone on urban H&C energy demand by 

fixing urbanization, H&C ownership rates, and building technology as well as human behavior at 

present day. Previous studies have evaluated the socioeconomic impacts on future H&C energy 

use using statistical models, econometric analysis, or Integrated Assessment Models, yet without 

accounting for the biophysical feedbacks10–14. Consequently, prior studies failed to capture the 

full climate-driven impacts on future energy demand, and tend to largely underestimate the 

changes and uncertainty in future H&C energy demand under climate change. We find, even 

without accounting for potential socioeconomic changes, climate-driven biophysical feedbacks 

alone can lead to 220% (47%) increases (decreases) in future cooling (heating) energy demand 

under the very high emission scenario. We discuss below the non-climatic drivers to the 

biophysical feedbacks and their potential implications to future H&C projections: namely, 

socioeconomic development and our mitigation and adaptation to climate change. 

 

Expected economic and urban growths are likely to further amplify cooling energy demand 

driven by climate alone. In our results, higher urban density levels can lead to additional cooling 

demand increase (Supplementary Fig. 2), which agrees with findings from recent studies10,15,16 

and could increase the urban energy burden in cities expecting urban densification. Climate-

driven increase in cooling energy demand from this study is also comparable in magnitude with 

purely socioeconomic-driven increase for residential cooling energy demand as presented in 

ref.17 (Supplementary Fig. 3). As both socioeconomic and climate factors are subject to 
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alteration/amplification by the interactive urban climate-energy biophysical feedbacks we 

demonstrated in this study, the combined effects would require dynamic simulations with both 

factors explicitly parameterized to capture the amplification of cooling energy demand caused by 

the interaction between these factors. We nonetheless provide a simple sum of climate-driven 

and socioeconomic-driven increases (Supplementary Fig. 3c) to illustrate a lower bound of the 

combined effects and to add to the context of our results. Dynamic modeling with both changing 

climate and socioeconomic conditions is needed to reveal the interactions between the 

socioeconomic and climate effects, which would likely result in much larger magnitude of 

changes than currently shown as the first-order approximation, especially in the Global South.  

 

That said, human adaptation strategies such as improvements in building insulation, human 

acclimatization, and wide deployment and utilization of efficient or passive cooling technologies 

could modify the biophysical feedbacks and partially counteract the projected cooling demand 

increase. City-wide climate mitigation and adaptation strategies such as white roofs and solar 

roofs have been shown to reduce cooling energy demand by a few to a few tens of percent in 

local-scale studies18–20. Natural ventilation induces small cooling and heating penalties globally 

as approximated by CESM2, but generates cooling benefit in places during Spring when it is not 

too hot (see Supplementary Notes 5 and Supplementary Figs. 4 – 6). The CLMU parameterizes 

anthropogenic heat release as sensible heat, consistent with most regional scale modeling 

studies1. Alternative cooling technologies that release part of the anthropogenic heat as latent 

heat (such as using cooling towers) have been shown to significantly reduce anthropogenic heat-

induced air temperature increase21, therefore mitigating the feedback effect and potentially 

reducing cooling energy demand. For winter heating demand, the feedback effects examined in 
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this study are consistent with using boiler/furnace heaters rather than heat pumps22. 

Electrification of winter heating (e.g., replacing gas furnaces with heat pumps) would also 

modify the projected heating demand decrease because of higher efficiencies of heat pumps23 

and the utilization of outdoor heat for indoor heating. 
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Supplementary Notes 3 | Assumptions and their implications of the Community Land Model 

Urban (CLMU) and the integrated Building Energy Model (BEM)  

The CLMU models the global urban area with a comprehensive global urban dataset specifically 

developed for CESM2. It contains present-day urban morphological (e.g., urban extent, building 

height, street width, pervious ground fraction), thermal (e.g., heat capacity and thermal 

conductivity), and radiative (e.g., albedo and emissivity) properties, as well as building interior 

maximum and minimum thermostat settings (cooling and heating setpoint temperatures, 

respectively) that control the need for H&C. The urban extent is derived from a population 

density dataset at 1km resolution. The three urban land units correspond to three urban density 

types (i.e., tall building district, TBD; high density, HD; and medium density, MD) to represent 

city core, commercial/industrial, and residential areas, the boundaries of which are decided 

through population density and satellite imagery and vary across regions. Urban building 

morphological, thermal, and radiative properties are derived from a variety of data sources such 

as local building codes, municipal documentation, and published construction data and validated 

against Google Earth imagery24. They can be defined uniquely for thirty-three regions of similar 

physical and social characteristics spanning the global land surface and for each density class 

(see refs.22,24 for details). 

 

Given the global scale and the relatively coarse spatial resolution, the goal of the CLMU-BEM is 

to simulate the average building energy behavior within the constraints of global-scale datasets 

and computational efficiency. As a result, the BEM includes all key processes that are climate 

relevant and temperature sensitive, but compromises between the global scale and the 

computational resources within an ESM as well as data availability on the parameterization of 
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other processes on a global scale. Solar heat gain through windows due to direct solar radiation is 

neglected due to a lack of data, but the effects of windows on the overall heat transfer properties 

of walls are accounted for. The heat storage by internal construction materials and internal heat 

gains from appliances and occupants are not parameterized in the current version of the CLMU. 

This implies a possible overestimation of heating and underestimation of cooling energy 

demand. While these processes are important components of a building’s thermal load, they are 

much less sensitive to ambient temperature, and therefore do not respond much to global 

warming. Solar heat gain through windows depends on solar radiation, which has been shown to 

remain relatively constant throughout the 21st century25. Internal heat gains through appliances 

and occupants may experience diurnal variations, weekday/weekend differences, or seasonal 

differences due to gas usage26, but they would not be assumed to change over the years unless 

due to socioeconomic factors (such as replacing the appliances), which is outside the scope of 

our study. Similarly, internal heat storage from internal construction materials may change over 

the long term due to building stock changes that are largely socioeconomic driven. As we focus 

on the changes in H&C energy demand over the century, the effects are likely negligible at the 

spatiotemporal scale of this study.  

 

We note in Methods that two sources of excess heat from H&C are added as sensible heat to the 

canyon floor: 1) the heat removed from indoors to outdoors by air conditioning, and 2) the waste 

heat generated due to inefficiencies, which includes the inefficiencies of the heating and cooling 

equipment, as well as energy losses in the conversion of primary to end-use energy (such as 

converting fossil fuel to electricity for cooling). Since CLMU is a single layer urban canopy model, 

the added sensible heat will dissipate through the urban canyon as the entire urban canopy layer is 
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represented by a single air temperature. This may lead to shifted and mitigated diurnal profiles, 

hence not ideal for studying the diurnal variations of the feedback effects. However, such effects 

are negligible on a monthly timescale used in this study’s analysis. This is evidenced by our 

model’s good reproducibility of the two-way feedback effects (see Methods). Our Tu-QAH 

sensitivities are also in good agreement with those presented in ref.27 (Extended Data Table 2). The 

BEM in CESM2 uses the coefficients of performance (COPs) and weighted efficiencies (peff) to 

represent the equipment efficiency of H&C appliances and the conversion efficiency for generating 

energy used for H&C, respectively. These coefficients are based on the efficiencies of H&C 

appliances, power plants, and energy mixes from published literature, and readers are directed to 

refs.22,28 for further information. Here we note the conversion losses from primary energy in reality 

may not be necessarily released in areas co-located with the energy from redistributed indoor heat 

or inefficiencies in the H&C equipment as the model assumes. This could potentially result in 

some misattributions of feedback effects if the primary energy conversion occurs remotely. To 

evaluate the sensitivity of this assumption, we conduct two additional land-only simulations: one 

control (CTRL) run with CLM driven by the atmospheric forcings from a fully-coupled CESM2 

CMIP6 SSP5-8.5 simulation and one experiment (NOWSTH) run with identical configuration to 

the CTRL run except with no waste heat added to the urban canyon. The CTRL run is nearly 

identical to the CESM2 CMIP6 SSP5-8.5 runs used in this study and also ensures the consistency 

to compare with the NOWSTH run. The mean absolute differences between NOWSTH and CTRL 

are 0.006 W/m2 in QC and 0.02 W/m2 in QH across all grid cells over the entire projection period. 

These differences are two orders of magnitude smaller than the respective mean projected changes 

of these variables by the model, demonstrating the fidelity of our results. 
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H&C ownership rates are implicitly modeled by the space heating and cooling setpoints; that is, 

for places with higher H&C ownership rates, the setpoints are closer to the realistic setpoints we 

might expect in an individual building, and vice versa. Taking cooling as an example, regions with 

higher air-conditioning ownership rates have lower cooling setpoints that are closer to what the 

thermostat settings would be in an actual building. Once the urban air temperature increases to the 

point that would result in the indoor air temperature going above the setpoint, the infinite-capacity 

air conditioner removes all excess heat so the indoor air temperature does not exceed the setpoint. 

After that, the indoor temperature is reset to the setpoint. Having a higher setpoint would mean the 

air conditioners only work during hotter time periods, which is approximately equivalent to having 

less air conditioners in an urban area. This explains the large variations in the H&C setpoints 

employed in the study, and a much higher cooling setpoints in regions with low present-day air-

conditioning ownership rates such as the Jakarta region (Supplementary Table 2). The setpoints 

are part of the urban dataset and can vary across global regions and three urban density types within 

one grid cell, but are kept constant temporally to isolate climate change effects to achieve the goal 

of this study. 
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Supplementary Notes 4 | Training, validating, and applying the urban climate-energy 

emulators for global multi-model urban projections 

The urban climate-energy emulators used in this study are location-specific fully connected 

neural networks that mimic an urban land model, taking in all atmospheric forcing fields that 

dynamically drive the urban model in CESM2 and producing specific responses as a result of 

local urban characteristics and their dynamic interactions with the atmosphere (Extended Data 

Fig. 7). The atmospheric forcing fields used as inputs to the emulators are monthly average air 

temperature and humidity, wind speed, precipitation, and downward solar (shortwave) and 

longwave radiation from the lowest level of the atmosphere model. An indicator variable of the 

month of year is added to help capture the seasonality. The target variables are monthly average 

urban 2-meter diurnal mean air temperature (Tu), monthly mean heating (QH) and cooling (QC) 

energy demand fluxes.  

 

The training datasets are from three CESM2 CMIP6 ensemble member runs for each of the three 

scenarios. Each ensemble member is initialized from a slightly perturbed historical simulation 

and forced by the same climate change forcing specified by the scenario. The resultant 

projections reflect different realizations of future climates under the same climate change 

scenario and the internal climate variability29. Using more than one ensemble member for 

training can prevent the emulators from overfitting to one particular climate realization that may 

not generalize well. From the three ensemble member runs available, two are used for training 

(for the emulators to learn the parameters) and one for test (to evaluate the performance of the 

trained emulators). 
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Before training, the forcing variables are standardized (z-scored) as it is found to provide more 

stability for training, and the month of year indicator is represented by a 12-dimentional binary 

vector (i.e., one-hot encoded). Extremely small values (<10-8 W m-2) of QH and QC are set to 

zero, as they are believed to be either numerical fluctuations or a small transient energy demand 

being averaged into a monthly value. The QH and QC values are converted to kJ m-2 before 

training to increase the target values, as it is found to provide better performance.  

 

The emulators share the same architecture, with two dense hidden layers of 8 and 4 units each. 

They are optimized by an Adam optimizer to minimize the root mean squared error (RMSE). 

Other hyperparameters (learning rate, batch size, number of epochs, and L1, L2 regularization) 

are tuned through a 7-fold cross validation using a Bayesian search through the preset 

hyperparameter space. Because of the high computational cost, 15 grid cells from the U.S. and 

15 from the rest of the world are randomly selected to conduct the Bayesian search, and the 

median of the best hyperparameters were applied to all emulators. 

 

To make multi-model, multi-scenario projections of urban climate and energy, we select 24 

models from the Coupled Model Intercomparison Project version 6 (CMIP6). The CMIP6 is a 

concerted international modeling effort to understand climate variability and change that is used 

in IPCC Sixth Assessment Report. The Scenario Model Intercomparison Project (ScenarioMIP)30 

is a primary activity within CMIP6 that provides multi-model climate projections based on 

alternative scenarios of future emissions and land use changes that are directly relevant to 

societal concerns regarding climate change mitigation, adaptation, or impacts31. Among more 

than 50 models that participated in ScenarioMIP, we selected 20 – 24 models to generate multi-

model, multi-scenarios projections based on their resolution (similar or finer resolutions to 
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CESM2) and data availability (not all ESMs participate in all scenarios). A complete list of 

models used for each scenario can be found in Supplementary Table 1. To apply the emulators to 

other ESMs, the atmospheric forcing fields from other ESMs required as input to the emulators 

are regridded to align with the CESM2 grid (0.9° latitude ×1.25° longitude). This ensures all 

ESMs have the same set of grid cells where the location-specific emulators are based.   
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Supplementary Notes 5 | The effect of wind on H&C energy demand.  

Urban wind affects building energy demand in two primary ways32: (1) through changing the 

turbulent heat fluxes between the building and the urban environment, and (2) through changing 

building ventilation and infiltration. For (1), the wind fields directly adjacent to the buildings affect 

building energy use by changing the convective heat transfer process and urban air temperature. 

The CLMU calculates urban canopy wind based on a parameterized wind profile and does not 

resolve turbulence explicitly. This is a recognized and widely adopted approach in local, regional, 

and global land surface models (both urban and non-urban) to solve urban temperature33–36. This 

approach recognizes the different scale dependence of urban wind and urban temperature. Wind 

fields within the urban canopy layer (UCL) are turbulence-dominated, and significantly affected 

by the local roughness of urban surfaces (such as buildings of different heights and shapes, parks, 

street trees, etc.). Therefore, urban wind fields vary at small scales (on the order of one to ten 

meters). By contrast, urban temperature and humidity are reasonably well mixed across larger 

scales (on the order of a few hundred meters to kilometers), which is the scale at which the CLMU 

operates and simulates urban processes. The parameterization of urban wind profile is an 

“averaging” of urban wind fields to represent wind at the larger, temperature-relevant scale. It 

allows CLMU to estimate the average aerodynamic resistance to heat transfer, which then enables 

the model to accurately simulate urban air temperatures and the average convective heat transfer 

between the average building and its surrounding environment. Our validation of the two-way 

temperature-energy sensitivities with 30 country-, regional-, and city-scale case studies (see 

“Validation of the BEM” in Methods) shows the CLMU-BEM is able to well reproduce their 

results, which include observations (e.g., refs.26,37,38) and simulated results from models that 

resolve turbulence (e.g., ref.23) (Extended Data Tables 1 and 2). This shows that although CLMU 
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does not resolve the wind fields directly adjacent to the building, the wind effect on building energy 

use is largely captured in CLMU, and demonstrates the robustness of CLMU in modeling the urban 

environment and its interaction with building energy use. 

 

For (2), The CLMU-BEM parameterizes ventilation at a fixed rate of 0.3 air-change per hour 

(ACH). It is not forced mechanically (therefore it does not directly add to the H&C energy demand 

projected in the study) and does not vary with urban wind. To evaluate the effects of changing 

ventilation on the H&C demand projections given the constraints of CESM2, we conducted three 

additional land-only simulations with varying ventilation rates to approximate the potential effects 

of natural ventilation on H&C energy demand projections. We conduct land-only simulations 

driven by SSP3-7.0 forcings over the same projection period (2015 – 2099). The run with default 

ventilation rate (ACH03) is nearly identical with the model results analyzed in the manuscript. The 

model is also run for no ventilation (ACH00) and an enhanced ventilation at 0.5 ACH (ACH05) 

as specified by the upper limit in ref.39.  

 

Compared with no ventilation (ACH00), default ventilation rate (ACH03) results in up to 1 W m-2 

more cooling energy demand and 2 W m-2 more heating energy demand by the end of the century 

(Supplementary Fig. 4). Southern U.S. and the Middle East show the highest ventilation-induced 

cooling penalties, whereas the northern U.S., Canada, eastern Europe, colder parts of the Middle 

East and Asia all experience ventilation induced heating penalties. Parts of Brazil experience a 

small decrease in cooling energy use due to the benefit of natural ventilation cooling 

(Supplementary Fig. 4a). This ventilation-induced cooling benefit is more evident when examined 

on a monthly time scale (Supplementary Fig. 5). Natural ventilation tends to be beneficial in 
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reducing cooling demand in Spring (March-April-May in the northern hemisphere and September-

October-November in the southern hemisphere) when it is not too hot. For Brazil, the cooling 

benefit is consistent throughout the warmer months. Ventilation increases heating demand in all 

months when heating is needed (Supplementary Fig. 6). Similar trends of smaller magnitude can 

be observed when we compare the high ventilation rate run (ACH05) with the default ventilation 

rate run (ACH03), hence not shown. 
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Supplementary Fig. 1 | Comparison of anthropogenic heat flux (AHF) due to H&C over the 

U.S. (a, b) and Europe (c, d) from the (a, c) CLMU-BEM modeled results and (b, d) 

Flanner observation-based dataset40. The observational total AHF from all sources has been 

multiplied by 16% (b) and 25% (d) to adjust it for energy due only to space heating and cooling 

in the U.S. and Europe, respectively, based on estimates for the proportions of H&C energy use 

in total energy consumption (see ref.22 for more details). The modeled and the observational data 

have been masked for each other's urban areas. R is the pattern correlation between the model 

simulations and observations. Basemap information is available in NCAR Command Language 

Manual (https://www.ncl.ucar.edu/Document/Graphics/Resources/mp.shtml).  
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Supplementary Fig. 2 | Higher urban density leads to faster and larger increase in cooling 

energy demand in Miami. a-c, time series of annual mean QC for three urban density types (tall 

building district, high density, and medium density) under SSP2-4.5 (a), SSP3-7.0 (b), and 

SSP5-8.5 (c) in the grid cell that contains Miami, Florida, USA. It contains all three urban 

density types and has near saturated and equal air-conditioning ownership rate across the three 

density types (Supplementary Table 2). Because multi-model projections are only made for the 

area-weighted average of the whole urban area, only CESM2 result is plotted. 
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Supplementary Fig. 3 | Climate-driven increase in cooling energy demand is comparable in 

magnitude with purely socioeconomic-driven increase. Changes in urban cooling energy 

demand (in PJ) between 2015 and 2050 under SSP3-7.0 driven by (a) climate change only (this 

study) and (b) socioeconomic development only (ref.17). A simple sum is presented in c as a 

first-order approximation and a lower bound of the combined effects. Basemap from Natural 

Earth (https://www.naturalearthdata.com/). 

  

https://www.naturalearthdata.com/
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Supplementary Fig. 4 | Increased ventilation induces small cooling and heating energy 

penalty for most places. a and b, changes in decadal average (last decade, 2090 – 2099, minus 

first decade, 2015 – 2024, represented by ∆) of the difference between default ventilation rate 

(ACH03) and no ventilation (ACH00) runs (represented by d) for cooling (a) and heating (b) 

energy demand, under SSP3-7.0. Basemap from Natural Earth 

(https://www.naturalearthdata.com/). 
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Supplementary Fig. 5 | Natural ventilation is beneficial in reducing cooling demand in 

Spring. a – l, average difference in monthly mean cooling energy demand flux for the 12 months 

between default ventilation (ACH03) and no ventilation (ACH00) runs for 2015 – 2099 under 

SSP3-7.0. Basemap from Natural Earth (https://www.naturalearthdata.com/). 

  

https://www.naturalearthdata.com/
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Supplementary Fig. 6 | Natural ventilation leads to increased heating energy demand. a – l, 

average difference in monthly mean heating energy demand flux for the 12 months between 

default ventilation (ACH03) and no ventilation (ACH00) runs for 2015 – 2099 under SSP3-7.0. 

Basemap from Natural Earth (https://www.naturalearthdata.com/). 

  

https://www.naturalearthdata.com/
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Supplementary Table 1 | List of CMIP6 ESMs analyzed in this study (including CESM2) 

under each scenario. 

 Model name 
Spatial resolution  
(latitude × longitude) SSP2-4.5 SSP3-7.0 SSP5-8.5 

1 ACCESS-CM2 1.25° × 1.875°     
2 ACCESS-ESM1-5 1.25° × 1.875°    
3 AWI-CM-1-1-MR 0.94° × 0.94°    
4 BCC-CSM2-MR 1.125° × 1.125°    
5 CESM2 0.9° × 1.25°    
6 CMCC-CM2-SR5 1° × 1°    
7 CNRM-CM6-1-HR 0.5° × 0.5°    
8 CNRM-ESM2-1 1.41° × 1.41°    
9 EC-Earth3 0.7° × 0.7°    
10 EC-Earth3-Veg 0.7° × 0.7°    
11 FGOALS-f3-L 1° × 1°    
12 FIO-ESM-2-0 0.9° × 1.25°    
13 GFDL-CM4 1° × 1°    
14 GFDL-ESM4 1° × 1°    
15 GISS-E2-1-G 2° × 2.5°    
16 HadGEM3-GC31-MM 0.55° × 0.83°    
17 INM-CM4-8 1.5° × 2°    
18 INM-CM5-0 1.5° × 2°    
19 IPSL-CM6A-LR 1.27° × 2.5°    
20 KACE-1-0-G 1.25° × 1.875°    
21 MIROC6 1.39° × 1.41°    
22 MPI-ESM1-2-HR 0.92° × 0.94°    
23 MRI-ESM2-0 1.11° × 1.125°    
24 NESM3 1.875° × 1.875°    
25 NorESM2-MM 0.9° × 1.25°    
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Supplementary Table 2 | Key model parameterizations and climates for selected cities in 

Fig. 5 and Extended Data Fig. 4. H/W is the building height to street width ratio, Wroof is the 

roof fraction, and fprvrd is the pervious fraction of canyon floor (all unitless). The values are 

provided for each urban density types: tall building district (TBD), high density (HD) and 

medium density (MD). Roof and wall materials are used to derive values for thermal 

conductivity and heat capacity as described in ref.24. Space cooling (heating) is controlled by 

cooling (heating) setpoints and are proxies for H&C ownership (see Supplementary Notes 3). “-” 

indicates absence of the urban density type. 

City 
Köppen 
climate 
classification 

H/W 
(TBD, 
HD, 
MD) 

Wroof  
(TBD, 
 HD,  
MD) 

fprvrd  
(TBD,  
HD,  
MD) 

Roof materials* Wall materials* 

Cooling 
setpoints 
(℃) 
(TBD,  
HD,  
MD) 

Heating 
setpoints 
(℃) 
(TBD, 
HD, 
MD) 

Athens, 
Greek Csa 

-,  
1.8, 
0.75 

-, 
0.55 
0.40 

-,  
0.33,  
0.58 

Ceramic tiles/wood 
deck, built-up roof 
concrete deck, 
galvanized steel 

Brick and concrete 
masonry 

32, 
37, 
37 

17, 
17, 
12 

Los 
Angeles, 
California, 
USA 

Csb 
5.2, 
1.6, 
0.48 

0.6, 
0.6, 
0.55 

0.13, 
0.25, 
0.56 

Built-up roof concrete 
deck, insulated steel 
deck, galvanized steel, 
ceramic tiles/wood 
deck 

Concrete panels & 
masonry, glass 
curtain, brick, wood 
frame with insulated 
façade 

27,  
32, 
32 

19, 
17, 
17 

Jakarta, 
Indonesia Af 

3.6, 
1.2, 
0.67 

0.55, 
0.6, 
0.35 

0.33, 
0.38, 
0.92 

Ceramic tiles/wood 
deck,  
built-up roof wood 
deck, Built-up roof 
concrete deck, 
galvanized steel 

Concrete panels & 
masonry, glass 
curtain, stone curtain, 
concrete blocks 

32, 
OFF, 
OFF 

17, 
12, 
5 

Miami, 
Florida, 
USA 

Aw 
4,  
1.6, 
0.48 

0.65, 
0.55, 
0.55 

0.14, 
0.33, 
0.67 

Built-up roof concrete 
deck, galvanized steel, 
Shingles/wood deck, 
metal tiles 

Concrete panels & 
masonry, glass 
curtain, brick, wood 
frame with insulated 
façade, stone curtain 

27, 
27, 
27 

19, 
17, 
17 

Tehran, Iran Csa 
8,  
1.8, 
0.8 

0.5, 
0.8, 
0.65 

0.20, 
0.25, 
0.43 

Built-up roof concrete 
deck, insulated steel 
deck, ceramic 
tiles/wood deck 

Concrete panels & 
masonry, glass 
curtain, brick 
(reinforced), concrete 
blocks 

32, 
42, 
OFF 

17, 
12, 
5 

Riyadh, 
Saudi 
Arabia 

BWh 
8,  
1.8, 
0.8 

0.5, 
0.8, 
0.65 

0.20, 
0.25, 
0.43 

Built-up roof concrete 
deck, insulated steel 
deck, ceramic 
tiles/wood deck 

Concrete panels & 
masonry, glass 
curtain, brick 
(reinforced), concrete 
blocks 

32, 
42, 
OFF 

17, 
12, 
5 
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Hong Kong, 
China Cfa 

7.2, 
1.8, 
0.48 

0.5, 
0.6, 
0.35 

0.20, 
0.38, 
0.62 

Built-up roof concrete 
deck, insulated steel 
deck, galvanized steel, 
built-up roof wood 
deck, ceramic 
tiles/wood deck 

Concrete panels & 
masonry, glass 
curtain, brick, brick 
(reinforced) 

27,  
37,  
37 

19, 
12, 
12 

Chongqing, 
China Cfa 

7.2, 
1.8, 
0.48 

0.5, 
0.6, 
0.35 

0.20, 
0.38, 
0.62 

Built-up roof concrete 
deck, insulated steel 
deck, galvanized steel, 
built-up roof wood 
deck, ceramic 
tiles/wood deck 

Concrete panels & 
masonry, glass 
curtain, brick, brick 
(reinforced) 

27,  
37,  
37 

19, 
12, 
12 

*These are the main materials that make up the building façades in each urban density type. 

Some materials are shared across density types. 
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