In the format provided by the authors and unedited.

Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought

Xiangyi Li[®]¹, Shilong Piao[®]^{1,2}[×], Kai Wang[®]¹, Xuhui Wang¹, Tao Wang², Philippe Ciais[®]³, Anping Chen[®]⁴, Xu Lian¹, Shushi Peng[®]¹ and Josep Peñuelas[®]^{5,6}

¹Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China. ²Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Center for Excellence in Tibetan Earth Science, Chinese Academy of Sciences, Beijing, China. ³Laboratoire des Sciences du Climat et de l'Environnement, CEA CNRS UVSQ, Gif-sur-Yvette, France. ⁴Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA. ⁵CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona, Spain. ⁶CREAF, Cerdanyola del Vallès, Barcelona, Spain. ^{SS}e-mail: slpiao@pku.edu.cn

Supplementary information for

Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought

Xiangyi Li¹, Shilong Piao^{1, 2*}, Kai Wang¹, Xuhui Wang¹, Tao Wang², Philippe Ciais³, Anping Chen⁴, Xu Lian¹, Shushi Peng¹, Josep Peñuelas^{5, 6}

¹Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China

²Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Center for Excellence in Tibetan Earth Science, Chinese Academy of Sciences, 100085, Beijing China

³Laboratoire des Sciences du Climat et de l'Environnement, CEA CNRS UVSQ, Gif-sur-Yvette, 91191, France

⁴Department of Biology and Graduate Degree Program in Ecology, Colorado State University,

Fort Collins, CO 80523, USA

⁵CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia,

Spain

⁶CREAF, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain

*Email address: slpiao@pku.edu.cn

Contents in this file include:

Supplementary Figures 1-3

Supplementary Tables 1-2

Figure 1. Spatial distributions of the tree-ring sites that experienced (a) droughts in the dry season (DS droughts), (b) droughts in the wet season (WS droughts), and (c) droughts in both dry and wet seasons (DS+WS droughts) for gymnosperm (G) and angiosperm (A) forests. The gymnosperm sites are marked in blue, and the angiosperm sites are marked in orange. The insets show the total number of gymnosperm and angiosperm sites that experienced droughts.

Figure 2. Tree-ring-based resistance vs. boosted regression tree (BRT) predicted resistance for (a) gymnosperms in DS droughts (DS_G), (b) gymnosperms in WS droughts (WS_G), (c) gymnosperms in DS+WS droughts (DS+WS_G), (d) angiosperms in DS droughts (DS_A), (e) angiosperms in WS droughts (WS_A), and (f) angiosperms in DS+WS droughts (DS+WS_A). (g-i) Analysis as in (a-f) but for tree-ring-based resilience vs. BRT-predicted resilience.

Figure 3. Spatial distributions of tree-ring sites that experienced droughts during (a) all four periods (before 1950, 1950-1969, 1970-1989, and 1990-2009) from 1910-2009, and (b) all three periods (1950-1969, 1970-1989, and 1990-2009) from 1950-2009. The gymnosperm sites (G) are marked in blue, and the angiosperm sites (A) are marked in orange. The insets show the total number of gymnosperm (blue) and angiosperm (orange) sites that experienced droughts.

Tables

Supplementary Table 1 Information for the 38 main species (≥ 20 sites with tree-ring data) of used in this study. Species codes are derived from the ITRDB and the latin names of species refer to Grissino-Mayer (1993, ref¹) and The Plant List (theplantlist.org).

No.	Species	Latin Name & Authority	Genus	Family	Group	Number
	Code					of sites
1	PSME	Pseudotsuga menziesii (Mirb.)	Pseudotsuga	Pinaceae	Gymnosperms	209
		Franco				
2	PISY	Pinus sylvestris L.	Pinus	Pinaceae	Gymnosperms	184
3	PIPO	Pinus ponderosa Dougl. ex Laws.	Pinus	Pinaceae	Gymnosperms	172
4	PCGL	Picea glauca (Moench) Voss	Picea	Pinaceae	Gymnosperms	171
5	PCAB	Picea abies (L.) Karst	Picea	Pinaceae	Gymnosperms	148
6	TSME	Tsuga mertensiana (Bong.) Carr.	Tsuga	Pinaceae	Gymnosperms	98
7	PCEN	Picea engelmannii Parry ex	Picea	Pinaceae	Gymnosperms	75
		Engelm.				
8	FASY	Fagus sylvatica L.	Fagus	Fagaceae	Angiosperms	61
9	ABLA	Abies lasiocarpa (Hook.) Nutt.	Abies	Pinaceae	Gymnosperms	60
10	PINI	Pinus nigra Arnold	Pinus	Pinaceae	Gymnosperms	60
11	LASI	Larix sibirica Ledeb.	Larix	Pinaceae	Gymnosperms	55
12	PCMA	Picea mariana (Mill.) Britt.,	Picea	Pinaceae	Gymnosperms	51
		Sterns & Poggenb.				
13	PIED	Pinus edulis Engelm. in Wisliz.	Pinus	Pinaceae	Gymnosperms	48
14	QURO	Quercus robur L.	Quercus	Fagaceae	Angiosperms	47
15	ABAL	Abies alba Mill.	Abies	Pinaceae	Gymnosperms	45
16	NOPU	Nothofagus pumilio (Poepp. &	Nothofagus	Nothofagaceae	Angiosperms	45
		Endl.) Oerst.				
17	PCSI	Picea sitchensis (Bong.) Carr	Picea	Pinaceae	Gymnosperms	45
18	LADE	<i>Larix decidua</i> Mill.	Larix	Pinaceae	Gymnosperms	42
19	QUMA	Quercus macrocarpa Michx	Quercus	Fagaceae	Angiosperms	39
20	QUPE	Quercus petraea (Matluschka)	Quercus	Fagaceae	Angiosperms	39
- 21	OUED		0		A	25
	QUSP	Quercus L.	Quercus	Fagaceae	Angiosperms	35
22		Larix Iyalli Parl.	Larix	Pinaceae	Gymnosperms	33
23	QUST	Quercus stellata Wangenh	Quercus	Fagaceae	Angiosperms	33
24	LAGM	Larix gmelinii (Rupr.) Kuzen.	Larix	Pinaceae	Gymnosperms	31
25	QUDG	Quercus douglasii Hook. and Am.	Quercus	Fagaceae	Angiosperms	29
26	PIFL	Pinus flexilis James	Pinus	Pinaceae	Gymnosperms	28

27	QUAL	Quercus alba L.	Quercus	Fagaceae	Angiosperms	27
28	PIBN	Pinus bankasiana Lamb.	Pinus	Pinaceae	Gymnosperms	25
29	ABSB	Abies spectabills (D.Don) Mirb.	Abies	Pinaceae	Gymnosperms	24
30	PIST	Pinus strobus L.	Pinus	Pinaceae	Gymnosperms	24
31	TSCA	Tsuga Canadensis (L.) Carrière	Tsuga	Pinaceae	Gymnosperms	24
32	LIBI	Libocedrus bidwillii Hook.f.	Libocedrus	Cupressaceae	Gymnosperms	23
33	NOSO	Nothofagus solandri (Hook.f.)	Nothofagus	Nothofagaceae	Angiosperms	23
		Oerst.				
34	PIAL	Pinus albicaulis Engelm.	Pinus	Pinaceae	Gymnosperms	23
35	JUOC	Juniperus occidentalis Hook.	Juniperus	Cupressaceae	Gymnosperms	22
36	JUSP	Juniperus L.	Juniperus	Cupressaceae	Gymnosperms	21
37	PICE	Pinus cembra L.	Pinus	Pinaceae	Gymnosperms	20
38	PICO	Pinus contorta Dougl. ex Loud.	Pinus	Pinaceae	Gymnosperms	20

Factor	Description	Unit	Source
Age	Average stand age in droughts	У	ITRDB
Severity	12-month SPEI	_	SPEI data set
Tree density	Stand density per hectare	trees ha ⁻¹	Crowther et al., 2015 (ref ²)
Nm	Foliar nitrogen concentration per unit	mg g ⁻¹	Butler et al., 2017 (ref ³)
	dry mass		
Pm	Foliar phosphorus concentration per	mg g ⁻¹	Butler et al., 2017 (ref ³)
	unit dry mass		
SLA	Specific leaf area	mm ² mg ⁻¹	Butler et al., 2017 (ref ³)
WD	Wood density	g cm ⁻³	Zanne et al., 2009 (ref ⁴)
Rooting depth	Maximum rooting depth	m	Earth2Observe
Height	Canopy height	m	Simard et al., 2011(ref ⁵)
HSM	Hydraulic safety margin	Mpa	Chaot et al., 2012 (ref ⁶)
P50	Water potential at 50% loss of	Mpa	Chaot et al., 2012 (ref ⁶)
	hydraulic conductivity		
Isohydricity	Degree of isohydricity	_	Konings et al., 2017 (ref ⁷)
AWC	The classes of available water-storage	_	Harmonized World Soil
	capacity of the soil		Database, Wieder et al., 2014
			(ref ⁸)
CEC	Cation-exchange capacity of the	cmol kg ⁻¹	Harmonized World Soil
	topsoil		Database, Wieder et al., 2014
			(ref ⁸)
PREC	Mean annual precipitation	mm y ⁻¹	CRU TS 4.01(ref ⁹)
TEMP	Mean annual temperature	°C	CRU TS 4.01(ref ⁹)

Supplementary Table 2 Predictive factors used in the boosted regression tree (BRT) model.

References

- Grissino-Mayer HD. An updated list of species used in tree-ring research. *Tree Ring Bull* 53, 17–43 (1993).
- 2. Crowther, T. W. et al. Mapping tree density at a global scale. *Nature* 525, 201-205 (2015)
- Butler, E. E. et al. Mapping local and global variability in plant trait distributions. *Proc. Natl. Acad. Sci. USA* 114, E10937-E10946 (2017)
- Zanne, A. E. et al. Global wood density database. Dryad https://doi.org/10.5061/dryad.234/1 (2009)
- Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. *J. Geophys. Res.* 116, G04021 (2011)
- Choat, B. et al. Global convergence in the vulnerability of forests to drought. *Nature* 491, 752–755 (2012)
- Konings, A. G. & Gentine, P. Global variations in ecosystem-scale isohydricity. *Glob. Change Biol.* 23, 891-905 (2017)
- Wieder, W. R., J. Boehnert, G. B. Bonan, and M. Langseth. Regridded harmonized world soil database v1.2. [Available at http://daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tenn (2014)
- Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. *Int. J. Climatol.* 34, 623-642 (2014)