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Supplementary Notes 

1 Time-delay embedding and methods for selecting E and 𝝉 

Takens’ theorem42 provides a foundation for the analysis of time series from nonlinear 

systems. It demonstrates that under fairly generic conditions it is possible to reconstruct a 

system’s dynamics using lagged observations from one (or a subset) of the state variables. 

Specifically, Takens42 shows that for an M-dimensional dynamical system that converges to an 

attractor A of dimension 𝑑 < 𝑀 that {𝑥𝑡, 𝑥𝑡−𝜏, 𝑥𝑡−2𝜏, . . . , 𝑥𝑡−𝐸𝜏} is an embedding of A provided 

that 𝐸 > 2𝑑. What this means in practice is that for some variable x we can write 

𝑥𝑡  =  𝑓(𝑥𝑡−𝜏, 𝑥𝑡−2𝜏, . . . , 𝑥𝑡−𝐸𝜏), use data on x to estimate 𝑓 with some non-parametric regression 

or machine learning method (e.g.83,86), and the function 𝑓 will retain all of the properties of the 

original system of which x is part (including chaos). Here, the embedding dimension E is the 

number of lags needed in f, which is one less than the traditional definition in the dynamics 

literature. We define E this way to provide a more intuitive comparison with the number of 

inputs in parametric models. This reconstruction of the state space from lags of a single time 

series is called time-delay embedding. The models for 𝑓 most commonly used for ecological 

time series are piecewise constant (simplex)29, locally linear (s-map)43, Gaussian processes86, and 

neural networks31. For computational speed and relative ease of implementation, we focused on 

s-map, modified as described below. 

Of course, we usually do not know 𝑑 or 𝑀, and some means of empirically determining 

the time delay 𝜏 and embedding dimension 𝐸 is required. The direct LE method (DLE), Jacobian 

LE method (JLE), and recurrence quantification analysis (RQA) all employ time-delay 

embedding to reconstruct the state space, and so rely on a choice of embedding parameters 𝐸 and 

𝜏. To allow for a fair comparison, we used the same 𝐸 and 𝜏 values in all 3 methods. 

There are several standard and widely-used approaches for selecting optimal embedding 

parameters, including mutual information87 or autocorrelation for selecting 𝜏, and false nearest 

neighbors88 or simplex projection29 for selecting E. Since poor choices of 𝜏 and E can lead to 

incorrect conclusions about dynamics89, we began by testing the effectiveness of several 

different procedures. We generated an embedding dataset consisting of 20 replicate time series 

(length T = 100) from each of 9 different chaotic models (Supplementary Table 3) with 

prescribed values of 𝐸 and 𝜏 (each ranging from 1-3) and tested the ability of these procedures to 

correctly identify them. A description of the procedures tested and their performance is given 

below. Although mutual information is widely used in nonlinear time series analysis, it was not 

considered here because the data requirements, on the order of 104 observations, are far too high 

for ecological data90. The modified s-map regression method (Supplementary Note 1.3) was the 

most accurate and so was used for the remainder of the analyses. 

We note here that although Takens’ theorem was originally derived for deterministic 

systems, it may provide a reasonable approximation for stochastic systems, although Van 

Kampen91 showed that infinite memory is the general case for incompletely observed stochastic 

systems. Stark et al.92,93, extended Takens’ theorem to forced and stochastic systems, albeit with 
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either severe constraints on admissible forcing (e.g. periodic drivers) or additional data 

requirements. Ragwitz and Kantz94,95 showed that delay embedding for stochastic systems can 

sometimes be made explicitly Markovian, and Munch et al.28 showed that delay embedding 

accurately reconstructed the conditional expectation for a class of stochastic population models, 

though neither of these results are generic. Ragwitz and Kantz94,95 point out that although not 

exact, error from the finite-memory assumption in delay embedding for a stochastic nonlinear 

system is often small relative to the other sources of error. 

1.1 Autocorrelation/partial autocorrelation 

One method to select 𝜏 is to use the first zero crossing of the autocorrelation function 96,97 

because this makes the coordinates 𝑥𝑡, 𝑥𝑡−𝜏 linearly uncorrelated. In our analysis, we selected the 

first time lag at which either the autocorrelation function (ACF) or the partial autocorrelation 

function (PACF) switched from positive to negative, taking the smaller lag when they differed. 

When tested on the embedding dataset, this method accurately identified 𝜏 when its true value 

was 1 approximately 95% of the time but tended to underestimate 𝜏 when its true value was 

greater than 1. This is likely because the ACF/PACF method is intended for continuous time 

series and does not extend easily to discrete time series. 

1.2 False nearest neighbor algorithm 

The method of false nearest neighbors is commonly used to select the embedding 

dimension88. The basic idea is that if two points are true neighbors in a space of dimension 𝐸, 

then they will still be close in 𝐸 + 1 dimensions. For each point in the time series, we found the 

closest neighbor in 𝐸 dimensions and calculated the ratio of distances between the points in 𝐸 and 

𝐸 + 1 dimensions. Neighbors were classified as false if the ratio exceeded 𝑅𝑡𝑜𝑙(= 15). Starting 

with 𝐸 = 1, E is then increased until the proportion of false nearest neighbors is sufficiently 

close to zero or we reach some maximum E. In our simulations, this method consistently 

overestimated E even given the correct 𝜏. This could be due to the method’s sensitivity to the 

choice of 𝑅𝑡𝑜𝑙, and it is difficult to choose a value that works well for many different systems. 

1.3 Simplex and s-map regression 

Another method for selecting embedding parameters is to fit models using multiple 

combinations of E and 𝜏 and to select those values that maximize the out-of-sample model fit98. 

We used leave-one-out prediction R2 as our measure of model fit. Sugihara43 recommends using 

simplex (i.e. a piecewise constant model) to select E and 𝜏 because it has no additional 

parameters. Unfortunately, multiple combinations of E and 𝜏 can give nearly identical model fits. 

For example, a periodic time series with a period of 4 can be perfectly described with E/𝜏 

combinations of 2/1, 4/1, 2/2, 1/4, 1/8, etc. Any apparent differences in model fit are due to 

numerical rounding error or observation noise, and algorithms which selected an apparent 

maximum gave inconsistent results across replicates of the same model. 

To alleviate this problem, we made two modifications of the algorithm which 

substantially improved performance both for embedding parameter selection and chaos 

classification. The first was to evaluate model fit using local linear regression (s-map), rather 

than simplex, over a constrained grid of E, 𝜏, and the local weighting parameter 𝜃. Since the 

identifiable E scales as the square root of time series length99 we considered E and 𝜏 ranging 

from 1 to 6, requiring 𝐸2 ≤ 𝑇 and 𝐸𝜏/𝑇 ≤ 0.2, and for each E and 𝜏 combination, considered 12 

values of 𝜃: 0, 0.1, 0.3, 0.5, 0.75, 1, 1.5, 2, 3, 4, 6, 8. The second modification was to ignore 

differences in prediction R2 < 0.01 and to select from among equivalent “best” models the one 
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that has the lowest 𝜏, then 𝜃, then E. This prioritizes simpler, more linear models, generally 

avoids models with no dynamics (e.g. 𝐸 = 1 and 𝜏 equal to period length), and selects an optimal 

value for 𝜃 along with E and 𝜏. These modifications together resulted in 100% correct 

identification of E and 𝜏 in the embedding dataset. It also led to more consistent identification of 

E and 𝜏 values across replicates in the test dataset, as well as more accurate classification of 

dynamics, particularly for periodic time series. 

Recently, Cenci et al.100 introduced the “regularized s-map” and showed that this method 

improved forecasting and Jacobian estimation. However a major conclusion of 100 was that the 

best weighting kernel and regularization depended on both the simulation model and whether 

one is trying to forecast or infer Jacobians. Unfortunately, conditions that optimize forecasting 

introduce bias in Jacobian estimation. In light of this, we used s-map without explicit 

regularization. However, we note that the selection criteria we used to choose among models 

with statistically negligible differences in forecast performance (i.e. favoring low E, low 𝜃 

models) serves a very similar purpose and performed well in extensive simulations. 

 

2 Chaos detection methods 

2.1 Direct LE estimation (DLE) 

 The dominant Lyapunov exponent (LE), typically denoted as λ, is the most commonly 

used indicator of chaos36. The LE generalizes the dominant eigenvalue for linear systems and 

measures the rate at which nearby trajectories diverge or converge, averaged over the attractor. 

Specifically, an initial infinitesimal perturbation, Δ𝑥(0), will grow or shrink approximately 

exponentially as ||∆𝑥(𝑡)||~ 𝑒𝜆𝑡||∆𝑥(0)|| where ‖ ‖ is the Euclidean distance between points. 

Positive LEs are indicative of chaos (sensitive dependence on initial conditions) while negative 

LEs are indicative of stable (non-chaotic) dynamics. 

This formal definition only holds in the limit as Δ𝑥(0) ⟶ 0. In multidimensional 

systems, the initial growth rate will be less than λ unless the initial perturbation happens to be in 

the direction of greatest growth. Moreover, since the attractor is bounded, two trajectories cannot 

get infinitely far apart and so the period of exponential growth will be finite. Nevertheless, it is 

possible, using this definition, to estimate the LE directly from data by measuring the divergence 

rate of nearest neighbors over a finite time horizon (the “direct” LE method)37,101. In ecology, 

this approach has primarily been used to characterize results for experimental systems 

(e.g.12,48,50). 

For each point in the time series, we found its nearest neighbor in delay embedding space 

(with embedding dimension E and lag 𝜏) and followed all pairs forward in time, computing the 

distance (𝑑) between them at each step. We regressed the log of the mean distance t-steps ahead, 

ln[𝑑(𝑡)], on the number of timesteps into future, t: 

ln[𝑑(𝑡)] = ln[𝑑(0)] + 𝜆𝑡 + 𝑒𝑟𝑟𝑜𝑟 

and use the slope, λ, as our estimate of the Lyapunov exponent. Since the attractor is bounded, 

the distance between points will ultimately saturate, so the maximum t must be set relatively low 

to avoid underestimating λ. In our implementation, we used t up to 4 steps into the future. 

Although this method does not depend on the details of the underlying dynamics and is fairly 

robust to choices of E and 𝜏, it is known to be sensitive to noise38. Therefore, to ensure a 
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conservative estimate of the frequency of chaos, only time series with p(λ>0.01)>0.975 were 

classified as chaotic, i.e. λ−1.96×SE(λ) > 0.01. 

These analyses were performed in R version 3.6.3102. 

2.2 Jacobian LE estimation (JLE) 

The LE may also be estimated by fitting a delay embedding model (with embedding 

dimension E and lag 𝜏) of the form 

𝑥𝑡 = 𝑓(𝑥𝑡−𝜏, 𝑥𝑡−2𝜏, . . . , 𝑥𝑡−𝐸𝜏) 

to the available time series and computing the LE from the model’s Jacobian matrices30,31. A 

variety of methods may be used to estimate f (e.g. polynomials, splines, GAMs, neural networks, 

Gaussian processes). Following Ushio et al.103, we used local linear regression (s-map)43 to 

estimate f, obtaining embedding parameters E and 𝜏 and local weighting parameter 𝜃 as 

described in Supplementary Note 1.3. 

In order to find the best description of the dynamics, we fit 3 different forms of the delay 

embedding model (first difference as a function of abundance, population growth rate as a 

function of abundance, and population growth rate as a function of log abundance; 

Supplementary Table 4) and selected the one with the best leave-one-out prediction R2 for 

abundance. Previous meta-analyses using delay embedding (e.g.30) did not perform this model 

selection step, which may, in part explain the difference in our results. 

For simulation models that did not generate strictly positive values, only the first model 

was fit; all 3 were considered for the remaining simulation models and all of the empirical data. 

We had also considered models of abundance as a function of abundance and log abundance as a 

function of log abundance, but these produced identical abundance predictions and LE estimates 

as models using first difference as a function of abundance, and population growth rate as a 

function of log abundance, respectively. We opted for the forms we used because they allowed 

us to also compute the leave-one-out prediction R2 for growth rate or first difference. Although 

this quantity was not used to select the best model form, it offered another measure of 

predictability. 

Although not strictly necessary, Jacobian matrices for all models were formulated in 

terms of abundance (as opposed to log abundance or growth rate). The Jacobians are constructed 

from the local regression coefficients (partial derivatives) from the model and (depending on the 

model formulation) the predicted growth rate and/or past observations of abundance. 

The LE, λ, is computed by multiplying sequential Jacobian matrices and taking the log 

absolute value of the dominant eigenvalue (Λ1) of this product. Formally, the LE is defined (and 

will converge) in the limit as 𝑇 → ∞, but for finite time series, it is calculated over the available 

data. 

𝜆 =
1

𝑇
ln |Λ1 (∏𝐽(𝑥𝑡)

𝑇

𝑡=1

)| 

In cases where 𝜏 > 1, Jacobians every 𝜏 steps were multiplied, the LEs were divided by 𝜏, and 

then the 𝜏 different LEs were averaged. The multiplication and eigen decomposition were done 

using the QR procedure for numerical stability. For a 1-d system (E = 1), the LE is simply the 

arithmetic mean of the log absolute value of the derivatives. 
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𝜆 =
1

𝑇
∑ln |

𝜕𝑓

𝜕𝑥𝑡
|

𝑇

𝑡=1

 

Estimation of the LE comes with some uncertainty, and for chaos classification, we seek 

to evaluate whether the LE, given this uncertainty, is significantly greater than 0. Unfortunately, 

the best method for computing confidence intervals for LEs, particularly at small sample sizes, 

remains an unresolved question. A variety of methods can be found in the literature12,104–109, but 

there has not be a systematic evaluation of performance, hypothesis testing, and coverage 

probabilities for these methods. Therefore, we evaluated the ability of 4 methods for JLE 

confidence interval generation to accurately classify the simulated chaotic and non-chaotic time 

series in the test dataset (see Supplementary Note 3). All classify a series as chaotic if 

p(LE>0)>0.95. For comparison, we also included classification based on a point estimate (no 

confidence interval, method 1). 

1. Point estimate computed from the full time series (no confidence interval). 

2. The residual bootstrap method12. We did not refit the embedding parameters for each 

bootstrap as this would have created impractically long computation times. We used 1000 

replicates. 

3. The asymptotic LE standard error method described by Shintani and Linton105. 

4. A moving window method in which LEs were computed over several long sub-segments 

of Jacobians from the best model. The mean and standard deviation of the resulting LEs 

were used to compute an interval. 

5. An importance sampling method in which local regression coefficients are re-drawn from 

the time point-specific multivariate normal distributions defined by the local least-squares 

estimates and covariance matrices. This is similar to the method presented in 104, but 

adapted for use with our local linear model. We used 1000 replicates. 

We found that the most accurate classifications were obtained by using method 4 

(Supplementary Table 2). This method was based on the fact that local LEs computed from 

segments of a time series converge to the global LE as segment length increases. For sufficiently 

long segments, local LEs are approximately normally distributed around the global LE with 

variance inversely proportional to segment length110. Specifically, we took the full Jacobian 

sequence of length 𝑛 = 𝑇 − 𝐸𝜏, and computed LEs for all 𝑖 + 1 possible sequences of length 

𝑛 − 𝑖 for 𝑖 = 3,4,5,6. For each value of 𝑖, we then computed means, standard errors, and one-

tailed 95% confidence intervals. As a further buffer against false positives, we took the minimum 

lower bound of these 𝑖 intervals as our lower bound on the LE, and if this value was >0.01, the 

time series was classified as chaotic. Since we were primarily using this interval as a classifier 

(as opposed to a statistical statement about plausible values for the “true” LE), and this method 

performed much better than the other interval generation methods in our simulations 

(Supplementary Table 2), particularly for periodic series, we used this method in subsequent 

analyses. 

For empirical time series that contained missing values (35% of GPDD series), we fit the 

model using all data (skipping over delay vectors with missing elements), but computed the LE 

only over the longest string of consecutive, non-missing values, which encompassed 73% of 

non-missing data points on average (range: 35-98%), and was 35 timepoints on average (range: 

12-108). Since we are using variability in LEs over subsegments to establish approximate 
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confidence intervals, classification for shorter series is likely to be conservative. Consistent with 

this, all time series with a longest string <30 (8% of GPDD series) were classified as not chaotic. 

For the empirical time series, we also tested sensitivity to the selection of embedding 

parameters by refitting each model but with E or 𝜏 fixed to be either 1 greater or less than the 

value in the best model, provided those values were within the ranges used in model selection. 

The local weighting parameter 𝜃 was refit. These changes resulted in a somewhat lower overall 

percent chaotic (23-29%), and also greatly decreased mean and median R2 values 

(Supplementary Table 5). Proportionally, most of the changes in classification occurred in 

chaotic series with E=1 or 2. 

Readers may reasonably question the validity of LEs computed from time series with as 

few as 30 data points. While it is true that one needs 104 or more data points to get a precise 

estimate of LE, our primary ecological interest was in determining (conservatively) whether or 

not the LE was greater than 0, a task which may require considerably less data. The purpose of 

our simulation work was to establish whether or not the sign of the LE could be accurately 

determined, given limited data and noise. 

These analyses were performed in R version 3.6.3102. The s-map models were fit using 

the package ‘rEDM’ version 0.7.4111. 

2.3 Recurrence quantification analysis (RQA) 

Recurrence quantification analysis (RQA) is based on the notion that most deterministic 

systems tend to revisit regions of state space112. RQA has been used to test for chaos in 

physiological and financial data32,113–117, but has only rarely been used in ecology118–120. 

RQA begins with the construction of the recurrence matrix, R, from the observed time 

series 𝑥𝑡⃗⃗  ⃗ for 𝑡 = 1,… , 𝑇. An entry of the 𝑇 × 𝑇 matrix, 𝑅, is 1 whenever two time points are 

within a threshold distance in state space and 0 otherwise. That is, 𝑅𝑡,𝑠 = 1 when ‖𝑥𝑡⃗⃗  ⃗ − 𝑥𝑠⃗⃗  ⃗‖ ≤  𝑟 

and 0 otherwise, where ‖ ‖ indicates Euclidean distance. We set r equal to 0.2 times the standard 

deviation of the data and used time-delay embedding was used to reconstruct the state space with 

the same embedding parameters 𝐸 and 𝜏 as used for direct and Jacobian LE estimation 

(Supplementary Note 1.3). 

Several metrics can be derived from R 121. After trying several, we selected 3 metrics that 

consistently partitioned dynamical regimes in our simulated data. Specifically, we used the RQA 

metrics “determinism” (DET), “entropy” (ENTR), and “average length” (L), which are based on 

the distribution P(l) of diagonal segments of length l contained in R. Determinism32 measures the 

percentage of recurrence points which form diagonal lines greater than a threshold length, 𝑙𝑚𝑖𝑛, 

for a time series of length 𝑇 i.e. 

𝐷𝐸𝑇 =
∑ 𝑙𝑃(𝑙)𝑇

𝑙=𝑙𝑚𝑖𝑛

∑ 𝑙𝑃(𝑙)𝑇
𝑙=1

 

DET helps distinguish between determinism and noise. The RQA metric “entropy” is the 

Shannon entropy of P(l), i.e. 

𝐸𝑁𝑇𝑅 = − ∑ 𝑃(𝑙) ln 𝑃(𝑙)

𝑇

𝑙=𝑙𝑚𝑖𝑛
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and measures the complexity of the deterministic structure. Chaotic time series tend to have 

higher ENTR than periodic time series. “Average length” is simply the mean length of diagonal 

line segments in R 122, i.e. 

𝐿 =
∑ 𝑙𝑃(𝑙)𝑇

𝑙=𝑙𝑚𝑖𝑛

∑ 𝑃(𝑙)𝑇
𝑙=𝑙𝑚𝑖𝑛

 

L helps distinguish between chaotic and periodic dynamics because the reciprocal of 𝐿 is related 

to the largest positive Lyapunov exponent81. 

Unfortunately, the ranges of DET, ENTR, and L that are best for classifying dynamics as 

periodic, chaotic, or stochastic are case-specific. We used the first 20 replicates of the test dataset 

to establish useful thresholds. Based on this analysis, a time series was classified as chaotic if 

0.45 < DET < 0.99 and 0.39 < ENTR < 2.3 and 1.9 < L < 5.3. These thresholds were used to 

classify the remaining simulations and the GPDD time series. 

To test the sensitivity of our empirical results to the choice of thresholds, we performed a 

sensitivity analysis in which we increased or decreased the upper and/or lower thresholds for 

DET, ENTR, and L by 10%. Using the original thresholds, 42% of series in the GPDD were 

classified as chaotic. Changing the thresholds resulted in 39-46% classified as chaotic. For the 

empirical time series, we also tested sensitivity to the selection of the embedding parameters by 

using E or 𝜏 values either 1 greater or less than the value in the best model, provided those values 

were within the ranges used in model selection. These changes resulted in 32-49% classified as 

chaotic (Supplementary Table 5). 

All RQA analyses were performed in MATLAB R2019a with the Cross Recurrence Plot 

(CRP) Toolbox version 5.22 (R32.4)123. We did not make any modifications to the toolbox and 

handled missing values according to the procedures built into the code. The CRP toolbox 

removes any missing values from the time series prior to analysis and performs the standard 

procedure on the remaining points. 

2.4 Permutation entropy (PE) 

Bandt and Pompe33 introduced permutation entropy (PE) as a measure of time series 

complexity that can be used to quantify predictability and distinguish between periodic, chaotic, 

and random time series124. Pennekamp et al.125 recently used PE to quantify predictability of 

ecological time series. 

The PE of a time series 𝑥𝑡 for 𝑡 = 1,… , 𝑇 is computed by creating embedding vectors of 

order 𝐸 given by 𝑥𝑡⃗⃗  ⃗(𝐸)  =  {𝑥𝑡−1, … , 𝑥𝑡−𝐸}. There are 𝐸! possible permutations corresponding to 

the rank order of the values. Each embedding vector in the time series maps to one of the 𝐸! 
possible permutations. The permutation entropy of the data is determined from the observed 

frequency distribution of the permutations, 𝑃𝑖, 𝑖 = 1,… , 𝐸! as 

𝑃𝐸 =  − 
∑ 𝑃𝑖 ln 𝑃𝑖

𝐸!
𝑖=1

𝐸 − 1 
.  

PE tends to be high for stochastic time series, low for periodic time series, and intermediate for 

chaotic time series. 

To use the PE as a classification tool in our analysis, we had to make choices regarding 

the order of embedding vectors and thresholds of classification. The rule of thumb is that 𝐸 

should be the largest value such that 5𝐸!  ≤ 𝑁 126 and PE is badly negatively biased when 𝐸! is 
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large relative to time series length. To reduce this bias, given the time series lengths that we had, 

we fixed 𝐸 = 3 for all simulated and empirical time series. Other studies in ecology have also 

used 𝐸 = 3 on empirical time series (e.g. 125), and it performed tolerably well in our simulation 

study. As with RQA, PE thresholds are operationally determined, and we used the first 20 

simulations in the test set to determine thresholds for classifying time series as chaotic. Based on 

this, dynamics were classified as chaotic if the permutation entropy was between 1.06 and 1.23. 

We used this criterion to classify the remaining simulation data and empirical time series. 

To test the sensitivity of our empirical results to the choice of thresholds, we performed a 

sensitivity analysis in which we increased or decreased the upper and/or lower thresholds by 

10%. Using the original thresholds, 51% of series in the GPDD were classified as chaotic. 

Changing the thresholds resulted in 45-62% classified as chaotic. 

The permutation entropy computations were performed in MATLAB R2019a with the 

Toolboxes for Complex Systems (TOCSY) petropy function127,128. This function retains missing 

values when creating the embedding vectors. It ranks missing values higher than the numeric 

values in the vectors, and if two missing values occur adjacently, the one that occurs first is 

given the lower rank. 

2.5 Horizontal visibility graphs (HVG) 

The visibility algorithm129 constructs a mapping between a time series and a network, the 

horizontal visibility graph (HVG), which allows one to use network theory to characterize time 

series. While there have been several applications of the HVG in physiology130, physics131–133, 

and economics134 there is, to our knowledge, no ecological application of this method. 

To transform a time series into a network by means of the HVG, the following procedure 

is performed. Each point in the time series is a node on the visibility graph. Two nodes are 

connected based on whether they are “visible” to one another, i.e. if it is possible to draw a 

horizontal line between the two points in the time series without intersecting any points in the 

middle. Mathematically, this occurs when 𝑥𝑡 , 𝑥𝑠 > 𝑥𝑛 for all 𝑡 < 𝑛 < 𝑠. This criterion is checked 

for every pair of points in the time series to construct the HVG. 

The visibility algorithm considers the “degree of connectivity” (𝑘) of each node in the 

HVG (i.e. the number of nodes each node is connected to). The degree distribution for white 

noise follows 𝑃(𝑘) ∼ exp(−𝑧𝑘) with 𝑧 = 𝑧𝑢𝑛 = ln(3/2) 34. Correlated noise and deterministic 

dynamics deviate from this power law distribution with 𝑧 < 𝑧𝑢𝑛 for chaos and 𝑧 > 𝑧𝑢𝑛 for 

correlated noise135. The Shannon entropy of the HVG degree distribution 

ℎ = − ∑ 𝑃(𝑘) ln 𝑃(𝑘)

∞

𝑘=2

 

behaves like the LE with ℎ >ln 4 indicating chaotic dynamics82. Therefore, by using a 

combination of the deviation of the degree distribution from the power law (mean squared error, 

MSE) and the entropy of the degree distribution, we can differentiate chaotic dynamics from 

periodic and stochastic dynamics. As with RQA and PE, we used the first 20 replicates of the test 

dataset to tune the thresholds of h and MSE. Based on this analysis, time series were classified as 

chaotic if the entropy of the HVG was between 0.32 and 0.46 and the MSE was between 0.21 

and 0.48. These thresholds were used to classify the remaining simulation data. 
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All visibility algorithm analyses were performed in MATLAB R2019a with the Fast 

Horizontal Visibility Graph (HVG) for MATLAB file exchange136. 

2.6 Chaos Decision Tree (CDT) 

The chaos decision tree (CDT), proposed by Toker et al.35, is a method that combines 

several tools into one algorithm to detect the presence or absence of chaos in time series. It has 

not been applied to ecological data. The CDT has the following procedure. 

1. The CDT tests for stochasticity in the data by comparing the permutation entropy of the 

original time series to the permutation entropy of 1000 random Amplitude Adjusted 

Fourier Transform surrogates137 and 1000 Cyclic Phase Permutation surrogates138. If the 

permutation entropy of the original time series falls within either of the surrogate 

distributions, the data are classified as stochastic. Otherwise, the algorithm proceeds. 

2. The CDT de-noises the time series with Schreiber's noise-reduction algorithm139. 

3. The algorithm checks if the data are over-sampled. If so, the time series is downsampled 

by a factor of 2 and the process is iterated until it is not over-sampled. 

4. Finally, the CDT performs a 0-1 test for chaos140 modified to account for observation 

noise141. 

In our analysis, we used all of the default settings in the publicly available MATLAB code142 and 

focused on the classification output of the algorithm. The classification output of the CDT is 

either “stochastic,” “chaotic,” “periodic,” or “nonstationary”. We aggregated the “stochastic,” 

“periodic,” and “nonstationary” time series as “not chaotic” in order to easily compare the output 

to the other chaos detection methods. 

Analyses were performed in MATLAB R2019a with the Chaos Decision Tree 

algorithm142. 

 

3 Simulation testing 

Several of the chaos detection algorithms we used originated in the nonlinear dynamics / 

physics literature where they were benchmarked using relatively noise-free datasets with 

thousands to millions of observations. Therefore, before analyzing the GPDD time series (which 

had from 30 to 197 observations), we tested the accuracy of each of the 6 methods 

(Supplementary Note 2) on simulated datasets with limited time series lengths and relevant 

levels of noise. We did this with two sets of simulations which we refer to as the test and 

validation datasets. All simulated data were generated in MATLAB R2019a. 

As the test dataset, we simulated data from 21 different models with periodic dynamics 

(Supplementary Table 6), chaotic dynamics (Supplementary Table 7), and stochastic dynamics 

(Supplementary Table 8). For generality, we included both ecological models and more generic 

models35 for which the dynamical regimes had been previously determined. For each model, we 

generated time series of 5 different lengths (T = 25, 50, 75, 100, and 250) crossed with 4 

different levels of white observation noise (1, 10, 20, and 30% of the standard deviation of the 

data). This range of observation noise was chosen to cover the range that has been empirically 

estimated in several natural systems, which is about 1-17% in large ungulates143 and 10-15% in 

fish and plankton144,145 on average. We simulated 100 replicate time series for each combination 

of model, time series length, and observation error. Each replicate was started from random 
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initial conditions, and for the chaotic and periodic models, the first 500 timepoints were 

discarded to avoid transients. For models with more than one state variable, we only used data 

from the first variable. The observation noise was lognormal for models that produced strictly 

positive values, and Gaussian otherwise. For the colored noise stochastic models, we followed 

Toker et al.35 and did not add observation noise to them in order to avoid interfering with the 

power spectra used in the CDT. 

We used each of the 6 methods to classify each simulated time series as “chaotic” or “not 

chaotic.” We used the first 20 replicates of each model/length/noise combination in the test 

dataset to train the detection methods. This involved tuning threshold parameters to maximize 

classification accuracy for the RQA, PE, and HVG methods, and making methodological 

modifications to maximize classification accuracy for the JLE method. For the JLE method, this 

included determining the best method for generating confidence intervals (Supplementary Table 

2). 

Without modifying the methods or tuned threshold parameters, we then applied the 

trained methods to the remaining 80 replicates of the test dataset. We recorded the overall 

classification rates for each method in aggregate and for each model, time series length, and 

noise level. 

We also generated two validation datasets using independent sets of periodic, chaotic, 

and stochastic models. Since the purpose of the validation datasets was to evaluate the robustness 

of our classification rules on a completely novel set of models, the thresholds established on the 

test data were applied without modification. Validation dataset #1 had the same characteristics 

(dynamical regimes, time series lengths, levels of observation noise, number of replicates) as the 

test dataset, but were generated using different models (Supplementary Tables 9-11). 

Note that, although the test dataset and validation dataset #1 include models with 

nonlinearity, process stochasticity, and observation error, it does not include models that have all 

three simultaneously. Therefore, to test whether classification accuracy extends to this more 

challenging case, we conducted as second validation test. Validation dataset #2 was constructed 

using 3 additional simulation models (Supplementary Tables 12-13) with both periodic and 

chaotic dynamics, crossed with 4 levels of lognormal observation noise (1, 10, 20, 30%) and 4 

levels of process noise (0, 10, 20, 30%). Process noise was generated with random perturbations 

to the dynamics in the discrete time model and random perturbations to a parameter in the 

continuous time models, and we measured the (relative) level of process noise as 
1

𝑇
∑

std(𝑓(𝑥𝑖,𝜃))

𝑓(𝑥𝑖,𝜃̅)

𝑇
𝑖=1  where T is the length of the time series, 𝑓(𝑥𝑖, 𝜃̅) is the 𝑖𝑡ℎ point in the time 

series with no noise and std(𝑓(𝑥𝑖, 𝜃)) is the standard deviation at the 𝑖𝑡ℎ point with noise 

included. We simulated 100 replicates for each combination of model, dynamical regime 

(periodic or chaotic), observation noise, and process noise, and used T = 100 for all time series. 

 

4 Simulation results 

All methods performed better with lower observation noise and longer time series lengths 

but differed in sensitivity and overall classification accuracy. JLE, RQA, and PE were the most 

reliable. DLE, HVG, and CDT had misclassification rates of 0.5 or more. Classification results 

for the simulated test and validation datasets are presented (at various levels of aggregation) in 

Supplementary Figs. 1-5, Extended Data Fig. 1, Supplementary Table 1, and Table 1. 
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Performance was reasonably similar across individual models within a given dynamical regime 

(Supplementary Figs. 2, 4). The methods successfully classified long term trends (e.g. 

RandomWalkTrend) and seasonal dynamics (e.g. SinForcedAR1) as non-chaotic. 

Performance on validation dataset #1 was broadly similar to the results for the test data 

set (Supplementary Table 1), indicating that the classification thresholds established during 

training generalize reasonably well to new simulation models. Under validation dataset #2, 

which included observation noise, process noise, and nonlinearity simultaneously, the 

performance of all methods was somewhat worse on average. Nevertheless, JLE and PE 

performed acceptably with overall false positive rates of 10 and 15%, respectively. To provide 

more context, typical values of observation and process noise in natural populations, as 

quantified by 143 for large ungulates, range from 0.1 to 17% for observation error (median 1.3%) 

and 0.6 to 25% for process error (median 2.8%). For fish and plankton time series, average 

estimates of observation noise are 10 to 15% 144,145. In our simulations with 10% observation 

error and 30% process error, we obtained false positive rates of 0.040, 0.043, and 0.45 for JLE, 

PE, and RQA respectively, with corresponding false negative rates of 0.36, 0.22, and 0.28. Thus, 

we expect the frequency of chaos estimated for the GPDD, using JLE in particular, to be fairly 

conservative. 

Results by method 

The DLE method had the highest true positive rate but also had a very high false positive 

rate. This method frequently classified stochastic series as chaotic and also struggled to properly 

classify the periodic series. As this method is known to be sensitive to noise and to be limited to 

estimating positive LEs38, this result is not unexpected. 

The JLE method had the best overall performance of all of the methods and the best 

classification accuracy at short time series lengths. Increasing observation noise made it more 

likely for chaotic series to be classified as non-chaotic, with limited effect on the classification of 

non-chaotic series. Process noise had a similar effect and also did not increase the false positive 

rate of chaos detection. 

RQA had a lower true positive rate than the Jacobian method and was more sensitive to 

time series length than to observation noise. RQA tended to misclassify periodic series as chaotic 

in the presence of high observation noise, but misclassification rates for stochastic series were 

relatively low. RQA showed the most sensitivity to process noise with higher false positive rates 

as process noise increased. 

For PE, the false positive rate was fairly low and was relatively insensitive to observation 

noise and time series length. As with RQA, this method tended to misclassify periodic series as 

chaotic in the presence of high observation noise, but it was not highly sensitive to process noise. 

Stochastic series were misclassified as chaotic at short time series lengths. 

HVG was insensitive to observation noise, and could correctly classify nearly all periodic 

series, but chaos detection was very sensitive to time series length. This method tended to 

classify stochastic series as chaotic at longer time series lengths, and chaotic series as non-

chaotic at shorter time series lengths. 

The chaos DT had the lowest false positive rate but rarely detected chaos when it was 

present. For long time series (T = 250), the algorithm performed well (comparably to JLE, with 

similar sensitivity to observation noise), but its ability to detect chaos declined rapidly as time 

series length decreased. 
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5 Classifying time series using parametric 1-d models 

To test whether the restriction of model form, in addition to restriction of dimensionality, 

affects the inferred LE, we fit a set of 1-d models, 𝑥𝑡+1 = 𝑥𝑡 exp[𝑓(𝑥𝑡, 𝒒)], to each of the 

empirical (GPDD) time series, where 𝑥𝑡 is population size and q is a vector of parameters 

(Extended Data Fig. 3). The set of models included those used in other meta-analyses17–19, and 

all were capable of generating chaos for some values of q. We estimated the parameters by 

minimizing 

𝑆𝑆 = ∑ {ln (
𝑥𝑡+1

𝑥𝑡
) − 𝑓(𝑥𝑡, 𝒒)}

2
𝑇−1

𝑡=1

 

using fminsearch in MATLAB R2020b, ignoring zeros. In keeping with the Jacobian-based 

method for quantifying chaos, the LE for this model was estimated by taking the average of the 

absolute value of the derivative over the observed states, i.e. 

𝜆 =
1

𝑇
∑𝑓(𝑥𝑡, 𝒒) + ln |1 + 𝑥𝑡𝑓

′(𝑥𝑡, 𝒒)|

𝑇

𝑡=1

 

where the prime denotes the derivative with respect to x. When process noise is present, this 

approach is more appropriate for characterizing dynamics than computing the LE for the 

deterministic skeleton36. 

The frequency of chaos in the empirical dataset was 6% or less using this set of 1-d 

models (Extended Data Fig. 3). 
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Supplementary Fig. 1. Proportion of simulated time series from the test dataset classified as 

chaotic for all replicates of all models within each dynamical regime, for different levels of 

observation noise and time series length, for each chaos detection method. DLE = direct 

Lyapunov exponent, JLE = Jacobian-based Lyapunov exponent, RQA = recurrence 

quantification analysis, PE = permutation entropy, HVG = horizontal visibility graphs, CDT = 

chaos decision tree. 
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Supplementary Fig. 2. Proportion of simulated time series from the test dataset classified as 

chaotic for all replicates of each individual model, for different levels of observation noise and 

time series length. Results for the 3 most reliable chaos detection methods are shown. JLE = 

Jacobian-based Lyapunov exponent, RQA = recurrence quantification analysis, PE = 

permutation entropy. 
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Supplementary Fig. 3. Proportion of simulated time series validation dataset #1 classified as 

chaotic for all replicates of all models within each dynamical regime, for different levels of 

observation noise and time series length, for each chaos detection method. DLE = direct 

Lyapunov exponent, JLE = Jacobian-based Lyapunov exponent, RQA = recurrence 

quantification analysis, PE = permutation entropy, HVG = horizontal visibility graphs, CDT = 

chaos decision tree. 
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Supplementary Fig. 4. Proportion of simulated time series from validation dataset #1 classified 

as chaotic for all replicates of each individual model, for different levels of observation noise and 

time series length. Results for the 3 most reliable methods are shown. JLE = Jacobian-based 

Lyapunov exponent, RQA = recurrence quantification analysis, PE = permutation entropy. 
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Supplementary Fig. 5. Proportion of simulated times series from validation dataset #2 classified 

as chaotic for all replicates of each individual model, for different levels of observation noise and 

process noise. Results for the 3 most reliable methods are shown. JLE = Jacobian-based 

Lyapunov exponent, RQA = recurrence quantification analysis, PE = permutation entropy. 

  



22 

 

 

 

Supplementary Fig. 6. Lyapunov exponent (LE, timestep-1) with unconstrained embedding 

dimension (Free E) and with embedding dimension fixed to 1 (E=1), excluding time series with 

Free E = 1, which would fall along 1:1 diagonal. 
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Supplementary Fig. 7. Distribution of (A) embedding dimension E, (B) time delay 𝝉, and (C) 

local weighting parameter (θ) values by taxonomic group and chaos classification using the 

Jacobian method. 
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Supplementary Fig. 8. Proportion of chaotic series that remained classified as chaotic using the 

Jacobian method when time series were truncated to the last 30 time points, in relation to 

generation time. The line is a logistic regression, associated band is the 95% confidence interval, 

and points are vertically jittered to reduce overlap.  
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Supplementary Fig. 9. Positive Lyapunov exponents (LEs) in relation to body mass, color 

distinguishing broad taxonomic groups. Includes data from this study (GPDD and supplemental 

results from 3 lake systems) and positive LEs compiled by 47 (AG2020). The log-log scale is in 

keeping with prior studies47. Note that the lake data (squares) were not used to fit the regression 

line. Vertical bars are lower confidence intervals. 
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Supplementary Table 1. False negative rates (FNR) and false positive rates (FPR) for 6 chaos 

detection methods across simulated datasets. Values in italics indicate misclassification rates 

>0.5. 

Chaos detection method 
Test Validation #1 Validation #2 

FNR FPR FNR FPR FNR FPR 

Direct LE 0.04 0.68 0.04 0.61 0.23 0.68 

Jacobian LE 0.35 0.03 0.16 0.03 0.28 0.10 

Recurrence quantification analysis 0.38 0.16 0.32 0.03 0.38 0.28 

Permutation entropy 0.30 0.20 0.18 0.16 0.25 0.15 

Horizontal visibility algorithm 0.57 0.09 0.80 0.13 0.54 0.05 

Chaos decision tree 0.77 0.02 0.72 0.001 0.65 0.09 
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Supplementary Table 2. False negative and false positive rates for several JLE confidence 

interval estimation methods, which classify time series as chaotic if p(LE>0)>0.95. Results are 

based on the first 20 replicates of the test dataset and are pooled across all models, time series 

length, and noise levels. 

Method FNR FPR FNR + FPR 

1. Point estimate (no confidence interval) 0.28 0.16 0.44 

2. Residual bootstrap 0.50 0.07 0.57 

3. Asymptotic SE 0.43 0.02 0.45 

4. Moving window 0.35 0.03 0.38 

5. Importance sampling 0.34 0.10 0.44 
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Supplementary Table 3. Models used to generate dynamics with a known embedding 

dimension E and time delay 𝝉. Models were generated with random initial conditions and the 

first 500 points were removed to avoid transients. 

Model Parameters Known E Known 𝜏 

𝑥𝑡 = 𝑥𝑡−1𝑒
𝑟−𝑥𝑡−1 𝑟 = 3 1 1 

𝑥𝑡 = 𝑥𝑡−2𝑒
𝑟−𝑥𝑡−2 𝑟 = 3 1 2 

𝑥𝑡 = 𝑥𝑡−3𝑒
𝑟−𝑥𝑡−3 𝑟 = 3 1 3 

𝑥𝑡 = 𝑥𝑡−1𝑒
𝑟−𝑥𝑡−1−𝑥𝑡−2 𝑟 = 3.25 2 1 

𝑥𝑡 = 𝑥𝑡−2𝑒
𝑟−𝑥𝑡−2−𝑥𝑡−4 𝑟 = 3.25 2 2 

𝑥𝑡 = 𝑥𝑡−3𝑒
𝑟−𝑥𝑡−3−𝑥𝑡−6 𝑟 = 3.25 2 3 

𝑥𝑡 = 𝑥𝑡−1𝑒
𝑟−𝑥𝑡−1−𝑥𝑡−2−𝑥𝑡−3 𝑟 = 3.25 3 1 

𝑥𝑡 = 𝑥𝑡−2𝑒
𝑟−𝑥𝑡−2−𝑥𝑡−4−𝑥𝑡−6 𝑟 = 3.25 3 2 

𝑥𝑡 = 𝑥𝑡−3𝑒
𝑟−𝑥𝑡−3−𝑥𝑡−6−𝑥𝑡−9 𝑟 = 3.25 3 3 
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Supplementary Table 4. Model formulations used for s-map regression. 

Name Model 

First difference, abundance 
𝑥𝑡 = 𝑥𝑡−𝜏 + 𝑓(𝑥𝑡−𝜏, 𝑥𝑡−2𝜏, … , 𝑥𝑡−𝐸𝜏) 

𝑥𝑡 − 𝑥𝑡−𝜏 = 𝑓(𝑥𝑡−𝜏, 𝑥𝑡−2𝜏, … , 𝑥𝑡−𝐸𝜏) 

Growth rate, abundance 

𝑥𝑡 = 𝑥𝑡−𝜏𝑒
𝑓(𝑥𝑡−𝜏,𝑥𝑡−2𝜏,…,𝑥𝑡−𝐸𝜏) 

ln (
𝑥𝑡

𝑥𝑡−𝜏
) = 𝑓(𝑥𝑡−𝜏, 𝑥𝑡−2𝜏, … , 𝑥𝑡−𝐸𝜏) 

Growth rate, log abundance 

𝑥𝑡 = 𝑥𝑡−𝜏𝑒
𝑓(ln 𝑥𝑡−𝜏,ln 𝑥𝑡−2𝜏,…,ln 𝑥𝑡−𝐸𝜏) 

ln (
𝑥𝑡

𝑥𝑡−𝜏
) = 𝑓(ln 𝑥𝑡−𝜏 , ln 𝑥𝑡−2𝜏 , … , ln 𝑥𝑡−𝐸𝜏) 
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Supplementary Table 5. Leave-one-out prediction R2 values from the local linear model (JLE) 

and rates of positive chaos detection in the empirical GPDD dataset using the best model E and 

𝝉, and with E or 𝝉 fixed to be either 1 greater or less than the value in the best model. Rate of 

chaos detection are shown for JLE and RQA. 

Model 
mean R2 for 

abundance (JLE) 

median R2 for 

abundance (JLE) 

Prop. chaotic 

(JLE) 

Prop. chaotic 

(RQA) 

Best 0.40 0.35 0.34 0.41 

𝐸 + 1 0.31 0.26 0.29 0.36 

𝐸 − 1 0.31 0.24 0.23 0.48 

𝜏 + 1 0.15 0.05 0.26 0.31 

𝜏 − 1 0.31 0.28 0.26 0.43 
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Supplementary Table 7. Models used to generate periodic dynamics (test dataset).  

Name Model Parameters Reference 

Logistic Map  

(8-cycle) 

𝑥𝑡+1 = 𝑟𝑥𝑡(1 − 𝑥𝑡) 𝑟 = 3.55 35,56 

Logistic Map  

(3-cycle) 

𝑥𝑡+1 = 𝑟𝑥𝑡(1 − 𝑥𝑡) 𝑟 = 3.828427 35,56 

Ricker Map 

(2-cycle) 

𝑥𝑡+1 = 𝑥𝑡𝑒
𝑟(1−𝑥𝑡) 𝑟 = 2.2 85 

Henon Map 

(4-cycle) 

𝑥𝑡+1 = 1 − 𝑎𝑥𝑡
2 + 𝑏𝑥𝑡−1 𝑎 = 0.95 

𝑏 = 0.3 

35,146 

 

Sine Wave 

(12-cycle) 
𝑥𝑡 = 𝑎 cos (

2𝜋

𝑏
𝑡) + 𝑎 

𝑎 = 1 

𝑏 = 12 
 

Predator-Prey 

(5-cycle) 
𝑥𝑡+1 = 𝑥𝑡 + 𝜏𝑥𝑡 (𝑎 − 𝑥𝑡 − 

𝑏𝑦𝑡

(1 + 𝛼𝑥𝑡)(1 + 𝛽𝑦𝑡)
) 

𝑦𝑡+1 = 𝑦𝑡 + 𝜏𝑦𝑡 (−𝑐 + 
𝑑𝑥𝑡

(1 + 𝛼𝑥𝑡)(1 + 𝛽𝑦𝑡)
) 

𝑎 = 2, 𝑏 = 2 

𝑐 = 2, 𝑑 = 1.85 

𝛼 = 0.1, 𝛽 = 0.1 

𝜏 = 1.1 

147 

Host-

Parasitoid-

Parasitoid 

(6-cycle)  

𝑥𝑡+1 = 𝑥𝑡𝑒
𝑟(1−

𝑥𝑡
𝐾

)− 𝑎𝑦𝑡
−𝑚+1−𝑏𝑧𝑡

−𝑛+1

 

𝑦𝑡+1 = 𝑥𝑡(1 − 𝑒−𝑎𝑦𝑡
−𝑚+1−𝑏𝑧𝑡

−𝑛+1
)

𝑎𝑦𝑡
−𝑚+1

𝑎𝑦𝑡
−𝑚+1 + 𝑏𝑧𝑡

−𝑛+1 

𝑧𝑡+1 = 𝑥𝑡(1 − 𝑒−𝑎𝑦𝑡
−𝑚+1−𝑏𝑧𝑡

−𝑛+1
)

𝑏𝑧𝑡
−𝑛+1

𝑎𝑦𝑡
−𝑚+1 + 𝑏𝑧𝑡

−𝑛+1 

𝑟 = 2.5, 𝐾 = 20 

𝑎 = 0.9, 𝑏 = 1.12 

𝑚 = 0.7, 𝑛 = 0.4 

 

148 
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Supplementary Table 7. Models used to generate chaotic dynamics (test dataset).  

Name Model  Parameters Reference 

Logistic Map  𝑥𝑡+1 = 𝑟𝑥𝑡(1 − 𝑥𝑡) 𝑟 = 3.9 35,56 

Ricker Map 𝑥𝑡+1 = 𝑥𝑡𝑒
𝑟(1−𝑥𝑡) 𝑟 = 3.4 85 

Cubic Map 𝑥𝑡+1 = 𝑓cos(2𝜋𝜃𝑡) −  𝐴𝑥𝑡 + 𝑥3 

𝜃𝑡+1 = 𝜃𝑡 + 𝜔(mod 1)  
𝑓 = −0.8  
𝐴 = 1.5 

𝜔 = 
√5 − 1

2
  

35,149 

 

Ikeda Map 𝑥𝑡+1 = 1 + 𝑢(𝑥𝑡 cos𝜃𝑡 − 𝑦𝑡 sin 𝜃𝑡) 

𝑦𝑡+1 = 𝑢(𝑥𝑡 cos𝜃𝑡 − 𝑦𝑡 sin 𝜃𝑡)  

𝜃𝑡 = 0.4 −
6

1 + 𝑥𝑡
2 + 𝑦𝑡

2 

𝑢 = 0.9 

 

35,150,151 

 

Poincare 

Oscillator 
𝑥𝑡+1 =

1

2𝜋
cos−1 cos(2𝜋𝑥𝑡)+𝑏

√1+𝑏2+2𝑏cos(2𝜋𝑥𝑡)
(mod 1) 𝑏 = 1.13 

𝜏 = 0.65 

152 

Predator-Prey 
𝑥𝑡+1 = 𝑥𝑡 + 𝜏𝑥𝑡 (𝑎 − 𝑥𝑡 − 

𝑏𝑦𝑡

(1 + 𝛼𝑥𝑡)(1 + 𝛽𝑦𝑡)
) 

𝑦𝑡+1 = 𝑦𝑡 + 𝜏𝑦𝑡 (−𝑐 + 
𝑑𝑥𝑡

(1 + 𝛼𝑥𝑡)(1 + 𝛽𝑦𝑡)
) 

𝑎 = 2, 𝑏 = 2 

𝑐 = 2, 𝑑 = 1.85 

𝛼 = 0.1, 𝛽 = 0.1 

𝜏 = 1.27 

147 

Host-

Parasitoid-

Parasitoid  

𝑥𝑡+1 = 𝑥𝑡𝑒
𝑟(1−

𝑥𝑡
𝐾

)− 𝑎𝑦𝑡
−𝑚+1−𝑏𝑧𝑡

−𝑛+1

 

𝑦𝑡+1 = 𝑥𝑡(1 − 𝑒−𝑎𝑦𝑡
−𝑚+1−𝑏𝑧𝑡

−𝑛+1
)

𝑎𝑦𝑡
−𝑚+1

𝑎𝑦𝑡
−𝑚+1 + 𝑏𝑧𝑡

−𝑛+1 

𝑧𝑡+1 = 𝑥𝑡(1 − 𝑒−𝑎𝑦𝑡
−𝑚+1−𝑏𝑧𝑡

−𝑛+1
)

𝑏𝑧𝑡
−𝑛+1

𝑎𝑦𝑡
−𝑚+1 + 𝑏𝑧𝑡

−𝑛+1 

𝑟 = 3.4, 𝐾 = 20 

𝑎 = 0.9, 𝑏 = 1.12 

𝑚 = 0.7, 𝑛 = 0.4 

 

148 
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Supplementary Table 8. Models used to generate stochastic dynamics (test dataset).  

Name Model  Parameters Reference 

AR(1)  𝑥𝑡+1 = 𝑐 + 𝜙𝑥𝑡 + 𝜖𝑡 𝑐 = 8 

𝜙 = 0.8 
𝜖 ∼ 𝑁(0,1) 

 

Cyclostationary 𝑥𝑡+1 = 𝑎1𝑥𝑡 + 𝑎2𝑥𝑡−1 + 𝜖𝑡 𝑎1 = 2 cos (
2𝜋

10
) 𝑒−1/50 

𝑎2 = −𝑒−1/25 
𝜖 ∼ 𝑁(0,1) 

35,153 

Random Walk 𝑥𝑡+1 = 𝑥𝑡 + 𝜖𝑡 

 

𝜖 ∼ 𝑁(0,1) 

 

35 

Random Walk 

with Trend 
𝑥𝑡+1 = 𝑥𝑡 + 𝑏 + 𝜖𝑡 

 

𝑏 = 0.1 
𝜖 ∼ 𝑁(0,1) 

 

35 

White Noise 𝑥𝑡 = 𝜖𝑡 𝜖 ∼ 𝑁(0,1)  

Red Noise PSD proportional to 
1

𝑓2  154 

Blue Noise  PSD proportional to 𝑓  154 
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Supplementary Table 9. Models used to generate periodic dynamics (validation dataset #1).  

Name Model  Parameters Reference 

Three-species 

competition  

(4-cycle) 

𝑥𝑡+1 = 𝑥𝑡𝑒
𝑟(1−𝑥𝑡−𝑎𝑦𝑡−𝑏𝑧𝑡) 

𝑦𝑡+1 = 𝑦𝑡𝑒
𝑟(1−𝑦𝑡−𝑎𝑧𝑡−𝑏𝑥𝑡) 

𝑧𝑡+1 = 𝑧𝑡𝑒
𝑟(1−𝑧𝑡−𝑎𝑥𝑡−𝑏𝑦𝑡) 

𝑟 = 2.6 

𝑎 = 0.65 

𝑏 = 0.6 

155 

Mouse map  

(2-cycle) 
𝑥𝑡+1 = 𝑒−𝛼𝑥𝑡

2
+ 𝛽 𝛼 = 6.2 

𝛽 = 0 

156 

Tinkerbell 

Map 

(9-cycle) 

𝑥𝑡+1 = 𝑥𝑡
2 − 𝑦𝑡

2 + 𝑎𝑥𝑡 + 𝑏𝑦𝑡 

𝑦𝑡 = 2𝑥𝑡𝑦𝑡 + 𝑐𝑥𝑡 + 𝑑𝑦𝑡 

𝑎 = 0.9, 𝑏 = −0.5 

𝑐 = 1.8, 𝑑 = 0.5 

157  
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Supplementary Table 10. Models used to generate chaotic dynamics (validation dataset #1).  

Name Model  Parameters Reference 

Three-species 

competition  

 

𝑥𝑡+1 = 𝑥𝑡𝑒
𝑟(1−𝑥𝑡−𝑎𝑦𝑡−𝑏𝑧𝑡) 

𝑦𝑡+1 = 𝑦𝑡𝑒
𝑟(1−𝑦𝑡−𝑎𝑧𝑡−𝑏𝑥𝑡) 

𝑧𝑡+1 = 𝑧𝑡𝑒
𝑟(1−𝑧𝑡−𝑎𝑥𝑡−𝑏𝑦𝑡) 

𝑟 = 3 

𝑎 = 0.65 

𝑏 = 0.6 

155 

Mouse map  𝑥𝑡+1 = 𝑒−𝛼𝑥𝑡
2
+ 𝛽 𝛼 = 6.2 

𝛽 = −0.5 

156 

Tinkerbell Map 

 
𝑥𝑡+1 = 𝑥𝑡

2 − 𝑦𝑡
2 + 𝑎𝑥𝑡 + 𝑏𝑦𝑡 

𝑦𝑡 = 2𝑥𝑡𝑦𝑡 + 𝑐𝑥𝑡 + 𝑑𝑦𝑡 

𝑎 = 0.9, 𝑏 = −0.5 

𝑐 = 2.15, 𝑑 = 0.5 

157 
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Supplementary Table 11. Models used to generate stochastic dynamics (validation dataset #1).  

Name Model  Parameters Reference 

AR(2)  𝑥𝑡+1 = 𝜙1𝑥𝑡 + 𝜙2𝑥𝑡−1 + 𝜖𝑡 𝜙1 = 0.9,  
𝜙2 = −0.1, 
𝜖 ∼ 𝑁(0,1) 

 

Seasonally- 

forced AR(1) 
𝑥𝑡+1 = 𝑏 (𝑥𝑡 − 𝐴 sin (

2𝜋

12
𝑡))  + 𝜖𝑡   

𝐴 = 2, 𝑏 = 0.8 
𝜖 ∼ 𝑁(0,1) 

 

Pink Noise PSD proportional to 
1

𝑓
  154 

Violet Noise  PSD proportional to 𝑓2  154 
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Supplementary Table 12. Models used to generate periodic dynamics with process noise 

(validation dataset #2).  

Name Model  Parameters Reference 

Seasonal 

Predator Prey 

 

𝑥̇ = 𝑟(1 − 𝐴 sin 2𝜋𝑡))𝑥 − 𝑟𝑥2

−
𝑔𝑥2

𝑥2 + ℎ2
−

𝑎𝑥𝑦

𝑥 + 𝑑
 

 

𝑦̇ = 𝑠(1 − 𝐴 sin 2𝜋𝑡))𝑦 −
𝑠𝑦2

𝑥
 

 

𝐴 = 2.2 

𝑠 = 1.5 

𝑔 = 2 

ℎ = 0.13 

𝑎 = 7.5 

𝑑 = 0.06 

𝑟 ~𝑁(7, 𝜎) 

158
 

Larvae-Pupae-

Adult (LPA) 
𝐿𝑡+1 = 𝑏𝐴𝑡𝑒

−𝑐𝑒𝑙𝐿𝑡−𝑐𝑒𝑎𝐴𝑡𝑒𝜉1,𝑡 
𝑃𝑡+1 = (1 − 𝜇𝑙)𝐿𝑡𝑒

𝜉2,𝑡 

At+1 = [𝑃𝑡𝑒
−𝑐𝑝𝑎𝐴𝑡 + 𝐴𝑡(1 − 𝜇𝑎)]𝑒

𝜉3,𝑡 

𝑏 = 6.598 

𝑐𝑒𝑙 = 0.01209  
𝑐𝑒𝑎 = 0.01155  
𝑐𝑝𝑎 = 1  

𝜇𝑙 = 0.2055  
𝜇𝑎 = 0.96  

𝜉𝑖,𝑡 ~𝑁(−
𝜎2

2
, 𝜎) 

10 

Nutrient-

Phytoplankton-

Zooplankton 

(NPZ) 

𝑁̇ = −
𝑣𝑚 (1 − 𝐴 sin (

2𝜋
365

𝑡))𝑁𝑃

𝑘𝑠 + 𝑁
𝑒𝑘ℎ

+ 𝛾𝑅𝑚𝑍(1 − 𝑒−ΛP) + 𝑚𝑃
+ 𝑔𝑍 

 

𝑃̇ =
𝑣𝑚 (1 − 𝐴 sin (

2𝜋
365

𝑡))𝑁𝑃

𝑘𝑠 + 𝑁
𝑒𝑘ℎ

− 𝑅𝑚𝑍(1 − 𝑒−ΛP) − 𝑚𝑃 

𝑍̇ = (1 − 𝛾)𝑅𝑚𝑍(1 − 𝑒−ΛP) − 𝑔𝑍 

𝑣𝑚 = 2 

𝑘𝑠 = 0.1 

𝑘 = 0.06 

Λ = 0.2 

𝛾 = 0.3 

𝑚 = 0.1 

𝑔 = 0.2 

𝐴 = 0 

ℎ = −35 

𝑅𝑚 ~𝑁(0.5, 𝜎) 

159 
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Supplementary Table 13. Models used to generate chaotic dynamics with process noise 

(validation dataset #2).  

Name Model  Parameters Reference 

Seasonal 

Predator Prey 

 

𝑥̇ = 𝑟(1 − 𝐴 sin 2𝜋𝑡))𝑥 − 𝑟𝑥2

−
𝑔𝑥2

𝑥2 + ℎ2
−

𝑎𝑥𝑦

𝑥 + 𝑑
 

 

𝑦̇ = 𝑠(1 − 𝐴 sin 2𝜋𝑡))𝑦 −
𝑠𝑦2

𝑥
 

 

𝐴 = 1 

𝑠 = 1.25 

𝑔 = 0 

ℎ = 0.08 

𝑎 = 710 

𝑑 = 0.04 

𝑟 ~𝑁(6, 𝜎) 

158 

Larvae-Pupae-

Adult (LPA) 
𝐿𝑡+1 = 𝑏𝐴𝑡𝑒

−𝑐𝑒𝑙𝐿𝑡−𝑐𝑒𝑎𝐴𝑡𝑒𝜉1,𝑡 
𝑃𝑡+1 = (1 − 𝜇𝑙)𝐿𝑡𝑒

𝜉2,𝑡 

At+1 = [𝑃𝑡𝑒
−𝑐𝑝𝑎𝐴𝑡 + 𝐴𝑡(1 − 𝜇𝑎)]𝑒

𝜉3,𝑡 

𝑏 = 6.598 

𝑐𝑒𝑙 = 0.01209  
𝑐𝑒𝑎 = 0.01155  
𝑐𝑝𝑎 = 0.35  

𝜇𝑙 = 0.2055  
𝜇𝑎 = 0.96  

𝜉𝑖,𝑡 ~𝑁(−
𝜎2

2
, 𝜎) 

10 

Nutrient-

Phytoplankton-

Zooplankton 

(NPZ) 

𝑁̇ = −
𝑣𝑚 (1 − 𝐴 sin (

2𝜋
365

𝑡))𝑁𝑃

𝑘𝑠 + 𝑁
𝑒𝑘ℎ

+ 𝛾𝑅𝑚𝑍(1 − 𝑒−ΛP) + 𝑚𝑃
+ 𝑔𝑍 

 

𝑃̇ =
𝑣𝑚 (1 − 𝐴 sin (

2𝜋
365

𝑡))𝑁𝑃

𝑘𝑠 + 𝑁
𝑒𝑘ℎ

− 𝑅𝑚𝑍(1 − 𝑒−ΛP) − 𝑚𝑃 

𝑍̇ = (1 − 𝛾)𝑅𝑚𝑍(1 − 𝑒−ΛP) − 𝑔𝑍 

𝑣𝑚 = 2 

𝑘𝑠 = 0.1 

𝑘 = 0.06 

Λ = 0.3 

𝛾 = 0.7 

𝑚 = 0.1 

𝑔 = 0.2 

𝐴 = 1 

ℎ = 0 

𝑅𝑚 ~𝑁(4, 𝜎) 

159 

 

 

 




