Supplementary information

Enhanced leaf turnover and nitrogen recycling sustain CO_2 fertilization effect on tree-ring growth

In the format provided by the authors and unedited

Supplementary Information

for

Enhanced leaf turnover and nitrogen recycling sustain CO₂ fertilization effect on tree-ring growth

Ying Guo^{1,2#}, Lin Zhang^{1#}, Liu Yang^{1,2}, Wei Shen¹, Yude Pan³, Ian J. Wright^{4,5}, Yiqi Luo⁶,

Tianxiang Luo^{1*}

¹Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China

²University of Chinese Academy of Sciences, Beijing 100049, China

³USDA Forest Service, Northern Research Station, Durham, NH 03820, United States of America

⁴Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia

⁵Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia

⁶Center for Ecosystem Science and Society, Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States of America

#The same contributors

*Corresponding Author:

Dr. Tianxiang Luo, Professor in ecology and biogeography Institute of Tibetan Plateau Research, Chinese Academy of Sciences Building 3, Courtyard 16, Lin Cui Road, Chaoyang District, Beijing 100101, China Phone/Fax: +86 10 84097060; Email: luotx@itpcas.ac.cn

List of Supplementary Information:

Supplementary Figures 1-3 Supplementary Tables 1-6

Supplementary Figure 1. Relative importance of climatic factors and atmospheric CO₂ concentration in determining interannual variations of leaf-litter nitrogen concentrations at two alpine treelines in the Sergyemla Mountains during 2007–2017. (a) Simple linear model was used for testing the variation trends in annual maximum (N_{max}, black solid circles), mean (N_{mean}, red solid circles) and minimum (N_{min}, green solid circles) leaf-litter nitrogen concentrations for *A. georgei* var. *smithii* (AGES) and *J. saltuaria* (JSA). (b-g) Partial correlation coefficients of multiple linear regressions for relationships of N_{max}, N_{mean} and N_{min} to observed seasonal/annual mean minimum temperature (T), precipitation (P) and solar radiation (R_a), and atmospheric CO₂ concentration (CO₂) at *A. georgei* var. *smithii* (b-d) and *J. saltuaria* (e-g) treelines, respectively. The significance of correlation coefficient is estimated by two-tailed t-test with no adjustment for multiple comparisons. Significant level: # *P* <0.10, * *P* <0.05, ** *P* <0.01, *** *P* <0.001. The exact *P* values are found in Supplementary Table 3.

Supplementary Figure 2. Interannual trends in tree-ring width index (since 1986, thick gray lines) and their 10-year moving averages (thick red lines) across 8 tree species and 13 treeline sites on the Tibetan Plateau. The data were collected from this study (Sites 1-2) and the literature (Sites 3-13). The interannual trends were tested using simple linear model. The significance of correlation coefficient is estimated by two-tailed t-test with no adjustment for multiple comparisons.

Supplementary Figure 3. Relationship between seasonal measurements of green leaf nitrogen concentration (N_{green}) and the estimated N_{green} from leaf-litter nitrogen concentration (N_{litter}) at *A. georgei* var. *smithii* treeline in the Sergyemla Mountains, using a global empirical model ($N_{green} = (N_{litter} / MLCF) / 0.60$, MLCF is the mass loss correction factor, 0.745 for conifers used here)^{46,47}. The relationship was tested using simple linear model. The significance of the regression equation is estimated using the F-test. The 1:1 dashed line indicates the one-to-one relationship.

ID	Sites	Species	Abbr.	Latitude	Longitude	Altitude (m)	Duration	Data source
1	Nyingchi, Tibet	Abies georgei var.	AGES	29.60	94.61	4320	1986–2017	This study
		smithii						
2	Nyingchi, Tibet	Juniperus saltuaria	JSA	29.61	94.60	4425	1986–2017	This study
3	Xiangcheng, Sichuan	Juniperus tibetica	JTI	28.90	99.75	3980	1986–2007	[1] Li et al. (2011)
4	Qamdo, Tibet	Juniperus tibetica	JTI	31.15	97.17	4350-4500	1986–2010	[2] Wang et al. (2014)
5	Deqin, Yunnan	Juniperus tibetica	JTI	28.37	99.03	4260	1986–2007	[3] Wright et al. (2011)
6	Wulan, Qinghai	Juniperus przewalskii	JPR	37.05	98.67	3972	1986–2015	[4] Song et al. (2018)
7	Dulan, Qinghai	Juniperus przewalskii	JPR	36.03	98.19	4024	1986–2015	[4] Song et al. (2018)
8	Tongde, Qinghai	Juniperus przewalskii	JPR	34.76	100.79	3791	1986–2015	[4] Song et al. (2018)
9	Qilian, Qinghai	Juniperus przewalskii	JPR	38.20	99.87	3300-3500	1986–2008	[5] Yang et al. (2014)
10	Basu, Tibet	Picea likiangensis var.	PLIB	30.13	97.36	4630–4766	1986–2010	[6] Liu et al. (2015)
		balfouriana						
11	Songpan, Sichuan	Abies faxoniana	AFA	33.05	103.72	3620	1986–2013	[7] Guo et al. (2019)
12	Daocheng, Sichuan	Abies forrestii	AFO	29.28	100.08	4150	1986–2006	[8] Li et al. (2011)
13	Shangri-La, Yunnan	Picea likiangensis	PLI	27.58	99.35	3240	1986–2005	[9] Fan (2013)

Supplementary Table 1. Description of 13 treeline sites on the Tibetan Plateau collected from this study and the literature.

Supplementary Table 2. Pearson correlation coefficients of annual litterfall and its associated nitrogen resorption and return collected in different periods (previous year's month to current year's month) to tree-ring width index (n=10) and annual stem increment (n=8 for *A. georgei* var. *smithii*, n=9 for *J. saltuaria*) at treelines in the Sergyemla Mountains during 2007–2017. The significance of correlation coefficient is estimated by two-tailed t-test with no adjustment for multiple comparisons. *P* values are shown in parentheses. Significant level: #P < 0.10, *P < 0.05.

Period	Tree-ring w	idth index	Annual sten	n increment
	A. georgei	J. saltuaria	A. georgei	J. saltuaria
	var. <i>smithii</i>		var. smithii	
Litterfall as independent				
Pre-May 15 to May 15	/	0.838* (0.002)	/	0.784* (0.012)
Pre-Jun 15 to Jun 15	0.730* (0.017)	0.697* (0.025)	0.857* (0.007)	0.720* (0.029)
Pre-Jul 15 to Jul 15	0.707* (0.022)	0.666* (0.036)	0.878* (0.004)	0.729* (0.026)
Pre-Aug 15 to Aug 15	0.578# (0.080)	0.181 (0.617)	0.864* (0.006)	0.152 (0.697)
Pre-Sep 15 to Sep 15	0.574 (0.102)	-0.006 (0.988)	0.828* (0.011)	-0.008 (0.984)
Pre-Oct 15 to Oct 15	-0.043 (0.906)	0.072 (0.843)	0.012 (0.978)	0.119 (0.761)
N resorption as independe	ent variable			
Pre-May 15 to May 15	/	0.852* (0.002)	/	0.788* (0.012)
Pre-Jun 15 to Jun 15	0.760* (0.011)	0.706* (0.023)	0.864* (0.006)	0.747* (0.021)
Pre-Jul 15 to Jul 15	0.732* (0.016)	0.685* (0.029)	0.873* (0.005)	0.770* (0.015)
Pre-Aug 15 to Aug 15	0.571# (0.085)	0.172 (0.635)	0.856* (0.007)	0.169 (0.663)
Pre-Sep 15 to Sep 15	0.524 (0.120)	0.023 (0.949)	0.806* (0.016)	0.022 (0.956)
Pre-Oct 15 to Oct 15	0.044 (0.904)	0.102 (0.779)	0.151 (0.721)	0.149 (0.701)
N return as independent v	variable			
Pre-May 15 to May 15	/	0.852* (0.002)	/	0.788* (0.012)
Pre-Jun 15 to Jun 15	0.760* (0.011)	0.706* (0.023)	0.864* (0.006)	0.747* (0.021)
Pre-Jul 15 to Jul 15	0.732* (0.016)	0.685* (0.029)	0.873* (0.005)	0.770* (0.015)
Pre-Aug 15 to Aug 15	0.571# (0.085)	0.172 (0.635)	0.856* (0.007)	0.169 (0.663)
Pre-Sep 15 to Sep 15	0.524 (0.120)	0.023 (0.949)	0.806* (0.016)	0.022 (0.956)
Pre-Oct 15 to Oct 15	0.044 (0.904)	0.102 (0.779)	0.151 (0.721)	0.149 (0.701)

Supplementary Table 3. Partial correlation coefficients of multiple linear regressions for relationships of annual litterfall, annual nitrogen resorption (N-res) and return (N-ret), annual maximum (N_{max}), mean (N_{mean}) and minimum (N_{min}) leaf-litter nitrogen concentrations, and tree-ring width index (TRWI) to current year's seasonal/annual mean minimum temperature (T), precipitation (P), solar radiation (R_a) and atmospheric CO₂ concentration (CO₂) (Model 1), or to previous year's seasonal/annual mean minimum temperature (PT), precipitation (PP), solar radiation (PR_a) and atmospheric CO₂ concentration (PCO₂) (Model 2) at *A. georgei* var. *smithii* and *J. saltuaria* treelines in the Sergyemla Mountains during 2007–2017. The statistical significance is estimated by two-tailed t-test with no adjustment for multiple comparisons. *P* values are shown in parentheses. Significant level: #P < 0.10, *P < 0.05.

Saacana		Mod	el 1		Model 2				
Seasons -	Т	Р	R _a	CO ₂	РТ	РР	PR _a	PCO ₂	
Litterfall of									
May-Jun	0.49	- 0.19	0.35	0.84*	0.23	- 0.10	- 0.23	0.73#	
	(0.263)	(0.688)	(0.448)	(0.018)	(0.616)	(0.836)	(0.626)	(0.065)	
Apr-June	0.18	- 0.23	-0.16	0.74#	-0.45	0.15	- 0.23	0.73#	
	(0.703)	(0.615)	(0.736)	(0.056)	(0.314)	(0.749)	(0.626)	(0.065)	
Jun-Aug	0.03	0.28	0.23	0.75#	- 0.83*	- 0.56	- 0.88*	0.93*	
	(0.942)	(0.550)	(0.618)	(0.051)	(0.020)	(0.187)	(0.009)	(0.002)	
May-Aug	-0.17	-0.03	0.25	0.72#	-0.54	0.05	- 0.77*	0.83*	
	(0.714)	(0.955)	(0.587)	(0.068)	(0.211)	(0.913)	(0.044)	(0.021)	
Apr-Sep	-0.57	0.38	0.20	0.69#	- 0.79*	0.05	- 0.86*	0.81*	
	(0.178)	(0.401)	(0.669)	(0.083)	(0.035)	(0.923)	(0.013)	(0.026)	
Annual	-0.40	0.37	0.29	0.72#	- 0.61	0.08	- 0.72#	0.78*	
	(0.380)	(0.416)	(0.531)	(0.066)	(0.145)	(0.865)	(0.066)	(0.038)	
N-res of A. g	g <i>eorgei</i> var.	<i>smithii</i> as	variable						
May-Jun	0.53	-0.04	0.24	0.86*	0.42	- 0.09	- 0.23	0.77*	
	(0.222)	(0.935)	(0.610)	(0.014)	(0.349)	(0.844)	(0.625)	(0.042)	

Apr-June	0.39	-0.26	-0.32	0.81*	-0.24	0.05	-0.28	0.71#
	(0.389)	(0.573)	(0.478)	(0.028)	(0.604)	(0.916)	(0.550)	(0.075)
Jun-Aug	0.02	0.15	0.20	0.78*	-0.66	-0.37	- 0.83*	0.91*
	(0.970)	(0.740)	(0.671)	(0.039)	(0.105)	(0.413)	(0.022)	(0.005)
May-Aug	- 0.13	- 0.06	0.23	0.76*	-0.35	0.18	- 0.80*	0.87*
	(0.786)	(0.895)	(0.614)	(0.048)	(0.440)	(0.704)	(0.032)	(0.011)
Apr-Sep	-0.47	0.37	0.16	0.72#	-0.59	- 0.15	- 0.87*	0.82*
	(0.289)	(0.407)	(0.731)	(0.071)	(0.160)	(0.743)	(0.011)	(0.023)
Annual	- 0.31	0.40	0.25	0.73#	- 0.29	- 0.29	- 0.80*	0.76*
	(0.505)	(0.375)	(0.585)	(0.062)	(0.530)	(0.535)	(0.031)	(0.045)
N-ret of A. g	<i>georgei</i> var.	<i>smithii</i> as o	lependent	variable				
May-Jun	0.53	-0.04	0.24	0.86*	0.42	- 0.09	- 0.23	0.77*
	(0.222)	(0.935)	(0.610)	(0.014)	(0.349)	(0.844)	(0.625)	(0.042)
Apr-June	0.39	- 0.26	-0.32	0.81*	-0.24	0.05	-0.28	0.71#
	(0.389)	(0.573)	(0.478)	(0.028)	(0.604)	(0.916)	(0.550)	(0.075)
Jun-Aug	0.02	0.15	0.20	0.78*	-0.66	-0.37	- 0.83*	0.91*
	(0.970)	(0.740)	(0.672)	(0.039)	(0.105)	(0.413)	(0.022)	(0.005)
May-Aug	- 0.13	- 0.06	0.23	0.76*	-0.35	0.18	- 0.80*	0.87*
	(0.787)	(0.895)	(0.614)	(0.048)	(0.440)	(0.705)	(0.032)	(0.011)
Apr-Sep	-0.47	0.37	0.16	0.72#	-0.59	- 0.15	- 0.87*	0.82*
	(0.289)	(0.407)	(0.731)	(0.071)	(0.160)	(0.743)	(0.011)	(0.023)
Annual	- 0.31	0.40	0.25	0.73#	-0.29	- 0.29	- 0.80*	0.76*
	(0.505)	(0.375)	(0.585)	(0.062)	(0.530)	(0.534)	(0.031)	(0.045)
N_{max} of A . g	<i>eorgei</i> var.	<i>smithii</i> as d	ependent v	ariable				
May-Jun	0.46	0.32	0.15	- 0.23	-0.28	- 0.10	-0.37	-0.54
	(0.301)	(0.490)	(0.741)	(0.618)	(0.542)	(0.833)	(0.420)	(0.210)
Apr-June	0.17	0.13	-0.14	-0.37	- 0.61	0.32	-0.27	- 0.60
	(0.721)	(0.782)	(0.760)	(0.416)	(0.147)	(0.486)	(0.554)	(0.158)

Jun-Aug	0.47	0.80*	0.48	- 0.72#	- 0.70#	- 0.64	-0.55	-0.55
	(0.289)	(0.031)	(0.276)	(0.069)	(0.077)	(0.123)	(0.204)	(0.202)
May-Aug	0.04	0.53	0.16	-0.55	-0.49	- 0.31	-0.40	- 0.63
	(0.932)	(0.223)	(0.727)	(0.205)	(0.266)	(0.502)	(0.374)	(0.133)
Apr-Sep	-0.47	0.78*	0.08	- 0.81*	- 0.53	-0.18	- 0.32	- 0.61
	(0.284)	(0.039)	(0.863)	(0.028)	(0.221)	(0.697)	(0.491)	(0.148)
Annual	-0.52	0.75#	0.37	-0.65	0.00	- 0.09	- 0.35	-0.56
	(0.229)	(0.052)	(0.414)	(0.112)	(0.993)	(0.844)	(0.439)	(0.187)
N_{mean} of A . ξ	<i>georgei</i> var.	smithii as o	dependent	variable				
May-Jun	0.52	0.02	0.20	0.76*	0.57	-0.48	- 0.70#	0.75#
	(0.231)	(0.966)	(0.665)	(0.046)	(0.177)	(0.270)	(0.080)	(0.051)
Apr-June	0.52	- 0.31	- 0.21	0.76*	0.61	- 0.74#	- 0.81*	0.53
	(0.229)	(0.499)	(0.647)	(0.049)	(0.142)	(0.059)	(0.027)	(0.218)
Jun-Aug	0.20	- 0.12	-0.47	0.72#	-0.24	-0.32	- 0.36	0.69#
	(0.661)	(0.804)	(0.292)	(0.067)	(0.605)	(0.488)	(0.423)	(0.088)
May-Aug	0.31	- 0.15	- 0.38	0.72#	-0.15	-0.34	- 0.65	0.70#
	(0.493)	(0.744)	(0.396)	(0.066)	(0.754)	(0.449)	(0.113)	(0.079)
Apr-Sep	0.27	0.15	- 0.43	0.57	0.15	- 0.73#	- 0.67#	0.74#
	(0.562)	(0.752)	(0.341)	(0.184)	(0.747)	(0.064)	(0.096)	(0.058)
Annual	0.05	0.21	- 0.21	0.43	0.31	- 0.82*	- 0.73#	0.65
	(0.917)	(0.657)	(0.657)	(0.340)	(0.502)	(0.025)	(0.063)	(0.112)
N_{min} of A . ge	<i>eorgei</i> var.	s <i>mithii</i> as d	ependent v	ariable				
May-Jun	0.37	-0.44	- 0.36	0.77*	0.48	- 0.12	-0.05	0.69#
	(0.419)	(0.318)	(0.422)	(0.041)	(0.278)	(0.795)	(0.911)	(0.089)
Apr-June	0.18	-0.40	- 0.35	0.68#	0.88*	- 0.76*	-0.50	0.80*
	(0.700)	(0.371)	(0.440)	(0.091)	(0.009)	(0.046)	(0.256)	(0.030)
Jun-Aug	-0.37	- 0.82*	- 0.84*	0.89*	0.40	- 0.30	- 0.14	0.79*
	(0.418)	(0.025)	(0.017)	(0.008)	(0.372)	(0.518)	(0.773)	(0.036)

May-Aug	0.58	- 0.87*	- 0.93*	0.95*	0.52	-0.35	-0.18	0.80*
	(0.171)	(0.010)	(0.003)	(0.001)	(0.237)	(0.446)	(0.695)	(0.032)
Apr-Sep	0.68#	- 0.81*	- 0.83*	0.89*	0.72#	-0.50	- 0.11	0.82*
	(0.094)	(0.026)	(0.020)	(0.007)	(0.067)	(0.249)	(0.810)	(0.023)
Annual	0.29	- 0.61	- 0.62	0.62	0.21	- 0.39	- 0.03	0.66
	(0.533)	(0.145)	(0.136)	(0.135)	(0.653)	(0.383)	(0.954)	(0.110)
TRWI of A.	<i>georgei</i> va	r. <i>smithii</i> as	dependent	variable				
May-Jun	0.59	- 0.56	0.54	0.90*	0.10	0.02	0.02	0.70#
	(0.120)	(0.148)	(0.163)	(0.003)	(0.807)	(0.954)	(0.963)	(0.052)
Apr-June	0.67#	- 0.75*	0.15	0.90*	0.16	-0.04	0.03	0.64#
	(0.071)	(0.033)	(0.731)	(0.002)	(0.705)	(0.918)	(0.939)	(0.086)
Jun-Aug	0.41	- 0.30	0.17	0.85*	- 0.32	0.09	-0.57	0.74*
	(0.314)	(0.468)	(0.690)	(0.007)	(0.433)	(0.825)	(0.143)	(0.035)
May-Aug	0.56	- 0.71*	0.41	0.92*	-0.22	0.18	-0.51	0.72*
	(0.148)	(0.047)	(0.312)	(0.001)	(0.602)	(0.678)	(0.193)	(0.043)
Apr-Sep	0.21	- 0.43	0.18	0.81*	0.00	0.20	- 0.36	0.56
	(0.624)	(0.285)	(0.664)	(0.015)	(0.999)	(0.640)	(0.385)	(0.149)
Annual	-0.17	- 0.26	0.36	0.79*	- 0.43	0.18	- 0.01	0.70#
	(0.690)	(0.536)	(0.377)	(0.019)	(0.282)	(0.676)	(0.990)	(0.051)
Litterfall of	Juniperus	s <i>altuaria</i> as	dependent	variable				
May-Jun	0.10	- 0.63	0.54	0.70#	0.27	0.43	0.02	0.47
	(0.830)	(0.127)	(0.213)	(0.078)	(0.551)	(0.336)	(0.961)	(0.281)
Apr-June	- 0.34	-0.50	0.25	0.52	-0.60	0.54	0.37	0.48
	(0.452)	(0.256)	(0.594)	(0.230)	(0.155)	(0.212)	(0.409)	(0.275)
Jun-Aug	0.21	0.22	0.38	0.50	- 0.46	0.15	- 0.44	0.54
	(0.658)	(0.639)	(0.394)	(0.258)	(0.305)	(0.745)	(0.321)	(0.215)
May-Aug	-0.07	- 0.23	0.31	0.57	- 0.12	0.47	- 0.14	0.43
	(0.881)	(0.619)	(0.495)	(0.185)	(0.797)	(0.288)	(0.773)	(0.340)

Apr-Sep	-0.61	-0.59	0.40	0.74#	-0.64	0.61	-0.32	0.15
	(0.143)	(0.165)	(0.373)	(0.056)	(0.121)	(0.145)	(0.489)	(0.742)
Annual	- 0.46	- 0.63	0.40	0.74#	- 0.72#	0.56	0.05	0.50
	(0.299)	(0.129)	(0.378)	(0.056)	(0.069)	(0.191)	(0.916)	(0.252)
N-res of <i>Jur</i>	niperus salt	<i>uaria</i> as de _j	pendent va	riable				
May-Jun	0.12	- 0.62	0.40	0.81*	0.55	0.54	- 0.06	0.74#
	(0.801)	(0.141)	(0.368)	(0.026)	(0.199)	(0.211)	(0.897)	(0.057)
Apr-June	- 0.14	- 0.46	-0.02	0.71#	-0.42	0.45	0.19	0.66
	(0.760)	(0.300)	(0.966)	(0.074)	(0.350)	(0.314)	(0.678)	(0.105)
Jun-Aug	0.17	0.06	0.36	0.74#	-0.51	0.09	- 0.61	0.81*
	(0.718)	(0.894)	(0.422)	(0.057)	(0.241)	(0.840)	(0.146)	(0.029)
May-Aug	- 0.16	- 0.45	0.25	0.79*	-0.05	0.58	- 0.31	0.73#
	(0.733)	(0.309)	(0.582)	(0.034)	(0.917)	(0.169)	(0.497)	(0.061)
Apr-Sep	-0.58	-0.55	0.37	0.84*	-0.58	0.59	- 0.56	0.54
	(0.170)	(0.201)	(0.407)	(0.017)	(0.175)	(0.166)	(0.190)	(0.214)
Annual	- 0.31	-0.48	0.32	0.78*	- 0.74#	0.57	- 0.21	0.75#
	(0.506)	(0.275)	(0.485)	(0.038)	(0.055)	(0.177)	(0.657)	(0.051)
N-ret of Jur	niperus salti	<i>uaria</i> as dep	pendent var	riable				
May-Jun	0.12	- 0.62	0.40	0.81*	0.55	0.54	- 0.06	0.74#
	(0.802)	(0.141)	(0.368)	(0.026)	(0.199)	(0.211)	(0.897)	(0.057)
Apr-June	-0.14	- 0.46	-0.02	0.71#	-0.42	0.45	0.19	0.66
	(0.760)	(0.300)	(0.966)	(0.075)	(0.350)	(0.314)	(0.678)	(0.105)
Jun-Aug	0.17	0.06	0.36	0.74#	-0.51	0.09	- 0.61	0.81*
	(0.718)	(0.894)	(0.422)	(0.057)	(0.241)	(0.840)	(0.146)	(0.029)
May-Aug	- 0.16	-0.45	0.25	0.79*	-0.05	0.58	- 0.31	0.73#
	(0.733)	(0.310)	(0.582)	(0.034)	(0.918)	(0.169)	(0.497)	(0.061)
Apr-Sep	- 0.58	- 0.55	0.37	0.84*	-0.58	0.59	- 0.56	0.54
	(0.169)	(0.201)	(0.407)	(0.017)	(0.175)	(0.166)	(0.190)	(0.214)

Annual	-0.31	-0.48	0.32	0.78*	- 0.74#	0.57	-0.21	0.75#
	(0.506)	(0.275)	(0.485)	(0.038)	(0.055)	(0.177)	(0.657)	(0.051)
N _{max} of Juni	perus saltu	<i>aria</i> as dep	endent vari	able				
May-Jun	- 0.30	0.29	- 0.63	0.65	0.23	- 0.39	- 0.19	0.82*
	(0.510)	(0.528)	(0.130)	(0.118)	(0.621)	(0.392)	(0.683)	(0.024)
Apr-June	- 0.38	0.48	- 0.19	0.54	0.92*	- 0.87*	- 0.87*	0.95*
	(0.406)	(0.279)	(0.682)	(0.212)	(0.004)	(0.011)	(0.012)	(0.001)
Jun-Aug	- 0.61	-0.49	- 0.71#	0.84*	0.41	- 0.31	0.38	0.89*
	(0.143)	(0.261)	(0.072)	(0.017)	(0.361)	(0.499)	(0.403)	(0.008)
May-Aug	- 0.46	-0.12	- 0.79*	0.85*	0.30	-0.50	0.10	0.88*
	(0.303)	(0.799)	(0.033)	(0.016)	(0.510)	(0.255)	(0.824)	(0.010)
Apr-Sep	0.19	0.08	- 0.60	0.69#	0.65	- 0.70#	0.18	0.92*
	(0.689)	(0.861)	(0.157)	(0.087)	(0.115)	(0.080)	(0.707)	(0.003)
Annual	0.36	0.11	- 0.66	0.45	0.48	- 0.51	- 0.01	0.82*
	(0.431)	(0.819)	(0.109)	(0.313)	(0.277)	(0.244)	(0.984)	(0.025)
N _{mean} of Jun	iperus saltu	<i>iaria</i> as dep	pendent var	riable				
May-Jun	0.24	0.13	-0.52	0.76*	0.74#	-0.18	-0.47	0.88*
	(0.602)	(0.788)	(0.232)	(0.047)	(0.055)	(0.698)	(0.283)	(0.009)
Apr-June	0.09	0.21	- 0.51	0.70#	0.76*	-0.57	- 0.74#	0.85*
	(0.845)	(0.645)	(0.241)	(0.080)	(0.049)	(0.181)	(0.058)	(0.015)
Jun-Aug	-0.34	-0.44	-0.54	0.81*	-0.07	-0.52	-0.45	0.85*
	(0.450)	(0.325)	(0.208)	(0.026)	(0.878)	(0.235)	(0.315)	(0.015)
May-Aug	- 0.19	-0.37	- 0.66	0.83*	0.22	-0.32	-0.48	0.83*
	(0.680)	(0.415)	(0.104)	(0.021)	(0.643)	(0.481)	(0.277)	(0.020)
Apr-Sep	0.09	0.13	- 0.56	0.70#	0.46	- 0.51	- 0.53	0.81*
	(0.851)	(0.775)	(0.188)	(0.077)	(0.302)	(0.247)	(0.222)	(0.026)
Annual	0.24	0.29	- 0.53	0.52	0.16	- 0.32	- 0.30	0.66
	(0.609)	(0.531)	(0.223)	(0.236)	(0.731)	(0.482)	(0.512)	(0.107)

N_{min} of Juniperus saltuaria as dependent variable

May-Jun	0.16	-0.23	-0.31	0.39	0.51	-0.25	0.11	0.43
	(0.730)	(0.613)	(0.503)	(0.384)	(0.245)	(0.588)	(0.808)	(0.334)
Apr-June	0.30	-0.08	-0.40	0.35	0.80*	- 0.74#	-0.40	0.64
	(0.509)	(0.857)	(0.375)	(0.436)	(0.030)	(0.057)	(0.368)	(0.120)
Jun-Aug	- 0.25	- 0.78*	- 0.78*	0.69#	0.34	- 0.16	0.04	0.41
	(0.588)	(0.038)	(0.041)	(0.087)	(0.455)	(0.732)	(0.938)	(0.367)
May-Aug	0.27	- 0.65	- 0.77*	0.66	0.33	- 0.19	-0.01	0.45
	(0.554)	(0.115)	(0.041)	(0.108)	(0.466)	(0.681)	(0.985)	(0.308)
Apr-Sep	0.56	- 0.33	-0.64	0.32	0.45	-0.34	0.02	0.51
	(0.193)	(0.471)	(0.119)	(0.484)	(0.309)	(0.460)	(0.965)	(0.247)
Annual	0.47	-0.12	- 0.56	- 0.16	- 0.16	-0.20	0.31	0.48
	(0.289)	(0.796)	(0.193)	(0.735)	(0.729)	(0.659)	(0.502)	(0.273)
TRWI of Ju	niperus sali	<i>tuaria</i> as de	ependent va	ariable				
May-Jun	0.26	- 0.31	0.39	0.81*	-0.09	-0.07	- 0.33	0.74*
	(0.528)	(0.454)	(0.334)	(0.014)	(0.829)	(0.876)	(0.419)	(0.037)
Apr-June	- 0.29	-0.44	0.21	0.77*	-0.33	0.14	- 0.26	0.69#
	(0.493)	(0.279)	(0.621)	(0.026)	(0.426)	(0.736)	(0.530)	(0.060)
Jun-Aug	0.58	0.68#	0.34	0.75*	- 0.76*	-0.57	-0.48	0.88*
	(0.133)	(0.066)	(0.412)	(0.032)	(0.029)	(0.139)	(0.226)	(0.004)
May-Aug	0.31	0.36	0.01	0.74*	-0.60	-0.41	- 0.36	0.79*
	(0.457)	(0.378)	(0.978)	(0.036)	(0.119)	(0.313)	(0.382)	(0.019)
Apr-Sep	-0.14	-0.12	- 0.30	0.69#	- 0.66#	-0.20	0.04	0.77*
	(0.748)	(0.769)	(0.471)	(0.060)	(0.074)	(0.640)	(0.931)	(0.026)
Annual	- 0.13	- 0.39	-0.21	0.64#	-0.58	-0.05	0.12	0.76*
	(0.754)	(0.341)	(0.615)	(0.088)	(0.132)	(0.905)	(0.773)	(0.028)

Supplementary Table 4. Estimates of regression weights for structural equation models quantifying direct effects of climatic factors and atmospheric CO₂ and their indirect effects through interactions with litterfall and N-ret/N-res on tree-ring width index (TRWI) in *A. georgei* var. *smithii* and *J. saltuaria* treeline forests in the Sergyemla Mountains during 2007–2017.

Paths	Estimate	Std. Error	Critical Ratio	P value
A. georgei var. smithii tree	eline forest			
Litterfall < CO ₂	2.356	0.786	2.998	0.003
Litterfall < P	-0.011	0.060	-0.181	0.856
Litterfall < T	- 8.989	18.187	-0.494	0.621
N-ret/res < CO ₂	0.004	0.003	1.262	0.207
N-ret/res < P	0.000	0.000	- 0.371	0.710
N-ret/res < T	0.019	0.048	0.387	0.699
N-ret/res < Litterfall	0.009	0.001	9.840	0.000
TRWI < CO ₂	0.013	0.005	2.808	0.005
TRWI < P	-0.001	0.000	-5.090	0.000
TRWI < T	0.196	0.072	2.713	0.007
TRWI < N-ret/res	0.604	0.147	4.097	0.000
Juniperus saltuaria treelin	ne forest			
Litterfall < CO ₂	2.495	1.272	1.961	0.050
Litterfall < P	-0.127	0.115	- 1.103	0.270
Litterfall < T	- 13.146	34.975	-0.376	0.707
N-ret/res < CO ₂	0.015	0.004	4.139	0.000
N-ret/res < P	-0.001	0.000	-2.080	0.038
N-ret/res < T	-0.052	0.081	-0.644	0.520
N-ret/res < Litterfall	0.005	0.001	6.876	0.000
TRWI < CO ₂	-0.002	0.003	-0.609	0.543
TRWI < P	0.001	0.000	4.405	0.000
TRWI < T	0.111	0.044	2.512	0.012
TRWI < N-ret/res	0.328	0.072	4.566	0.000

Supplementary Table 5. Partial correlation coefficients of multiple linear regressions for relationships of tree-ring width index to previous and current year's monthly/seasonal mean minimum temperature (PT, T) and precipitation (PP, P) from May to August and the atmospheric CO₂ concentration, based on the chronological data (since 1986) of tree-ring width index across 8 tree species and 13 treeline sites on the Tibetan Plateau collected from this study and the literature. Detailed sites information is found in Supplementary Table 1. The statistical significance is estimated by two-tailed t-test with no adjustment for multiple comparisons. *P* values are shown in parentheses. Significant level: #P < 0.10, *P < 0.05.

Site	Species	Month		Partial co	orrelation co	efficient	
ID			PT	PP	Т	Р	CO_2
1	Abies georgei	May	- 0.144	0.005	- 0.486*	-0.171	0.793*
	var. <i>smithii</i>		(0.466)	(0.981)	(0.009)	(0.383)	(0.000)
		Jun	0.005	0.211	0.141	0.040	0.484*
			(0.980)	(0.282)	(0.475)	(0.842)	(0.009)
		Jul	- 0.369#	- 0.063	0.150	-0.090	0.656*
			(0.053)	(0.750)	(0.445)	(0.647)	(0.000)
		Aug	- 0.487*	0.373#	- 0.474*	0.025	0.846*
			(0.009)	(0.051)	(0.011)	(0.901)	(0.000)
		May-Jun	- 0.192	0.137	- 0.295	- 0.065	0.709*
			(0.327)	(0.487)	(0.127)	(0.742)	(0.000)
		Jun-Aug	- 0.456*	0.264	-0.023	-0.128	0.738*
			(0.015)	(0.174)	(0.909)	(0.515)	(0.000)
		May-Aug	- 0.502*	0.262	- 0.189	-0.134	0.785*
			(0.006)	(0.178)	(0.335)	(0.497)	(0.000)
2	Juniperus	May	- 0.182	0.062	- 0.115	- 0.199	0.852*
	saltuaria		(0.354)	(0.755)	(0.561)	(0.310)	(0.000)
		Jun	- 0.316	-0.099	- 0.126	-0.078	0.840*
			(0.101)	(0.616)	(0.522)	(0.695)	(0.000)

		Jul	- 0.341#	0.087	0.142	0.034	0.839*
			(0.076)	(0.660)	(0.470)	(0.864)	(0.001)
		Aug	- 0.410*	-0.036	0.051	0.132	0.888*
			(0.030)	(0.857)	(0.795)	(0.504)	(0.000)
		May-Jun	- 0.251	0.002	- 0.223	-0.049	0.846*
			(0.197)	(0.991)	(0.253)	(0.803)	(0.000)
		Jun-Aug	- 0.457*	-0.089	0.083	0.096	0.861*
			(0.014)	(0.651)	(0.673)	(0.626)	(0.000)
		May-Aug	- 0.515*	0.004	0.065	0.007	0.860*
			(0.005)	(0.984)	(0.742)	(0.970)	(0.000)
3	Juniperus	May	- 0.041	-0.082	0.119	0.363	0.729*
	tibetica		(0.872)	(0.747)	(0.638)	(0.139)	(0.001)
		Jun	0.062	-0.049	- 0.195	0.300	0.722*
			(0.807)	(0.848)	(0.439)	(0.227)	(0.001)
		Jul	-0.035	0.001	0.179	- 0.161	0.735*
			(0.889)	(0.996)	(0.476)	(0.524)	(0.001)
		Aug	- 0.433#	0.193	-0.170	- 0.061	0.770*
			(0.073)	(0.443)	(0.500)	(0.811)	(0.000)
		May-Jun	0.169	-0.283	0.028	0.407#	0.706*
			(0.503)	(0.256)	(0.911)	(0.094)	(0.001)
		Jun-Aug	-0.333	0.215	-0.174	-0.156	0.728*
			(0.177)	(0.392)	(0.489)	(0.537)	(0.001)
		May-Aug	-0.081	-0.032	0.171	-0.010	0.612*
			(0.749)	(0.899)	(0.497)	(0.967)	(0.007)
4	Juniperus	May	0.308	0.409#	- 0.535*	0.293	0.888*
	tibetica		(0.174)	(0.066)	(0.013)	(0.197)	(0.000)
		Jun	0.418#	- 0.169	- 0.492*	-0.105	0.904*
			(0.059)	(0.464)	(0.023)	(0.651)	(0.000)

		Jul	0.319	-0.058	-0.190	0.216	0.807*
			(0.159)	(0.803)	(0.409)	(0.346)	(0.000)
		Aug	-0.222	0.233	-0.006	-0.198	0.735*
			(0.332)	(0.310)	(0.978)	(0.390)	(0.000)
		May-Jun	0.428#	0.027	- 0.589*	-0.124	0.898*
			(0.053)	(0.908)	(0.005)	(0.594)	(0.000)
		Jun-Aug	0.340	-0.188	-0.364	0.085	0.783*
			(0.132)	(0.414)	(0.105)	(0.716)	(0.000)
		May-Aug	0.344	- 0.126	- 0.473*	0.097	0.821*
			(0.127)	(0.585)	(0.030)	(0.674)	(0.000)
5	Juniperus	May	0.159	- 0.017	- 0.026	- 0.106	0.815*
	tibetica		(0.528)	(0.948)	(0.919)	(0.677)	(0.000)
		Jun	0.091	-0.134	0.021	-0.048	0.823*
			(0.720)	(0.595)	(0.935)	(0.849)	(0.000)
		Jul	-0.072	-0.108	0.460#	-0.187	0.653*
			(0.776)	(0.670)	(0.055)	(0.458)	(0.003)
		Aug	- 0.066	0.099	0.438#	0.630*	0.784*
			(0.794)	(0.695)	(0.069)	(0.005)	(0.000)
		May-Jun	0.187	-0.098	-0.030	-0.144	0.827*
			(0.458)	(0.700)	(0.906)	(0.568)	(0.000)
		Jun-Aug	-0.238	0.187	0.326	0.269	0.698*
			(0.341)	(0.457)	(0.187)	(0.280)	(0.001)
		May-Aug	-0.254	0.313	0.318	0.234	0.757*
			(0.310)	(0.206)	(0.198)	(0.350)	(0.000)
6	Juniperus	May	0.195	0.036	-0.040	0.149	0.777*
	przewalskii		(0.339)	(0.861)	(0.847)	(0.467)	(0.000)
		Jun	- 0.025	- 0.216	0.191	0.187	0.786*
			(0.903)	(0.289)	(0.349)	(0.361)	(0.000)

		Jul	-0.002	0.209	0.359#	0.254	0.741*	
			(0.993)	(0.306)	(0.072)	(0.211)	(0.000)	
		Aug	- 0.163	0.193	0.237	0.180	0.770*	
			(0.427)	(0.346)	(0.243)	(0.379)	(0.000)	
		May-Jun	0.190	-0.114	0.080	0.241	0.782*	
			(0.354)	(0.579)	(0.697)	(0.236)	(0.000)	
		Jun-Aug	-0.235	0.313	0.568*	0.535*	0.741*	
			(0.248)	(0.119)	(0.002)	(0.005)	(0.000)	
		May-Aug	-0.075	0.208	0.417*	0.433*	0.752*	
			(0.716)	(0.309)	(0.034)	(0.027)	(0.000)	
7	Juniperus	May	- 0.285	0.034	- 0.371#	0.406*	0.499*	
	przewalskii		(0.157)	(0.868)	(0.062)	(0.040)	(0.010)	
		Jun	0.156	0.101	0.023	0.468*	0.415*	
			(0.448)	(0.623)	(0.912)	(0.016)	(0.035)	
		Jul	-0.147	-0.110	-0.087	- 0.099	0.444*	
			(0.473)	(0.594)	(0.673)	(0.630)	(0.023)	
		Aug	-0.124	0.154	-0.032	-0.048	0.390*	
			(0.546)	(0.453)	(0.876)	(0.815)	(0.049)	
		May-Jun	0.006	0.100	-0.281	0.503*	0.441*	
			(0.977)	(0.628)	(0.164)	(0.009)	(0.024)	
		Jun-Aug	-0.061	0.082	0.004	0.310	0.285	
			(0.767)	(0.692)	(0.986)	(0.123)	(0.158)	
		May-Aug	-0.076	0.140	-0.130	0.415*	0.302	
			(0.712)	(0.495)	(0.528)	(0.035)	(0.134)	
8	Juniperus	May	0.028	0.417*	-0.178	0.277	0.592*	
	przewalskii		(0.893)	(0.034)	(0.383)	(0.171)	(0.001)	
		Jun	0.076	0.250	0.384#	0.125	0.470*	
			(0.711)	(0.218)	(0.053)	(0.542)	(0.016)	

		Jul	-0.104	-0.034	0.249	-0.069	0.437*
			(0.614)	(0.869)	(0.220)	(0.736)	(0.026)
		Aug	- 0.421*	0.446*	-0.268	0.189	0.564*
			(0.032)	(0.022)	(0.185)	(0.355)	(0.003)
		May-Jun	0.111	0.296	0.126	0.214	0.534*
			(0.590)	(0.142)	(0.538)	(0.294)	(0.005)
		Jun-Aug	-0.142	0.279	0.126	0.084	0.442*
			(0.487)	(0.168)	(0.538)	(0.682)	(0.024)
		May-Aug	-0.107	0.345#	0.013	0.145	0.482*
			(0.601)	(0.084)	(0.948)	(0.480)	(0.013)
9	Juniperus	May	0.137	0.104	-0.297	0.249	0.301
	przewalskii		(0.576)	(0.672)	(0.217)	(0.304)	(0.211)
		Jun	-0.285	0.206	0.280	0.094	0.339
			(0.237)	(0.397)	(0.246)	(0.701)	(0.156)
		Jul	- 0.406#	0.378	0.234	-0.062	0.298
			(0.084)	(0.110)	(0.335)	(0.802)	(0.216)
		Aug	0.086	0.248	0.057	-0.148	0.042
			(0.727)	(0.306)	(0.817)	(0.545)	(0.865)
		May-Jun	-0.302	0.384	-0.102	0.219	0.412#
			(0.209)	(0.105)	(0.678)	(0.368)	(0.080)
		Jun-Aug	-0.250	0.451#	0.223	-0.083	0.219
			(0.302)	(0.053)	(0.359)	(0.735)	(0.368)
		May-Aug	-0.274	0.563*	0.104	0.022	0.292
			(0.256)	(0.012)	(0.670)	(0.928)	(0.226)
10	Picea	May	0.350	-0.083	0.081	-0.026	0.479*
	likiangensis		(0.119)	(0.721)	(0.726)	(0.910)	(0.028)
	var.	Jun	0.410#	0.055	0.337	0.441*	0.614*
	balfouriana		(0.065)	(0.813)	(0.135)	(0.045)	(0.003)

		Jul	-0.311	0.097	-0.194	-0.191	0.676*
			(0.170)	(0.677)	(0.399)	(0.408)	(0.001)
		Aug	-0.262	0.423#	-0.193	0.177	0.637*
			(0.252)	(0.056)	(0.403)	(0.442)	(0.002)
		May-Jun	0.367	0.034	0.240	0.274	0.449*
			(0.101)	(0.885)	(0.294)	(0.229)	(0.041)
		Jun-Aug	0.032	0.375#	0.026	0.318	0.489*
			(0.891)	(0.094)	(0.911)	(0.160)	(0.024)
		May-Aug	0.193	0.354	0.118	0.374#	0.362
			(0.401)	(0.115)	(0.610)	(0.095)	(0.107)
11	Abies	May	0.026	-0.045	-0.099	-0.078	0.901*
	faxoniana		(0.904)	(0.835)	(0.647)	(0.717)	(0.000)
		Jun	-0.092	-0.214	-0.112	0.000	0.879*
			(0.671)	(0.314)	(0.603)	(1.000)	(0.000)
		Jul	-0.110	0.087	-0.020	-0.155	0.858*
			(0.610)	(0.685)	(0.926)	(0.469)	(0.000)
		Aug	0.014	0.092	-0.222	0.147	0.840*
			(0.947)	(0.670)	(0.296)	(0.492)	(0.000)
		May-Jun	0.000	-0.169	-0.073	-0.007	0.887*
			(0.998)	(0.431)	(0.733)	(0.975)	(0.000)
		Jun-Aug	-0.065	-0.042	-0.176	-0.065	0.830*
			(0.763)	(0.846)	(0.411)	(0.763)	(0.000)
		May-Aug	-0.075	-0.016	-0.158	-0.083	0.826*
			(0.728)	(0.941)	(0.462)	(0.698)	(0.000)
12	Abies	May	-0.133	0.381	0.668*	-0.377	0.884*
	forrestii		(0.612)	(0.132)	(0.003)	(0.135)	(0.000)
		Jun	0.042	0.047	0.231	0.205	0.780*
			(0.873)	(0.856)	(0.372)	(0.430)	(0.000)

		Jul	-0.403	0.395	-0.385	0.331	0.906*
			(0.109)	(0.117)	(0.127)	(0.195)	(0.000)
		Aug	0.125	0.648*	0.511*	0.550*	0.808*
			(0.632)	(0.005)	(0.036)	(0.022)	(0.000)
		May-Jun	0.010	0.088	0.474#	0.058	0.796*
			(0.970)	(0.738)	(0.055)	(0.824)	(0.000)
		Jun-Aug	-0.031	0.293	0.162	0.313	0.747*
			(0.905)	(0.254)	(0.535)	(0.221)	(0.001)
		May-Aug	0.200	0.144	0.550*	0.404	0.720*
			(0.442)	(0.581)	(0.022)	(0.108)	(0.001)
13	Picea	May	-0.104	0.016	0.005	- 0.012	0.394
	likiangensis		(0.701)	(0.953)	(0.986)	(0.965)	(0.131)
		Jun	- 0.443#	0.449#	- 0.659*	0.585*	0.749*
		Jun	- 0.443# (0.086)	0.449# (0.081)	- 0.659* (0.005)	0.585* (0.017)	0.749* (0.001)
		Jun Jul	- 0.443 # (0.086) - 0.080	0.449# (0.081) 0.296	- 0.659* (0.005) - 0.129	0.585* (0.017) - 0.072	0.749* (0.001) 0.493#
		Jun Jul	- 0.443# (0.086) - 0.080 (0.769)	0.449# (0.081) 0.296 (0.266)	- 0.659* (0.005) - 0.129 (0.634)	0.585* (0.017) - 0.072 (0.790)	0.749* (0.001) 0.493# (0.053)
		Jun Jul Aug	- 0.443# (0.086) - 0.080 (0.769) - 0.393	0.449# (0.081) 0.296 (0.266) 0.186	- 0.659* (0.005) - 0.129 (0.634) - 0.011	0.585* (0.017) - 0.072 (0.790) 0.360	0.749* (0.001) 0.493# (0.053) 0.477#
		Jun Jul Aug	- 0.443# (0.086) - 0.080 (0.769) - 0.393 (0.132)	0.449# (0.081) 0.296 (0.266) 0.186 (0.490)	- 0.659* (0.005) - 0.129 (0.634) - 0.011 (0.968)	0.585* (0.017) - 0.072 (0.790) 0.360 (0.171)	0.749* (0.001) 0.493# (0.053) 0.477# (0.062)
		Jun Jul Aug May-Jun	- 0.443# (0.086) - 0.080 (0.769) - 0.393 (0.132) - 0.247	0.449# (0.081) 0.296 (0.266) 0.186 (0.490) 0.109	- 0.659* (0.005) - 0.129 (0.634) - 0.011 (0.968) - 0.253	0.585* (0.017) - 0.072 (0.790) 0.360 (0.171) 0.259	0.749* (0.001) 0.493# (0.053) 0.477# (0.062) 0.507*
		Jun Jul Aug May-Jun	- 0.443# (0.086) - 0.080 (0.769) - 0.393 (0.132) - 0.247 (0.356)	0.449# (0.081) 0.296 (0.266) 0.186 (0.490) 0.109 (0.689)	- 0.659* (0.005) - 0.129 (0.634) - 0.011 (0.968) - 0.253 (0.344)	0.585* (0.017) - 0.072 (0.790) 0.360 (0.171) 0.259 (0.332)	0.749* (0.001) 0.493# (0.053) 0.477# (0.062) 0.507* (0.045)
		Jun Jul Aug May-Jun Jun-Aug	- 0.443# (0.086) - 0.080 (0.769) - 0.393 (0.132) - 0.247 (0.356) - 0.340	0.449# (0.081) 0.296 (0.266) 0.186 (0.490) 0.109 (0.689) 0.385	- 0.659* (0.005) - 0.129 (0.634) - 0.011 (0.968) - 0.253 (0.344) - 0.209	0.585* (0.017) - 0.072 (0.790) 0.360 (0.171) 0.259 (0.332) 0.210	0.749* (0.001) 0.493# (0.053) 0.477# (0.062) 0.507* (0.045) 0.538*
		Jun Jul Aug May-Jun Jun-Aug	- 0.443# (0.086) - 0.080 (0.769) - 0.393 (0.132) - 0.247 (0.356) - 0.340 (0.198)	0.449# (0.081) 0.296 (0.266) 0.186 (0.490) 0.109 (0.689) 0.385 (0.141)	-0.659* (0.005) -0.129 (0.634) -0.011 (0.968) -0.253 (0.344) -0.209 (0.437)	0.585* (0.017) - 0.072 (0.790) 0.360 (0.171) 0.259 (0.332) 0.210 (0.436)	0.749* (0.001) 0.493# (0.053) 0.477# (0.062) 0.507* (0.045) 0.538* (0.032)
		Jun Jul Aug May-Jun Jun-Aug May-Aug	-0.443# (0.086) -0.080 (0.769) -0.393 (0.132) -0.247 (0.356) -0.340 (0.198) -0.403	0.449# (0.081) 0.296 (0.266) 0.186 (0.490) 0.109 (0.689) 0.385 (0.141) 0.363	-0.659* (0.005) -0.129 (0.634) -0.011 (0.968) -0.253 (0.344) -0.209 (0.437) -0.196	0.585* (0.017) - 0.072 (0.790) 0.360 (0.171) 0.259 (0.332) 0.210 (0.436) 0.304	0.749* (0.001) 0.493# (0.053) 0.477# (0.062) 0.507* (0.045) 0.538* (0.032) 0.533*

Supplementary Table 6. Partial correlation coefficients of multiple linear regressions for relationships of 10-year moving averages of tree-ring width index to previous and current year's early-season (May to June) mean minimum temperature (PT, T) and precipitation (PP, P) and the atmospheric CO₂ concentration, based on the chronological data (since 1986) of tree-ring width index across 8 tree species and 13 treeline sites on the Tibetan Plateau collected from this study and the literature. Detailed sites information is found in Supplementary Table 1. The statistical significance is estimated by two-tailed t-test with no adjustment for multiple comparisons. *P* values are shown in parentheses. Significant level: #P < 0.10, *P < 0.05.

Site	Species	Partial correlation coefficient					
ID		PT	PP	Т	Р	CO_2	
1	Abies georgei var.	-0.244	0.145	- 0.408#	0.328	0.893*	
	smithii	(0.314)	(0.552)	(0.083)	(0.170)	(0.000)	
2	Juniperus saltuaria	-0.022	0.061	-0.292	0.265	0.939*	
		(0.928)	(0.804)	(0.225)	(0.274)	(0.000)	
3	Juniperus tibetica	0.354	-0.289	-0.032	0.354	0.679*	
		(0.350)	(0.450)	(0.935)	(0.351)	(0.044)	
4	Juniperus tibetica	0.425	-0.088	-0.338	-0.179	0.989*	
		(0.168)	(0.787)	(0.283)	(0.578)	(0.000)	
5	Juniperus tibetica	0.296	0.290	0.722*	-0.607	0.947*	
		(0.439)	(0.448)	(0.028)	(0.083)	(0.000)	
6	Juniperus przewalskii	0.123	- 0.186	- 0.036	0.438#	0.953*	
		(0.639)	(0.475)	(0.891)	(0.079)	(0.000)	
7	Juniperus przewalskii	-0.200	0.240	-0.247	0.345	0.786*	
		(0.441)	(0.353)	(0.339)	(0.175)	(0.000)	
8	Juniperus przewalskii	0.243	0.726*	-0.049	-0.080	0.892*	
		(0.348)	(0.001)	(0.852)	(0.761)	(0.000)	
9	Juniperus przewalskii	-0.200	0.303	0.054	0.101	0.728*	
		(0.579)	(0.395)	(0.883)	(0.781)	(0.017)	

10	Picea likiangensis	0.818*	- 0.503#	0.687*	-0.016	0.868*
	var. balfouriana	(0.001)	(0.096)	(0.014)	(0.960)	(0.000)
11	Abies faxoniana	-0.043	-0.426	-0.193	0.483#	0.877*
		(0.879)	(0.113)	(0.490)	(0.068)	(0.000)
12	Abies forrestii	0.688#	- 0.393	0.788*	-0.160	0.927*
		(0.059)	(0.335)	(0.020)	(0.706)	(0.001)
13	Picea likiangensis	-0.015	- 0.339	0.206	-0.335	0.281
		(0.975)	(0.456)	(0.768)	(0.462)	(0.542)

References of data source in Supplementary Table 1:

- [1] Li J, Fang K, Tao Y, Cook ER. (2011-09-01): NOAA/WDS Paleoclimatology Li Xiangchen
 ABFO ITRDB CHIN017. NOAA National Centers for Environmental Information. https://doi.org/10.25921/zabf-zc09. Accessed 2017-6-21.
- [2] Wang JL, Yang B, Qin C, Kang SY, He MH, Wang ZY. (2016-10-08): NOAA/WDS Paleoclimatology - Wang - Qamdo 2 - JUTI - ITRDB CHIN074. NOAA National Centers for Environmental Information. <u>https://doi.org/10.25921/njz0-5803</u>. Accessed 2017-6-21.
- [3] Wright WE, Li J, Fang K, Tao Y, Cook ER. (2011-09-01): NOAA/WDS Paleoclimatology -Wright - Baimang Snow Mountain - JUTI - ITRDB CHIN024. NOAA National Centers for Environmental Information. <u>https://doi.org/10.25921/kmee-aj42</u>. Accessed 2017-6-21.
- [4] Song WQ, Zhu LJ, Zhang X, Wang XC, Zhang YD. 2018. Comparison of growth-climate relationship of *Sabina przewalskii* at different timberlines along a precipitation gradient in the northeast Qinghai-Xizang Plateau, China. Chinese Journal of Plant Ecology, 42 (1): 66–77.
- [5] Yang B, Qin C, Wang JL, He MH, Melvin TM, Osborn TJ, Briffa KR. (2014-02-10): NOAA/WDS Paleoclimatology - Yang - Zhamashi - JUPR - ITRDB CHIN071. NOAA National Centers for Environmental Information. <u>https://doi.org/10.25921/nc6n-rb25</u>. Accessed 2017-6-21.
- [6] Liu J, Deng X, Lv LX. 2015. Relationship of tree growth and climatic factors at treeline of *Picea likiangensis* var. *balfouriana* forest in Basu County, Xizang. Chinese Journal of Plant Ecology, 39 (5): 442–452.
- [7] Guo BD, Wang XC, Zhang YD. 2019. Effects of accumulated and threshold temperatures on the radial growth of *Abies faxoniana* in the alpine timberline, Western Sichuan Plateau. Acta Ecologica Sinica, 39 (3): 895–904.
- [8] Li J, Fang K, Tao Y, Cook ER. (2011-09-01): NOAA/WDS Paleoclimatology Li Daocheng -ABFO - ITRDB CHIN018. NOAA National Centers for Environmental Information. <u>https://doi.org/10.25921/hx6b-fm18</u>. Accessed 2017-6-21.
- [9] Fan ZX. (2013-05-06): NOAA/WDS Paleoclimatology Fan Hengduan Mountains 10GK_P_r
 PCLI ITRDB CHIN037. NOAA National Centers for Environmental Information. https://doi.org/10.25921/p6z5-9g74. Accessed 2017-6-21.