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1 Supplementary Notes: 

1.1 Supplementary Note 1: Rationale of the CIE color space-based algal 

bloom detection algorithm 

Since the 1970s, satellite remote sensing techniques have been effectively used 

to monitor algal blooms and to examine their distributions, onsets, and durations, 

among many other properties 1-8. Particularly, some species of phytoplankton can 

regulate their buoyancy and form subsurface accumulations and surface scums in 

calm weather, allowing them to be easily detected by remotely sensed observations 1. 

Satellite-delineated bloom extents are generally considered more reliable than those 

determined from field surveys due to the significant heterogeneity of phytoplankton 

cells both spatially and temporally 9. The separation of bloom-containing and bloom-

free pixels is straightforward for a limited number of satellite images, as accumulated 

colonies can substantially modulate satellite signals in terms of both magnitudes and 

spectral shapes 1,10. However, the application of a bloom detection algorithm to global 

Landsat data spanning more than 38 years is not trivial. This is because the satellite 

signals of lacustrine waters change not only with the concentrations of three optically 
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sensitive components in water (including chlorophyll, suspended sediments, and 

colored dissolved organic matter (CDOM)) 11 but also with aquatic vegetation, 

shallow water bottoms and satellite observation conditions 12-14. All of these factors 

can be encountered at sometime or location during global long-term monitoring 

research. 

Various spectral wavelengths or indices have been introduced to detect algal 

blooms in inland and coastal waters, such as a single red band 15, normalized 

difference vegetation index (NDVI) 16, maximum chlorophyll index (MCI) 10, 

maximum peak height (MPH) 17, cyanobacteria index (CI) 18, floating algal index 

(FAI) 12 and false-colored red-green-blue (FRGB) index 19. The use of the MCI, MPH 

and CI requires narrow bands at red to NIR spectral ranges, which are applicable to 

only a few satellite sensors (such as MERIS (2002-2011) and the Ocean Land Color 

Instrument (OLCI, 2017-now)). Among the above, the FAI algorithm is currently the 

most commonly used method for broadband instruments (such as the Moderate 

Resolution Spectroradiometer (MODIS) and Landsat) 20,21, and FAI values can be 

calculated using three bands in the red, NIR and SWIR spectral regions. The baseline 

subtraction designation of the FAI makes it insensitive to changes in satellite/solar 

geometries, sunglint, and aerosol contamination 12. 

A predefined threshold, which is typically determined manually, is required 

before using the FAI or any other spectral wavelength/index to discriminate 

phytoplankton blooms within remote sensing images. However, the optimal threshold 

can vary considerably across space and time according to different lacustrine 
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environments and satellite observation conditions (Supplementary Fig. S2). Thus, 

determining the best image-specific thresholds for the 2.91 million images used in our 

study is practically impossible. Therefore, we developed an automatic algal bloom 

detection algorithm by introducing the color space created by the Commission 

Internationale del'éclairage (CIE, or International Commission on Illumination in 

English) in 1931 22. 

The CIE color space quantitatively defines linkages between the distributions of 

the visible spectrum and all colors perceptible by human eyes 22. The CIE color space 

allows us to numerically specify colors using a two-dimensional CIE xy chromaticity 

diagram (Extended Data Fig. 1a) instead of the traditional three red-green-blue (RGB) 

tristimulus values. In contrast, it is often challenging to characterize color similarities 

within the RGB color space, prohibiting a threshold-based approach to distinguish 

two colors. The three tristimulus values from the RGB color space can be converted 

into CIE chromaticity coordinates (x, y) using the following equations 23: 

x=X/(X+Y+Z) 

y=Y/(X+Y+Z) 

X=2.7689R+1.7517G+1.1302B 

Y=1.0000R+4.5907G+0.0601B 

Z=0.0000R+0.0565G+5.5943B 

where R, G and B represent the reflectances at red, green and blue wavelengths, 

respectively. The white point (1/3, 1/3) in the diagram represents equal energy from all 

three bands, and any point located along the horseshoe-shaped border corresponds to 

https://en.wikipedia.org/wiki/International_Commission_on_Illumination
https://en.wikipedia.org/wiki/CIE_1931_color_space#Tristimulus_values
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monochromatic light (or the spectral locus) (Extended Data Fig. 1a). With decreasing 

distance to the spectral locus from the white point, more energy is expected from the 

associated monochromatic light. After transforming the Landsat RGB surface 

reflectance data into CIE xy chromaticity coordinates (x, y), the colors of water bodies 

can be easily visualized. 

The CIE color space has been used previously by several groups to examine 

changes in water color through the combination of a Forel-Ule (FUI) color scheme 

24,25, while no efforts have been made to use this scheme for the automatic detection 

of algal blooms. A transformation from the RGB color space to the hue-saturation-

value (HSV) space has also been successfully applied to classify water bodies and 

other land cover types 26. We conducted a comparison, the results of which 

demonstrated the poorer separability of bloom pixels in the HSV color space than in 

the CIE color space (results not shown here). 

1.2 Supplementary Note 2: Validations of the algal bloom detection 

algorithm 

Three types of validations were performed to ensure the reliability of the algal 

blooms discriminated using the CIE-based algorithm: comparisons with visually 

selected samples from both Landsat images and high resolution Planet Dove images, 

high spectral solution datasets from MERIS, and a literature review. 

First, we evaluated the uncertainty of the algorithm through comparisons 

between the CIE algorithm-classified results and visually interpreted bloom-

containing and bloom-free pixels from the same images. All the validation samples 
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(41,045 bloom-containing pixels and 47,182 bloom-free pixels) were manually 

selected from Landsat images covering 22 lakes across different regions and times 

(Supplementary Table 3a). Although the data from several lakes were also used to 

develop the algorithm, we employed different images to select the validation samples. 

The bloom-containing pixels were delineated using the same method for the selection 

of training samples, and these sampled pixels were used to determine if the algorithm 

can accurately exclude false negatives (blooms detected as non-blooms); the bloom-

free pixels were selected within the same images when no greenish slicks or low FAI 

values were present, and the samples were used to evaluate whether the algorithm 

could accurately exclude false positives (non-blooms classified as blooms). The 

confusion matrix27 in Extended Data Table 1 shows that the producer and user 

accuracies of the algorithm for bloom area detection are 98.8% and 92.3%, 

respectively. Likewise, we used visually interpreted validation samples from 3-m 

resolution Planet Dove images to conduct quantitative accuracy assessments for 

bloom areas classified by Landsat-8 OLI images. Since Dove images are not available 

until December 2015, similar evaluations for preceding Landsat instruments are not 

possible. We visualized the RGB true color composite of Dove images and the 

corresponding NDVI images; greenish features with high NDVI values were 

manually delineated as bloom-containing pixels, whereas pixels with other colors and 

low NDVI values were determined as bloom-free. We randomly selected 16,564 

validation sample points (9,585 for bloom-containing and 6,979 for bloom-free, 

respectively) from 21 lakes distributed globally (Supplementary Table 3b). To 
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consider the differences in spatial resolutions between Landsat (30-m) and Dove (3-

m), we assured that the neighboring pixels around each sample point in Dove images 

are dominated by the same class as the sample (bloom-containing or bloom-free). 

These samples were then compared with the classified results from concurrent 

Landsat 8 images (i.e., images acquired within the same days as Dove), which 

resulted in high producer and user accuracies of 98.6% and 94.6% for bloom 

detection, respectively (Extended Data Table 1). In addition to these quantitative 

evaluations of the uncertainty levels, we also exported the classification results from 

the Google Earth Engine for at least 10,000 images across six continents. We exported 

both the RGB true color image and the associated bloom map to verify whether the 

bloom patterns are consistent with the features in the RGB image (see examples in 

Extended Data Fig. 1c and Supplementary Fig. S3). Such a qualitative verification 

further confirmed the fidelity of our algorithm in discriminating greenish bloom 

features in Landsat images. 

Second, we used high spectral resolution MERIS images to assess the Landsat-

detected bloom areas. MERIS has narrow bands (up to 10 nm) configured within the 

visible to NIR spectral range, making it possible to detect several diagnostic signals 

from algal blooms 3,18. One of the pronounced signals is the reflectance peak at 709 

nm, caused by high phytoplankton absorption at 675 nm and high water absorption for 

wavelengths longer than ~720 nm 10. The MCI, developed via this reflectance peak, 

can be used to highlight the bloom areas in MERIS images 10. The MCI is estimated 

as: 
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MCI = Rλ2 - [Rλ1 + (Rλ3 - Rλ1)×(λ2 - λ1)/(λ3 - λ1)] 

where λ1 to λ3 are the MERIS bands centered at 665, 709, and 754 nm, respectively. A 

modified version of the MCI (denoted as the MCIT, MCIT= MCI/(1+0.1×(Rλ3 - Rλ4)), 

λ4=865 nm) recommended by Qi et al. 28 was used here to reduce some impacts from 

water turbidity. 

MERIS images acquired concurrently with the Landsat data (i.e., with the same 

acquisition dates) were obtained, and the data cover 28 lakes across different regions 

and times (Supplementary Fig. 2). For each Landsat image, we first identified the 

bloom-containing and bloom-free pixels within the examined lake using our CIE-

based algorithm. Then, we estimated the MCIT for the corresponding MERIS image 

and compared the histograms of the MCIT for the Landsat-classified bloom-

containing and bloom-free pixels. The MCIT values for the bloom-containing pixels 

were systematically higher than those for the bloom-free pixels in all 28 examined 

lakes. 

Third, we compared the Landsat-derived bloom patterns to previously reported 

bloom outbreaks through a review of both published journal papers and gray 

literature. Bloom occurrences (BO, defined as the ratio between the number of 

detected algal blooms to the number of valid satellite observations) were estimated 

using Landsat observations spanning 38 years were carefully examined. For example, 

in the Great Lakes of North America, we found high BO in western Lake 

Erie, Saginaw Bay in Lake Huron, and Green Bay in Lake Michigan (Fig. 3); these 

https://en.wikipedia.org/wiki/Lake_Erie
https://en.wikipedia.org/wiki/Lake_Erie
https://en.wikipedia.org/wiki/Saginaw_Bay
https://en.wikipedia.org/wiki/Green_Bay_(Lake_Michigan)
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lake sections have attracted widespread concern from both the general public and the 

scientific community 29-31. Extensive studies have revealed higher risks of 

cyanobacterial blooms in northern and western Taihu Lake in China (Fig. 3), which 

agrees well with the high BO we found in these regions 4,32. In addition, vast areas of 

cyanobacterial blooms have been detected in northern Lake Winnipeg in Canada 

using satellite imagery by other groups 33,34; our results also revealed high BO (>10%) 

in most of this region (Fig. 3). In total, we carefully inspected more than 100 lakes, 

including all the lakes we used to select the training and validation samples and many 

other lakes. The results confirm that the Landsat-delineated blooms are consistent 

with either peer-reviewed literature or online news reports. We acknowledge that an 

exhaustive check of the >20,000 lakes in our study is impossible; this is also the 

reason why the results provided here represent the first comprehensive understanding 

of global lake blooms. 

We acknowledge that ideally real ground truth data should be used to ascertain 

the reliability of the Landsat-detected algal blooms using the novel CIE-based 

algorithm. However, in situ validations for satellite-delineated phytoplankton blooms 

are challenging due to the remarkable nonuniformities of algal blooms in both vertical 

and horizontal directions in the water column 35,36, strongly related to the migration 

capability of phytoplankton cells 35. The complex responses of phytoplankton 

cells/colonies to wind stress, sunlight and other lake environmental properties (such as 

water depth and temperature) make it difficult to predict their transport trajectory in 

the water column. Indeed, previous field surveys demonstrated that algal blooms often 
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show extremely patchy features. For example, concentrations of phytoplankton cell 

counts or chlorophyll a (a key indicator for phytoplankton biomass) varied by up to an 

order of magnitude between water samples collected on different sides of a research 

vessel 9. Therefore, in situ samples collected from such patchy areas are not suitable 

for validating Landsat-delineated blooms, which represent mean conditions within 

30×30-m2 boxes. The considerable diurnal changes in bloom features also add 

complexity to this task 37,38. Therefore, we believe that the methods used herein 

represent the best practices for global-scale algal bloom validation. 

The bloom detection algorithm in this study was developed by training samples 

with outbreaks of greenish algal blooms (see Extended Data Fig. 1 and 

Supplementary Table 2). As such, our algorithm may not be useful to determine algal 

blooms either without densely aggregated surface/subsurface phytoplankton biomass 

or appearing non-greenish in color. Indeed, other than the most problematic and 

widely reported summer blooms, our algorithm is capable of detecting the spring 

blooms in periodical frozen lakes when greenish bloom slicks are distinct on water 

surface 39. It is also noted that although blooms with non-greenish colors exist in 

marine (often called “red tides”) and saline lacustrine systems 40,41, they have rarely 

been found in freshwater lakes and the exclusion of such blooms is not expected to 

strongly impact the global statistics of our study. 

Algal blooms are harmful only when they produce toxins or of extremely high 

biomass 41,42; and the contents of toxins from phytoplankton blooms can vary 

substantially in both space and time, even within the same genera 43. Therefore, the 
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discrimination between harmful and non-harmful phytoplankton blooms is currently 

challenging with only satellite observations. Moreover, the determination of the 

phytoplankton species is also not possible by using their colors, and therefore 

knowledge of the phytoplankton ecology (i.e., latitudinal and seasonal distributions) is 

required to interpret what phytoplankton can be expected from the satellite-based 

algal bloom maps. 

Subsurface accumulation and surface scums of phytoplankton occur under weak 

wind conditions 18,34, where the bloom signal can be easily detected by satellite 

remote sensing. However, high wind stress tends to mix the cells/colonies from the 

surface to deeper waters, making it difficult to be detected with remotely sensed 

observations 18. Indeed, such dynamic nature of phytoplankton (e.g., cyanobacteria), 

as well as their ability to change buoyancy, are also the exact reasons why bloom 

extents detected from satellite remote sensing are currently considered more reliable 

than field measurements 1. More importantly, remote sensing appears to be the only 

technique that can be used for monitoring algal blooms at continental to global scales. 

In fact, numerous environmental programs worldwide have incorporated satellite 

products into the decision-making process, including the US Environmental 

Protection Agency, NOAA, NASA, the European Environment Agency, Chinese 

environmental protection agencies, aquaculture industry of southern Africa, etc. 

2,5,44,45. Further, satellite observations are also the only source of historical data for the 

majority of the global lakes across the planet that were not monitored in the field. 
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Satellite missions (such as MODIS, the Visible Infrared Imaging Radiometer 

Suite (VIIRS), Geostationary Ocean Color Imager (GOCI), and OLCI) with more 

frequent (daily or hourly) observations could potentially address the wind-induced 

issues by tracking short-term variability of lacustrine algal blooms. However, Landsat 

datasets provide a much finer spatial resolution, which is particularly important for 

the detection of bloom features in small lakes (as small as 0.1 km2). Moreover, the 

Landsat data archive is longer than any of the other available archives, making it 

possible to examine the changes in lacustrine environments over the past four 

decades; in contrast, the other satellites with more frequent observations are not 

available until circa 2000. In fact, we minimized the impacts of wind and other 

environmental factors on the global statistics by two procedures when establishing the 

GBD database: 1) we excluded the areas with insufficient valid observations from the 

decadal comparisons; and 2) we normalized the number of bloom images over the 

number of valid Landsat observations for BO to further minimize the associated short-

term impacts from wind (see details above). Nevertheless, satellite images with spatial 

resolutions of tens of meters are currently available from a number of satellite 

missions, such as the Sentinel series of sensors launched by the European Space 

Agency and the Gaofen series of satellites launched by China. In particular, daily 

observations with a resolution of a few meters are being acquired by commercial 

satellite systems (such as Planet Dove). We expect that the use of multiple satellite 

missions in the future can provide both high frequency (daily or even hourly) and high 
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spatial-resolution to help with ongoing monitoring of algal blooms, as well as other 

environmental monitoring programs. 
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Supplementary Figures 

Supplementary Figure S1 

Supplementary Figure S1 | Examples to show two types of disturbances affecting bloom 

detection. (a) Percentage of positive FAI occurrence (from 1982 to 2019) in the Danjiangkou 

Reservoir in China, where the water has been reported to be of high quality. The signals reflected 

from adjacent green vegetation (in either a specular or diffuse manner) off the water surface can 

lead to misclassification with the CIE-based algorithm; (b) RGB composite of a clear greenish 

karst lake (Ebinur Lake in China), which is located in an endorheic basin. The locations of 

Danjiangkou Reservoir and Ebinur Lake are shown on the left. 
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Supplementary Figure S2 
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Supplementary Figure S2 | Validation of the Landsat-delineated bloom areas using 

MERIS observations in 28 lakes. The RGB composites, FAI and bloom areas 

(classified using the CIE-based algorithm) were generated using Landsat images, and 

the MCIT was calculated using concurrent (i.e., on the same acquisition date) MERIS 

images (see Supplementary Note 2). The MCIT histograms of the bloom-containing 

(red curves) and bloom-free (black curves) pixels are shown for each image group (left 

panels). 
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Supplementary Figure S3 

 

Supplementary Figure S3 | The RGB and corresponding bloom classification maps for 12 

selected lakes distributed globally, showing the performance of the algorithm and the severity 

of algal blooms (represented as green in the right panels). 
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