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I. Characterizations of the TI sandwich heterostructure 

 

Figure S1 | RHEED patterns of the magnetic TI sandwich heterostructure (3-5-3 sample). 

(a-d) RHEED patterns of the heat-treated SrTiO3 (111) substrate (a), the bottom layer of  3QL 

Cr-doped (Bi, Sb)2Te3 (b), the middle layer of 5QL undoped (Bi, Sb)2Te3 (c), and the top layer of  

3QL Cr-doped (Bi, Sb)2Te3 (d). 

      Figure S1a shows the reflection high-energy electron diffraction (RHEED) patterns of the 

heat-treated insulating SrTiO3 (111) substrate, the clear reconstruction indicates an atomically 

flat surface, which is crucial for growing the high-quality topological insulator (TI) film. Figures 

S1b to S1d show the RHEED patterns of the bottom 3 quintuple layer (QL) Cr-doped (Bi, 

Sb)2Te3 layer, the undoped 5QL (Bi, Sb)2Te3 middle layer and the top  3QL Cr-doped (Bi, 

Sb)2Te3 layer, respectively. The sharp and streaky “1×1” patterns observed in each stage indicate 

the high-quality of our magnetic TI sandwich samples. 
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Figure S2 | TEM image and EDS mapping of the magnetic TI sandwich heterostructure (3-

5-3 sample). (a) The TEM image of a 3QL Cr-doped (Bi, Sb)2Te3/5QL (Bi, Sb)2Te3/3QL Cr-

doped (Bi, Sb)2Te3 sandwich heterostructure. The total thickness is 11QL. (b) EDS map of the Cr 

ions of the 3-5-3 sample. 

      Figure S2a shows a cross-sectional transmission electron microscope (TEM) image of a 3QL 

Cr-doped (Bi, Sb)2Te3 /5QL (Bi, Sb)2Te3 /3QL Cr-doped (Bi, Sb)2Te3 sandwich heterostructure 

(3-5-3 sample). The crystal structures of Te capping layer, the 11QL heterostructure, and the 

SrTiO3 substrate can be clearly distinguished. The corresponding energy-dispersive X-ray 

spectroscopy (EDS) mapping of Cr (Fig. S2b) shows that Cr signal is stronger in the top and the 

bottom 3QL TI layers, consistent with the diluted Cr doping (~7.5%) in these two layers. 
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Figure S3 |  Magnetic hysteresis loop of the magnetic TI sandwich heterostructure (3-5-3 

sample) measured by SQUID at T =1.8 K.  

      Figure S3 shows the magnetic hysteresis loop of the 3QL Cr-doped (Bi, Sb)2Te3/5QL (Bi, 

Sb)2Te3/3QL Cr-doped (Bi, Sb)2Te3 sandwich heterostructure (3-5-3 sample) measured by a 

superconducting quantum interference device (SQUID) based magnetometer at T =1.8 K. We did 

not see any additional steps near the coercive fields, indicating the two magnetic TI layers have 

the same coercive fields (0H).   
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Ⅱ. Determining the Curie temperature of the TI sandwich heterostructure 

 

Figure S4 | Arrott plots of the magnetic TI sandwich heterostructure (3-5-3 sample 1). The  

TC of this TI sandwich heterostructure is ~ 19 K.  

      The Curie temperature (TC) of a ferromagnetic (FM) material can be accurately determined 

by the Arrott plots. In the limit of high magnetic field (0H), the Hall resistance yx can be 

expressed in the form: yx
2 = a + b0H/yx (black dotted lines in Fig. S4), where a and b are 

constants 1. When the FM state is approached from above TC, the slope b of the 0H/yx term 

increases and the intercept a changes sign from negative (T < TC, the FM state) to positive (T > 

TC, the paramagnetic state). Figure S4 displays the Arrott plots of the 3QL Cr-doped (Bi, 

Sb)2Te3/5QL (Bi, Sb)2Te3/3QL Cr-doped (Bi, Sb)2Te3 sandwich heterostructure (labeled as 3-5-3 

sample 1). The TC of the 3-5-3 sample 1 is found to be ~ 19K. 
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Ⅲ. Additional transport results of the TI sandwich heterostructure (3-5-3 sample 1) 

 

Figure S5 | μ0H dependence of ρyx of the 3-5-3 sample 1 under different gate voltages (Vg-

Vg
0) and temperatures. (a) 60mK, (b) 100mK, (c) 200mK, (d) 400mK, (e) 600mK, and (f) 1K.  
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Figure S6 | μ0H dependence of ρxx of the 3-5-3 sample 1 under different gate voltages (Vg-

Vg
0) and temperatures. (a) 60mK, (b) 100mK, (c) 200mK, (d) 400mK, (e) 600mK, and (f) 1K. 
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Figure S7 | (Vg-Vg
0) dependence of the TH resistance yx

 of the 3-5-3 sample 1 at different 

temperatures. (a) 60mK, (b) 100mK,  (c) 200mK , (d) 400mK, (e) 600mK, and (f) 1K. (g) The 

maximum yx
max as a function of  (Vg-Vg

0) at different T.  yx
max shows a peak denoted by 

the arrows for Vg < Vg
0. 

      Figures S5 and S6 display the magnetic field μ0H dependence of the Hall resistance yx and 

the longitudinal resistance xx of the 3-5-3 sample 1. All the data shown in the main text is from 

this sample. When Vg = Vg
0 and T < 400mK, this sample exhibits the perfect quantum anomalous 

Hall (QAH) state with quantized ρyx (Fig. S5) and vanishing ρxx (Fig. S6). For Vg < Vg
0 or Vg > 

Vg
0, with increasing dissipation, ρyx decreases and ρxx increases. ρyx shows a “hump” feature, 

which has been interpreted as a signature of the topological Hall (TH) effect. This hump feature 

is more pronounced for Vg < Vg
0. We noted that ρxx shows a twin-peak feature near the coercive 

field (0Hc) for (Vg -Vg
0) = -240 V and T = 60 mK. This twin-peak feature at (Vg -Vg

0) = -240 V 

becomes more obvious with increasing T. The Vg at which ρxx shows this twin-peak feature 

extends to (Vg -Vg
0) = -80V at T  = 1K. We speculate this phenomenon is likely due to the 
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weakened magnetic proximity induced FM orders in the middle TI spacer layer. More systematic 

studies on the dip feature of ρxx near 0Hc may be interesting.  

      The method we used to estimate the TH resistance yx
TH at different T and Vg (Fig. S7a to S7f) 

is described in the main text. The yx
TH shows a maximum for Vg < Vg

0  gradually decreases with 

increasing T. A summary of  yx
TH,max as a function of (Vg - Vg

0) at all temperatures is shown in 

Fig. S7g. The ρyx
TH,max curve at each T is asymmetric between Vg<Vg

0 and Vg>Vg
0. When 60 mK 

≤ T ≤ 1 K, the ρyx
TH shows a peak as denoted by the arrows when Vg<Vg

0. This observation 

indicates the DM interaction strength is maximized when the chemical potential crosses the bulk 

valence bands. 

 

Figure S8 |  μ0H dependence of the Hall conductance σxy at T= 30 mK of the 3-5-3 sample 1 

under different gate voltages (Vg-Vg
0). (a) -220V, (b) -140V, (c) -100V, (d) 0V, (e) +70V, (f) 

+180V. Insets show the TH conductance σxy
TH deduced from the difference of σxy measured 

sweeping μ0H  upward (blue) and downward (red).   

      In order to exclude the possibility that the “hump” feature in yx is an artifact due to the large 

xx near the 0Hc regime, we convert yx into the Hall conductance σxy. We can still see the TH-

like “hump” feature in n- and p-type regimes, but Vg for the maximum σxy is changed. Figure S8 

shows 0H dependence of σxy under different Vgs, and the insets show the TH conductance σxy
TH. 

For Vg < Vg
0, σxy

TH displays the “hump” feature. We note that σxy
TH shows a maximum at (Vg -Vg

0) 

=-100V. This may imply that  (Vg -Vg
0) =-100V corresponds to the chemical potential crossing 

the bulk valence bands. For Vg = Vg
0, σxy

TH is vanishing due to the existence of the perfect QAH 

effect. At (Vg -Vg
0) = +180V, only a trace of σxy

TH is observed.  
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Figure S9 | μ0H dependence of ρyx of  3-5-3 sample 1 under (Vg -Vg
0) = -200V at T=30mK. 

      Figure S9 shows the high magnetic field Hall traces of the 3-5-3 sample 1 under (Vg -Vg
0) = -

200V at T=30mK. At low μ0H, we can clearly see the TH feature. This observation is consistent 

with the results shown in Fig. 2 of the main text. At high μ0H, the Hall trace shows negative 

slope and ρyx saturates when μ0H= 7T. Next, we will use the following simple argument to 

explain the “puzzle” why the slope of ρyx is still negative when hole carriers are introduced.  

      When the magnetic TI sample is in the QAH state,  yx is quantized (~ h/e2) independent of 

μ0H 2. According to “standard” understanding of a semiconductor, a zero slope of yx would 

suggest the carrier density of the QAH sample is infinite. But we know that the carrier density of 

the QAH sample is actually zero rather than infinite. When the magnetic TI sample deviates 

slightly from the QAH state, we know that yx is limited to h/e2. When electron carriers are 

introduced, the Hall slope is negative, so yx is unlikely to exceed h/e2. When hole carriers are 

introduced, according to the standard semiconductor theory, the Hall slope should be positive. 

However, this will make yx exceeds h/e2 when μ0H is larger than a critical value. This must not 

be the case. Therefore, all magnetic TI samples near the QAH regime must show the negative 

Hall slope.  
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      Here we give a possible reason. We know 𝜌𝑦𝑥 =
𝜎𝑥𝑦

𝜎𝑥𝑥
2+𝜎𝑥𝑦

2
, if the longitudinal conductance 

xx has a stronger dependence on μ0H near the insulating QAH regime compared to xy, μ0H 

dependence of yx will be primarily determined by the μ0H dependence behavior of xx behavior 

rather than the carrier type of the sample. Since we also observe the TH-like “hump” feature in 

Hall conductance xy (Fig. S8 and relevant discussion), the hump feature in yx should not be an 

artifact due to the μ0H dependence of xx near the 0Hc regime. 

      In addition to the TH effect in the perpendicular 0H, we have also systematically studied the 

TH effect by rotating the sample with respect to the μ0H, as shown in Fig. S10a.  We found that 

the chiral spin texture phase in the 3-5-3 sample 1 at T=2K is exceptionally stable under the 

tilting of the 0H and the “hump” feature of the TH effect survives as the 0H is tilted as much as 

º (Fig. S10b to S10i). This is much higher than the  10º in the EuO film where the 

destruction of the 2D skyrmion or other chiral spin textures is reported 3. 
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Figure S10 | Tilt angle   dependence of the TH effect for 3-5-3 sample 1 under (Vg -Vg
0) = -

220V at T=2K. (a) Schematic showing the definition of the tilt angle . (b-i) yx of the 3-5-3 

sample 1 at the different . (b)  = 0º, (c)  = 5º, (d)  = 0º, (e)  = º, (f)  = 0º, (g)  = 40º, 

(h)  = 0º, (i)  = º. Inset of (b-i): the TH resistance yx
TH with the normal Hall resistance 

yx
NH and anomalous Hall resistance yx

AH subtracted. The blue (red) curve represents the trace in 

sweeping 0H upward (downward). 
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Ⅳ. Transport results of the second 3-5-3 TI sandwich heterostructure (3-5-3 sample 2) 

 

Figure S11 | μ0H dependence of ρyx of  3-5-3 sample 2 under different gate voltages (Vg-Vg
0) 

and temperatures. (a) 30mK, (b) 60mK, (c) 200mK, (d) 400mK, (e) 600mK, and (f) 1K. 



14 
 

 

Figure S12 | μ0H dependence of ρxx of  3-5-3 sample 2 under different gate voltages (Vg-Vg
0) 

and temperatures. (a) 30mK, (b) 60mK, (c) 200mK, (d) 400mK, (e) 600mK, and (f) 1K. 
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      One sample (labeled as 3-5-3 sample 2) with the same configuration as the 3-5-3 sample 1  

was also measured to further demonstrate the observation of the concurrence of the QAH and TH 

effects. Figures S11 and S12 show μ0H dependence of ρyx and ρxx of the 3-5-3 sample 2 under 

various gate voltages (Vg-Vg
0) and temperatures between 30mK and 1K. The different Vg

0s for 

the gate scan at T=30mK as compared with other temperatures is likely a result of the low 

temperature charging effect of the SrTiO3 substrate 2, 4. 

 

Figure S13 | (Vg-Vg
0) dependence of the TH resistance yx

 of 3-5-3 sample 2 at different 

temperatures. (a) 30mK, (b)100mK, (c) 200mK, (d) 400mK, (e) 600mK, and (f) 1K. (g) The 

maximum yx
max as a function of  (Vg-Vg

0) at different T.  

      Figures S13a-S13f show the (Vg-Vg
0) dependence of the TH resistance yx

 at different 

temperature. The maximum value of  yx (i.e. yx
max)at T=30mK is ~ 445, which is about 

one-quarter of the value of  yx
max found in the 3-5-3 sample 1(Figs. 3b, S7a, and S7g). 

 yx
max becomes smaller with increasing temperatures and is much smaller at T=1K. Figure 

S13g summarizes  yx
max as a function of (Vg -Vg

0) at different temperatures. The TH effect of 

this sample shows similar gate and temperature dependences as the 3-5-3 sample 1 (Fig. S7g). 
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Ⅴ. Transport results of TI sandwich heterostructures with different sample configurations 

 

Figure S14 | μ0H dependence of ρyx of the samples with different configurations measured 

at T=500mK. (a) 1-5-1, (b) 2-5-2, (c) 3-5-3, (d) 4-5-4, and (e) 5-5-5. The right column is 

measured at Vg=Vg
0, the left one is measured at Vg = -200V. The insets show yx

TH at Vg = -200V.  
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Figure S15 | μ0H dependence of ρyx of the samples with different configurations measured 

at 500 mK. (a) 3-1-3, (b) 3-2-3, (c) 3-3-3, (d) 3-4-3, (e) 3-5-3, (f) 3-6-3, and (g) 3-7-3. The right 

column is measured at Vg=Vg
0, the left one is measured at Vg = -200V. The insets show yx

TH at 

Vg = -200V.  
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      As noted in the main text, the asymmetricpotential U in the magnetic TI sandwich sample is 

critical for the formation of the TH effect 5. In order to single out the appropriate sandwich 

heterostructure, in which the TH effect coexists with the QAH effect, we first kept the middle 

layer of (Bi, Sb)2Te3 film to be 5QL and systematically varied the thicknesses of the top and 

bottom magnetic TI layers (Fig. S14). We found the 3 QL magnetic TI layer is optimal for the 

observation of the concurrence of the QAH and TH effects. Then we kept the top and bottom Cr-

doped (Bi, Sb)2Te3 film to be 3QL and tuned the thickness of the middle undoped TI layer. We 

found the 3-5-3 configuration shows the best QAH state at Vg=Vg
0 and the TH effect appears 

when Vg is tuned away from Vg
0 (Fig. S15). 

      Figure S14 shows the μ0H dependence of ρyx at Vg=Vg
0 and Vg = -200V of the 1-5-1, 2-5-2, 3-

5-3, 4-5-4 and 5-5-5 samples. At Vg=Vg
0, ρyx of the 3-5-3 sample is found to be close to the 

quantized value at T=500mK, while ρyx of the other four samples is still much less than h/e2. 

Small ρyx in 1-5-1 and 2-5-2 samples is likely due to the weak magnetization of the thinner 

magnetic TI layers. This can also be seen from the smaller μ0Hc in these two samples. For the 4-

5-4 and 5-5-5 samples, small ρyx is possibly a result of the thick magnetic TI films inducing 

dissipative channels in the heterostructures. At Vg=-200V, where the TH effect is shown if 

applicable. Although both the 3-5-3 and 4-5-4 samples show the “hump” feature of the TH effect, 

the QAH and TH effects coexist only in the 3-5-3 sample. 

      In order to optimize the thickness of the middle undoped TI layer, we kept the top and 

bottom Cr-doped (Bi, Sb)2Te3 film to be 3QL and systematically varied the thickness of the 

middle TI layer. Figure S15 shows the μ0H dependence of ρyx at Vg=Vg
0 and Vg = -200V of the 3-

1-3, 3-2-3, 3-3-3, 3-4-3, 3-5-3, 3-6-3, and 3-7-3 samples at 500mK. At Vg=Vg
0. The ρyx of 3-5-3 

sample is close to the quantized value at T=500mK. At Vg=-200V, the 3-5-3 sample, again, 

shows the most obvious TH effect. The smaller TH effect in 3-6-3 and 3-7-3 samples are likely 

because of the existence of too many dissipative channels in the thick heterostructures, which 

weakens the role of two magnetic TI layers. We note the gating effect is much weaker in the 

thicker sandwich heterostructures. 
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Figure S16 | A control sample to exclude the possibility that the TH “hump” feature is 

induced by the superposition of two AH components with opposite signs. (a) Schematic of 

the control sample: 5QL V-(Bi, Sb)2Te3 on 3-5-3 sample heterostructure. (b-d) μ0H dependence 

of yx under Vg = -50V (b), 0V (c), 200V (d). Due to the exchange coupling between 5QL V-(Bi, 

Sb)2Te3 and the top 3QL Cr-(Bi, Sb)2Te3, the coercive field (0Hc1) of the top 3QL Cr-(Bi, 

Sb)2Te3 is enhanced. while the coercive field (0Hc2) of the bottom 3QL Cr-(Bi, Sb)2Te3 is not 

affected.  

      In order to exclude the TH effect observed in the 3-5-3 sample is a result of the superposition 

of two AH components with opposite signs 6, we carried out the following control experiment. 

We deposited 5QL V-doped (Bi,Sb)2Te3 on top of the 3-5-3 sandwich heterostructure (Fig. S16a). 

Since 0Hc of  V-doped TI is much larger than 0Hc of the Cr-doped TI 7, 8, the existence of the 

exchange coupling effect will increase the 0Hc of the top  3QL Cr-doped (Bi,Sb)2Te3 layer. This 

structure configuration favors the formation of the antiferromagnetic alignment between the top 

and bottom Cr-doped (Bi,Sb)2Te3  layers. Figures S16b to S16d show 0H dependence of yx of 

the control sample (i.e. the four-layer heterostructure) under Vg = -50V, 0V, 200V. 0Hc2  of the 

bottom 3QL Cr-(Bi, Sb)2Te3 is ~0.08T, while 0Hc1 of the top 3QL Cr-(Bi, Sb)2Te3 is ~0.25T. 

The “plateau” feature observed for 0Hc1<0H<0Hc2 demonstrates the antiparallel magnetization 

alignment between the two 3QL Cr-(Bi, Sb)2Te3 layers 8, where the TH “hump” feature 

disappears rather than being enhanced. This control experiment confirms that the TH effect 

observed in the 3-5-3 sample is not a result of the superposition of two AH components with 

opposite signs, as discussed in Ref. 6. 
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Ⅵ. Theoretical calculations for the spin susceptibility in magnetic TI 

      In the main text and the “Theoretical calculations” of Method Section, we have introduced 

our model Hamiltonian including both the bulk quantum well (QW) states ( 𝐻𝑄𝑊 ) and the 

topological surface states (SS) (𝐻𝑆𝑆). Both states are coupled to the sample magnetization M 

through the Zeeman type of coupling 𝐻𝑍𝑒𝑒𝑚𝑎𝑛 = −𝐽𝐻𝑴 ⋅ 𝝈 . We note that 𝐻𝑄𝑊  and 𝐻𝑆𝑆 are 

actually related to each other by a unitary transformation. Using the unitary transformation 𝑇 =

(𝜎𝑧 + 𝜎𝑥)/√2, the 𝐻𝑆𝑆 can be rotated to the same form as the 𝐻𝑄𝑊, as 𝑇+𝐻𝑆𝑆𝑇 = 𝑣𝐹(𝑘𝑦𝜎𝑥 −

𝑘𝑥𝜎𝑦)𝜏𝑥 + 𝑈𝜏𝑥 + 𝑚0𝜎𝑧 and   𝑇+𝐻𝑍𝑒𝑒𝑚𝑎𝑛𝑇 = 𝑴+ ⋅ 𝝈 + 𝑴− ⋅ 𝝈𝜏𝑥 , where 𝑴± = (𝑴𝑡 ± 𝑴𝑏)/2 . 

As the overall spin chirality is concerned here, only 𝑴+ is considered, so the Zeeman coupling 

on the SS is 𝐻𝑍𝑒𝑒𝑚𝑎𝑛
𝑆𝑆 = −𝐽𝐻𝑴+ ⋅ 𝝈, while that on QW states are simply 𝐻𝑍𝑒𝑒𝑚𝑎𝑛

𝑄𝑊 = −𝐽𝐻𝑴 ⋅ 𝝈. 

We will use the rotated basis for SS in the following calculations. 

 

Figure S17 | Comparison between diagonal and off-diagonal susceptibilities. 𝜒𝑥𝑥, 𝜒𝑧𝑧, and 

𝜒𝑥𝑧 for (a) topological SSs and (b) bulk QW states. The chemical potential  is at 0.02eV.       

      Next, we will present a systematic study on the spin susceptibility χαβ (α, β = x, y, z) through 

the linear response theory 𝜒𝛼𝛽(𝒒) =
𝑇

2𝑉
Tr[𝐺0(𝒒 + 𝒌, 𝑖𝜔𝑚)Γ𝛼𝐺0(𝒌, 𝑖𝜔𝑚)Γ𝛽] , where 𝐺0  is the 

unperturbed Green’s function, and the spin operator 𝚪 is 𝚪 = −𝐽𝐻𝝈. Using Matsubara frequency 

summation, the spin susceptibility 𝜒𝛼𝛽 can be given by  

𝜒𝛼𝛽 =
1

2
∫ 𝑑2𝑘 ∑

𝑓𝑚(𝒌)−𝑓𝑛(𝒌+𝒒)

𝑖𝜔+𝜀𝑚(𝒌)−𝜀𝑛(𝒌+𝒒)
Tr[𝑃𝑚(𝒌 + 𝒒)Γ𝛼𝑃𝑛(𝒌)Γ𝛽]𝑚,𝑛                                (S1) 

where m, n are band indices,  𝑓 = 1/[1 + exp(𝜀 − 𝜇)/𝑘𝐵𝑇] is the Fermi-Dirac distribution, and 

𝑃𝑚(𝒌) is the projection operator. 𝜔 is chosen to be a small number representing a tiny scattering 

rate responsible for the potential disorder effect. In our calculations, the temperature is T=3meV 
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and 𝜔 = 1meV without loss of generality. Both the diagonal part (e.g. Heisenberg interaction) 

and off-diagonal part (e.g. DM interaction) of spin susceptibility are studied. We find generally 

the diagonal part is dominated over the off-diagonal part. In particular, we can see from Fig. S17 

that χzz(q) is the largest one, thus suggesting that the system favors out-of-plane ferromagnetism, 

which is consistent with our experiment. Perpendicular magnetic anisotropy is usually present in 

such systems with strong spin-orbit coupling 2, 4. 

 

Figure S18 | Linearity between off-diagonal susceptibility and momentum. The 

susceptibility 𝜒𝑥𝑧  as a function of momentum 𝑘𝑥  at different chemical potentials for (a) 

topological SSs and (b) bulk QW states. Linear relations are almost respected at small momenta. 

      As the spin interaction energy is 𝐸 = ∑ 𝜒𝑖𝑗(𝒒)𝑆𝑖(−𝒒)𝑆𝑗(𝒒)𝑞 , the off-diagonal part of spin 

susceptibility responses for the DM interaction and thus is essential for the formation of chiral 

magnetic domain wall during the magnetic transition. As the system breaks mirror symmetry 

with respect to xy-plane, 𝜒𝑥𝑦 = 0 . The electron Hamiltonian 𝐻𝑄𝑊  or 𝐻𝑆𝑆  respects mirror 

symmetry with respect to 𝑥𝑧- and 𝑦𝑧-planes, the off-diagonal components have the property  

𝜒𝑥𝑧(𝑞𝑦 = 0) = 0 and 𝜒𝑦𝑧(𝑞𝑥 = 0) = 0. That means the DM interaction is in the Néel type, 

consistent with the Moriya rule 9. Here we focus on 𝜒𝑥𝑧  for example, and its momentum 

dependence is shown in Fig. S18. 𝜒𝑦𝑧 can directly be related to 𝜒𝑥𝑧 through an in-plane rotation 

due to the full rotation symmetry in the Hamiltonian of the current model. 𝜒𝑥𝑧 is clearly an odd 

function of 𝑞𝑥 , and linearly proportional to 𝑞𝑥  at small momenta. We choose 𝑞𝑥 = 0.005Å−1 

throughout the manuscript. Although nonlinear effects coming from 𝑞𝑥
3 begins to take place at 

𝜇 ≤  −0.02eV  for QW states, all qualitative results presented are unchanged. Under this 

momentum choice, the energy dependence of 𝜒𝑥𝑧 has been shown in Fig.4 of the main text for 

different asymmetric potential U. We have further checked the contribution from intra-band 
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coupling (i.e. 𝑚 = 𝑛 in Eq. S1) and inter-band coupling (i.e. 𝑚 ≠ 𝑛 in Eq. S1). We found both 

contributions are significant, which account for finite susceptibility even when the chemical 

potential  locates within the gap (Fig. S19). 

 

Figure S19 | Separating the intra- and inter-band contributions to 𝝌𝒙𝒛. Both intraband and 

interband couplings are separated from the total 𝜒𝑥𝑧 in cases of (a) topological SSs and (b) bulk 

QW states. 

      Since both the asymmetric potential U and the chemical potential  are changed with tuning 

the gate voltage Vg in the real experiment, we calculated the spin chirality 𝑄 as a function of both 

U and   In the adiabatic regime, the TH resistance TH is proportional to Q, which is quadratic 

in spin susceptibility 𝜒𝑥𝑧  (i.e. 𝑄~𝜒𝑥𝑧
2 ). Therefore, we plotted 𝜒𝑥𝑧

2  to represent Q as a function of 

both U and  in a 3D plot (Fig. S20a). The spin chirality 𝑄 shows two peaks in the hole doping 

regime (i.e.  <0) when |U| is greater than 0.01eV. At fixed , 𝑄 is symmetric between positive 

and negative U and Q = 0 at U = 0, where the inversion symmetry is preserved. Fig. S20b is the 

2D color contour plot of Fig. S20a. The perfect QAH effect can be realized in the region 

between two black dashed lines. In order to compare our experimental data (Fig. 3b of the main 

text) with our theoretical calculation, we made a simple approximation that both U and  are 

linear in Vg. In other words, the Vg dependence of U and  in our experiment is a straight line in 

Fig. S20b and the slope of this line characterizes the efficiency of Vg in tuning U and .  

      Figures S20c to S20j show plots of Q vs µ (or Q vs U) along lines 1-8 shown in Fig. S20b. 

Lines 1-4 have larger slopes, suggesting  is more efficiently tuned than U. The corresponding Q 

vs  plots are shown in Figs. S20c to S20f. In this case, the strong asymmetric profile of 𝑄 with 

changing Vg comes from the asymmetry between bulk conduction and valence bands, as 

discussed in our manuscript. When  is tuned into the magnetization gap the samples show the 
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perfect QAH effect (light red shadow area). When the slope of the line is reduced, tuning Vg 

becomes more efficient in changing U and Q decreases monotonically from the hole to electron 

doping regimes (Fig. S20f).  

 

Figure S20 | The calculated spin chirality Q as a function of the chemical potential  and 

the asymmetric potential U.  (a,b) 3D and 2D contour plots of  Q as a function of both U and . 

(c-j) Q vs  (or Q vs U) plots along lines 1-8 shown in (b). The light red shadow area in (c-i) 

corresponds to the perfect QAH regime.  

      For lines 5-8 in Fig. S20b with smaller slopes, U is more efficiently tuned instead. As shown 

in Figs. S20g to S20j, 𝑄  becomes progressively more symmetric as the slope goes towards zero 

(the zero slope means that the gate voltage only tunes U and  remains unchanged). As noted 

above,  𝑄  = 0 when U = 0. This minimum is different from the shallow dip due to the 

magnetization gap (i.e the perfect QAH regime) in Fig. S20c and S20d. This minimum moves 
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away from the perfect QAH regime (light red shadow area) when the slope becomes smaller. 

Obviously, this is inconsistent with our experimental data. In addition, 𝑄  increases 

monotonically when applying a larger Vg, which is distinctly different from our experiment 

where the TH effect vanishes under a large positive Vg (Fig. 3b). Given the large asymmetric 

behaviors of TH effect and the vanishing of TH effect at large positive Vg observed in our 

experiment, we concluded that our system should be in the lines 1-4 region where  plays the 

dominant role.  
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Ⅶ.  Simulation of the quantum transport through a single chiral magnetic domain wall in 

magnetic TI 

      The aim of this section is to explicitly simulate the quantum transport behavior through a 

single chiral magnetic domain wall in the QAH-TH effect crossover regime with the magnetic TI 

model by combining the numerical methods of Landauer-Buttiker formalism and iterative Green 

function methods 10. In particular, we will explicitly demonstrate that in the QAH regime, the TH 

effect will vanish even in the presence of a chiral magnetic domain wall simply because there are 

no bulk carriers and the current flows only through the chiral edge channel. We choose the 

model Hamiltonian 𝐻𝑄𝑊 described in the “Theoretical calculations” of Method Section, which 

can describe both the bulk QW state and the topological SS (with a unitary transformation as 

shown in Section Ⅵ above). To simulate the transport behavior, we first perform a tight-binding 

regularization on this model and obtain the lattice Hamiltonian given by 

𝐻𝑖𝑗 = 𝑐𝑖𝑗
+ℎ𝑖𝑗𝑐𝑖𝑗 + (𝑐𝑖,𝑗+1

+ 𝑡𝑦+𝑐𝑖𝑗 + 𝑐𝑖+1,𝑗
+ 𝑡𝑥+𝑐𝑖𝑗 + ℎ. 𝑐. ) 

where 

ℎ𝑖𝑗 = (𝐶0 + 4𝐶1 𝑎2⁄  ) + (𝑁0 + 4𝑁2 𝑎2⁄  )𝜏𝑧 + 𝑈𝜏𝑥 − 𝑴(𝑖, 𝑗) ⋅ 𝝈, 

𝑡𝑦+ = − 𝐶1 𝑎2⁄ 𝜎0𝜏𝑧 + 𝑖𝐴 2𝑎⁄ 𝜎𝑥𝜏𝑥, 

𝑡𝑥+ = − 𝐶1 𝑎2⁄ 𝜎0𝜏𝑧 + 𝑖𝐴 2𝑎⁄ 𝜎𝑦𝜏𝑥 

Here we choose the basis {+↑, +↓, −↑, −↓}. The 𝐴 term describes spin-orbit coupling, the 𝑈 term 

describes the asymmetric potential and 𝑴 is the magnetization texture, as a function of spatial 

coordinates (𝑖, 𝑗). 

        The form of a single chiral magnetic domain wall is simulated by choosing 𝑴(𝑖, 𝑗) =

𝑚0{sin 𝜃 cos 𝜙 , sin 𝜃 sin 𝜙 , cos 𝜃}, where 𝜃 = 𝜋 tanh(
𝜌−𝑑𝑖𝑛

𝑑𝑤
) labels the magnetization direction 

forming a chiral magnetic domain wall with chirality +1. 𝑑𝑖𝑛 and 𝑑𝑤 ≡ 𝑑𝑜𝑢𝑡 − 𝑑𝑖𝑛 are the inner 

radius and the width of the domain, respectively. 𝜌 and 𝜙 are the polar coordinates of the site at 

position (𝑖, 𝑗). The whole system in the simulation is chosen to be a square shape with the length 

L. Four semi-infinite leads with the same ferromagnetic Hamiltonian are attached on the sides of 

the system for transport measurement.  A schematic configuration of the lattice model is shown 

in Fig. S21a.  
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Figure S21 | Schematic configuration of the simulation. (a) The representation of a chiral 

domain wall in the lattice model. Red and blue sites represent the orientation of magnetization 

with spin up and spin down, respectively. The outer radius, inner radius, and width of the domain 

wall are marked with dout, din and dw on the graph. The orange stripes represent leads attached 

to the system. (b) The energy spectrum of a ferromagnetic ribbon with the parameters used in the 

simulation. The transition region from the hole-doped region to QAH is marked with shade. 

      Since the purpose of this simulation is to qualitatively demonstrate the transport behavior in 

the QAH-TH effect crossover regime, we choose the parameters of the tight-binding model as 

𝐶0 = 0, 𝐶1 = 𝑁2 = 𝑎 = 1, 𝑚0 = 4 3⁄ , 𝑑𝑖𝑛 = 6, 𝑑𝑜𝑢𝑡 = 32, 𝐴𝑘 = 2, U = 0.5, 𝑁0 = −0.8  and 𝐿 =

80  for the convenience of the numerical simulation. Within this set of parameters, the 

background is in the QAH state with magnetic moments ferromagnetically aligned. We can 

further introduce a chiral magnetic domain wall on the ferromagnetic background and extract the 

TH conductance by comparing the Hall conductance in these two cases. We first show the 

energy dispersion for a ribbon of background ferromagnetic configuration in Fig. S21b, in which 

chiral edge modes appear inside the bulk band gap. Thus, our system is qualitatively equivalent 

to the regime that we hope to study in real experimental systems. The blue curve in Fig. S22a 

shows the Hall conductance 𝜎𝑦𝑥
𝐷𝑊as a function of the chemical potential tuned from the charge 

neutral regime to hole-doping regime for the case with a single chiral domain wall. To extract the 

TH contribution, we also evaluated the Hall conductance in the ferromagnetic case as a 

background Hall resistance (𝜎𝑦𝑥
𝐹𝑀 , red curve in Fig. S22a). We define the TH conductance 

(shown in Fig. S22b) as 𝜎𝑦𝑥
𝑇𝐻 = 𝜎𝑦𝑥

𝐷𝑊 − 𝜎𝑦𝑥
𝐹𝑀 , similar to that defined in experiments. From Fig.  
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Figure S22 | The extraction of TH conductance. (a) Calculated Hall conductance signals for a 

Chiral Domain Wall system (blue) and a ferromagnetic system (red) used as background, in the 

transition region from hole-doped bulk to QAH region. (b) The extracted TH conductance by 

𝜎𝑦𝑥
𝑇𝐻 = 𝜎𝑦𝑥

𝐷𝑊 − 𝜎𝑦𝑥
𝐹𝑀 . The TH conductance is 0 within the gapped region and increases in the bulk. 

S22a, one can see that the Hall conductance 𝜎𝑦𝑥
𝐷𝑊 keeps quantized when the Fermi energy lies 

inside the bulk gap for both the ferromagnetic case and chiral domain wall case, thus leading to a 

zero TH conductance 𝜎𝑦𝑥
𝑇𝐻 in this regime as shown in Fig. S22b. When the Fermi energy is tuned 

to the hole-doping regime, the Hall conductance 𝜎𝑦𝑥
𝐷𝑊 increases rapidly when the chiral domain 

wall is present while the intrinsic anomalous Hall conductance increases first and then saturates 

to a certain value with decreasing the Fermi energy. As a consequence, we see a rapid increase of 

TH conductance 𝜎𝑦𝑥
𝑇𝐻 in the hole-doping regime, as indicated by the shaded region in Fig. S21b. 

Therefore, this simulation qualitatively justifies our claim that the TH effect vanishes in the 

QAH regime since the transport is due to the chiral edge state which is not affected by the 

presence of chiral domain walls. It should be pointed out that this simulation here is not for 
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quantitative comparison and the obtained TH conductance is of magnitudes larger than that 

observed in experiments for the following two reasons. (i) The simulation here is in the ballistic 

transport regime without any disorder while the disorder is inevitable in real samples. In our 

previous work, we have already shown that disorder can significantly reduce the TH conductance 

due to the reduction of the mean free path 11. (ii) Due to the finite size of the lattice in our 

simulation, we expect that the chirality density induced by the chiral domain walls in our 

simulation is much larger than that in real experiments. The finite-size effect of the transport also 

responses for the fluctuation of the Hall conductance seen in the simulation (See Fig. S22a and 

S22b).  
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