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S1. The Wiedemann Franz Law in semi-classical and extreme-quantum limits 

 

 The Wiedemann-Franz law (WFL) is a statement about the ratio of the longitudinal 

thermal conductivity /T to the longitudinal electrical conductivity , quantified by the Lorenz 

ratio L T

 . In a free-electron metal, 
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 

(L0 = 2.4  10-8(V/K)2), if the 

scattering time of electrons in electrical and thermal conductivity are identical. There are two 

aspects of violation of the WFL, corresponding to two questions. (1) Is the Lorenz ratio L 

temperature dependent? (2) Is its value equal to the free-electron value L0? We discuss these 

questions in the semi-classical and extreme-quantum limits (EQL) of a Weyl semimetal in an 

external magnetic field, and consider the case of ambipolar thermal conductivity, which can 

become important in semimetals and intrinsic semiconductors. 

 From Onsager's generalized transport equations, the flux vectors of charge (Je) and heat 

(JQ) are related to the electric field (E) and temperature gradient by: 

 
0

e

Q T T

    
        

σ α EJ

α κJ
         (S1.1) 

where , , and o are the electrical conductivity, thermoelectric conductivity, and thermal 

conductivity tensors, respectively. With the electric field and thermal gradient applied along the z 

direction, and upon imposing the boundary condition that no current flows in or out of the 

sample,  0 e
z zz z zz zJ E T     , we obtain an induced thermoelectric field 

 ind zz
z z

zz
E T


    
 

 in the opposite direction of the thermal gradient to prevent the electric 
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current flow. The quantity zz

zz
S 


   
 

 is the Seebeck coefficient. The total open-circuit 

thermal conductivity then is given by: 

  
2

2
,0 ,0

Q
z zz

zz zz zz
zzz

J T S T
T

              (S1.2) 

as reported in the main text. Here, the first two indices indicate the direction of the applied field 

and the induced current. The second term in Eq. (S1.2) is the ambipolar thermal conductivity 

2
A S T  . We see that the WFL can be violated if: (a) S or zz is finite because the WFL holds 

only for zz,0; in this case, L>L0; or (b) S = 0 or zz = 0, but different scattering mechanisms limit 

 (often dominated by inelastic scattering, which is temperature dependent) and  (often 

dominated by momentum or elastic scattering). This gives L<L0. In classical materials, L ranges1 

from 0.5 to 2.6  10-8 (V/K)2, or slightly more for semimetals.  

 From the Boltzmann equation, we obtain the longitudinal magneto-thermal zz,z, 

magneto-electrical zz,z, and magneto-thermoelectrical zz,z conductivities2,3 (here, the third index 

is the direction of the applied magnetic field), given by: 
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    (S1.3) 

where  is the chemical potential and   1

( , ) 1 eD


   B Ω B Ω  arises due to the modification 

of the phase space in an external magnetic field. Eq. (S1.3) is written assuming that the same 



4 
 

relaxation time  governs the thermal and electrical conductivity. Further, we assume that -1 is 

the inter-Weyl-point scattering probability. 

 We show below that in an ideal WSM with the chemical potential at the Weyl points (= 

0) in the EQL, zz= 0 and the WFL holds with the free-electron Lorenz number L = L0. In the 

semi-classical regime at B=0, on the other hand, the Lorenz number for = 0 is different from the 

free-electron value: L > L0 at temperatures below the band width of the Weyl bands. With 

increasing T, due to contributions from non-linear parts of the electronic structure, the Lorentz 

ratio decreases towards L0. Further, at low T if   0, the Lorenz ratio L shows a linear B 

dependence only in the semi-classical regime, arising from a non-zero Seebeck coefficient and 

ambipolar thermal conductivity that depends linearly on the magnetic field, which leads to a 

violation of the WFL. 

 

(1) Extreme-quantum limit: 

 In the EQL, the energy dispersion for the nth Landau level is given by: 

 
2 22 | | , 0

( )
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B z
n z

z

v n k n
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



   


 


        (S1.4) 

where /B eB   is the magnetic length, v is the Fermi velocity, and  is the chirality of the 

Weyl node. This implies that the n = 0 Landau level disperses in opposite directions at the two 

nodes. The density of states for the n = 0 Landau level is given by: 
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k

 
D      (S1.5) 

using which we obtain the following results for the transport coefficients in the EQL at  = 0: 
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with: 

 0

1

1,                                 0

0,                             odd   

2 ( ) ( )(1 2 ),      0, even

m
m

m

m
f

I x dx m
x

m m m m m







            

    (S1.7). 

Here  0,1,2,...m , the number of Weyl points is Nw, the velocity along the z-axis is 

z
z

v vk
 

k
 , the reduced energy scale is   / Bx k T   , the Fermi-Dirac distribution is 

  1

0 1 exp( )f x
  , the gamma function is (m), and the Riemann-zeta function is (m). In this 

regime, we find that the WFL holds for the chiral n = 0 Landau level: 

 
2 22

2
0

0 3
B Bk kIL LIe e

              
       (S1.8). 

When chemical potential is set at the energy of Weyl points ( = 0), , S, and thus, the ambipolar 

thermal conductivity vanish identically. 

 Note that when the inelastic scattering time of electrons that enters the thermal 

conductivity iseff such that 1 1 1
eff       , where  is the inelastic scattering time, the Lorenz 

ratio is reduced by the ratio4 eff
 , and L<L0. 

(2) The semi-classical regime: 
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 At B = 0 and for a linear dispersion: 

 | |Wv   k k k           (S1.9) 

around the Weyl nodes at Wk , we obtain the density of states: 
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D                    (S1.10). 

 Assuming an energy-independent scattering time , we obtain at  = 0 
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We find that the Lorentz ratio then is given by: 

 
2 22

4

2

7

5
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             
                 (S1.12). 

Thus, in an ideal Weyl semimetal at zero field, the Lorenz ratio is a constant, but deviates from 

the free-electron value; however, in the EQL, it recovers the free-electron value. 

 These conclusions are based on the fact that the Fermi integrals can be solved analytically 

in the cases discussed. This is unlike the case of the factor 2/3 that shows up in the Mott relation 

for the thermopower of degenerate semiconductors and metals; there, it is the result of a Bethe-

Sommerfeld expansion. 
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S2. The modified virtual crystal approximation model used to calculate the g-tensors, and 

experimental validation. 

The evolution of Bi1-xSbx alloys shown in Fig. 1 of the main text is based on calculations 

made using the tight-binding (TB) model. As explained in Fig. 1, in zero magnetic field, Bi1-xSbx 

alloys are conventional semimetals for x < 7.7 at.% and become topological insulators (TI) for 

x > 8.8 at.%. In a trigonal magnetic field Hz // <001>, the direct band gap at the L-point of the 

Brillouin Zone (BZ) is calculated first to close with Hz, then invert at high values of Hz, forming 

a Weyl semimetal (WSM). Here, we outline the TB model used to calculate the band closing and 

then validate it experimentally using magnetic-field-dependent Hall data on the TI regime. 

The TB Hamiltonian of Ref. [5] predicts band parameters, electronic structure, and 

effective masses correctly. However, interpolating these TB parameters linearly in a virtual 

crystal approximation (VCA) for a Bi-Sb alloy such as  

( ) (1 ) ( ) ( )Alloy Bi SbV lmn x V lmn xV lmn= - +            (S2.1) 

does not produce the correct ordering and behavior of the band edges at the L- and T-points. As 

shown in Fig. S2(a), the linear VCA results in a band crossing of L-points at an antimony 

concentration of ~ 3% without a band inversion. In this model, an incorrect inversion occurs at a 

composition that is beyond the semimetal-semiconductor transition. Ref. [6] describes another 

approach to overcome this discrepancy with an alternative VCA:  

 2( ) (1 ) ( ) ( )alloy Bi SbV lmn x V lmn xV lmn= - +       (S2.2). 
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Parameter (eV) Parameter (eV) 
αssσ,1 3 αssσ,2 -3 
αspσ,1 0.06 αspσ,2 0.06 
αppσ,1 -0.015 αppσ,2 0.015
αppπ,1 0.08 αppπ,2 -0.08 
α0 0.6   
Table S2.1 VCA parameters of BiSb alloys: 
α0 is for on-site energies and subscripts 1 and 
2 indicate first- and second-nearest neighbors. 

This approach correctly 

describes the band 

inversion between La and 

Ls. However, it cannot 

reproduce the correct 

compositions at which 

band crossings are located, 

or the experimentally 

known band gaps occurring 

at certain concentrations, as 

shown in Fig S2.1(b). Here, 

we propose a non-linear 

empirical VCA:  

 ( ) (1 ) ( ) ( ) (1 ) ( )alloy Bi SbV lmn x V lmn xV lmn x x lmn= - + + -     (S2.3), 

and find the values of the α fitting parameters for each TB parameter fitting the experimental 

measurements. The lattice parameters of the 

BiSb alloys are shown to follow the Vegard’s 

rule up to 30%.7,8 As such, the structural 

parameters, such as lattice constants, atomic 

distances, relative positions of the two basis 

atoms in the conventional hexagonal cell, and primitive and reciprocal lattice vectors, are 

modified with a linear VCA. We also use a linear VCA for spin-orbit couplings and the third-

nearest-neighbor overlap integrals, which do not affect the band structure significantly. We 

 

Figure S2.1 Modification of conduction and valence band edges based 
on the antimony concentration (a) using a linear VCA, (b) using VCA 
from Ref. [5], and (c) empirical VCA of this work. 
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observe that changing the first- and second-nearest-neighbor parameters results in reordering of 

the bands that originate from ssσ, ppσ, and ppπ orbitals, but not of the spσ ones. Furthermore, we 

observe that different TB parameters have different effects on the band structure evolution. For 

instance, sigma bonds (ssσ and ppσ) shift the concentration of x at which Ls and La bands 

intersect, whereas the slope of the T-band is affected mostly by a change in pi bonds (ppπ). 

Moreover, the slopes of the Ls- and La-bands depend on the sigma bonds between s- and p-

orbitals (spσ). We report the parameters of the nonlinear empirical VCA in Table S2. The band 

structure resulting from this VCA indicates that the band gap at 5% Sb is 3 meV, and the band 

gap at 12% Sb is 15 meV as shown in Fig. S2 (c). The intersection between La and Ls, between 

La and T, and between Ls and T are located at 6%, 7.7%, and 8.6% respectively.9  

Following the calculation of the band edges with our new VCA, we compute g-tensors 

and the modification of the bands under an external magnetic field. The energy spectrum of the 

bands from 9 to12 (the two highest valence and two lowest conduction bands) is given in Fig. 

S2.2. The bandwidth (the overlap between the bands) is EBW = 35 meV at 7.5 T for x=10.5%. In 

slightly different concentrations ranging from 10.5% to 15.1%, we observe that the bandwidth 

varies between 35 meV and 19 meV. The sensitivity of the energy overlap to the Sb content is 

then the same as that of the direct L-point gap, of order of dEBW/dx  3 meV per 1% of Sb in the 

alloy, assuming that the g factor is not very field dependent and the band edge energies vary 

(eV)

Figure S2.2. Energy separation spectrum of the 10th and 11th bands of Bi89Sb11 at a magnetic field 

of Hz = 7.5 T, corresponding to a Zeeman energy of 35zB   meV applied along the trigonal axis.  
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linearly with x. Consequently, the bandwidth is calculated to be EBW = 20 meV at 7.5 T for 

x=15.1%. The calculated Fermi velocity is vF = 4.0x105 m/s at 5 T and 5.0 x105 m/s at 8 T.   

We can check qualitatively the closing of the direct energy gap at L-point in the 

magnetic-field range where Bi89Sb11 is a semiconductor by measuring the magnetic-field-

dependent Hall concentration as a function of temperature. For Hall resistivity, we use the 

notation xy(Hz), where x is the index of the direction of 

the voltage measured, y is the direction of the applied 

current, and z is the direction of the applied magnetic 

field. Here, we measure xy(Hz) with x along the binary 

direction [100], y along the bisectrix direction [010], and 

z along the trigonal direction [001]. This approach only 

holds when the Hall effect measurement correctly 

represents the excess carrier concentration, the 

difference between the density of electrons and that of 

holes, i.e., when 

1
( , )

( )z
xy z

z

n T H
d H

e dH



 
 
 

 (S2.4).  

This approach does not hold when the Hall effect 

becomes dominated by multi-carrier effects,10 which 

occurs in the presence of both electrons and holes in 

near-equal concentrations. Here, this is the case either in 

the semimetallic regime at higher magnetic fields, or 
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Figure S2.3 Bi89Sb11 Hall carrier 
concentration and activation energy. 
(top) n(T,Hz) measured at the indicated 
Hz values plotted versus the inverse 
temperature. (bottom) Field 
dependence of the thermal activation 
energy Ea of n(T,Hz) between 60 and 
100 K. The Hall effect at higher 
magnetic fields does not reflect n 
accurately, resulting in a positive 
curvature above 0.3 T. 
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once the temperature is high enough that the material is a semiconductor with thermally excited 

intrinsic electrons and holes. This becomes the case at fields above about 0.5 T and when Eg(Hz) 

< kBT. Measurements of xy(Hz) at 0HZ < 0.047 T are used with Eq. (S2.4) to calculate the 

concentrations and mobilities shown in Fig. 2 and reported in Table 1. Here, in contrast, values 

for n(T,Hz) derived from Eq. (S2.4) at various values of Hz are plotted versus 1/T in Fig. S2.3 

(top). An Arrhenius function 

 ( )/
0( , ) ( ) a z BE H k T

z zn T H n H e          (S2.5) 

can be fit through the data between 60 and 100 K, giving a field-dependent value for the thermal 

activation energy Ea(Hz). The resulting values are shown in Fig. S2.3 (bottom), which displays a 

clear decrease in Ea with field Hz. The band calculations predict Ea, which is related to Eg, to 

decrease linearly with Hz since the gap closing is due to a Zeeman energy term. While the 

decrease is observed, the linearity with Hz is not. This is because with increasing Hz, the Hall 

data include more multi-carrier effects10 and Eq. (S2.4) becomes less accurate. Nevertheless, Fig. 

S2.3 shows that the gap closes with Hz.
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S3. The Berry curvature calculation, the Fukui method, and the location of Weyl points in 

the Brillouin Zone. 

The Berry curvature, ( ) ( )n k nΩ k A k=Ñ ´ , is a gauge-invariant geometrical quantity 

that can be obtained from the Berry connection ( ) ( )( ) | |n ki n n= ÑA k k k , the analog of the 

electromagnetic vector potential. The two Weyl points (WP) each carry the Berry curvature of a 

monopole ( ) 3k=Ω k k  with opposite chirality of 1 =± . The Chern number is obtained by 

integrating the Berry curvature, n nd ( ) = ×ò S Ω k , over a closed surface, the BZ, and is related to 

the Berry phase n  through the relation / 2n nc  = . A numerical calculation of the Chern 

numbers is carried starting from a multiplet of wave vectors ( )1 10| ,...,|n n = , eigenfunctions 

of H. The Berry curvature F  is calculated following Ref. [11] and using their notation to make 

the distinction between the discretized F  and the Berry curvature  in continuum. The Chern 

number 
~ ~

1
n 1 lc (2 i) F(k ) -= å  of nth band is determined from F ,and the total Chern number is 

obtained by summing the Chern numbers of all filled bands up to n=10. Numerically, this is done 

by integrating F in the (G1,G2) plane (Fig. 1(k), main text) while sweeping along the G1 axis. An 

integer change in the Chern number, which constitutes the evidence for a change of the topology 

and existence of the WPs, is detected in a pair of points separated symmetrically near each L-

point in the 3D BZ (Fig. S3.1). WPs are located by determining the locations of the Berry 

curvature monopoles and nodes with opposite chirality 1 =± ; their position is given 

schematically in Fig. 1(j) (main text) and precisely hereunder. To find the monopoles of Berry 

curvature, i.e. the WPs, we must determine the distribution of Berry curvature in k-space. This is 

done most efficiently using the Fukui11 numerical method described in the following steps:  
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(1) We use as a reference frame the reciprocal lattice vectors 1 2 3( , , )=G G G G  along the 

-L lines shown in Fig. 2(k) (main text). We fix the fraction along the direction 3 3 3k- ×G G  

where 3 [0,1]k Î  and discretize the 2D BZ spanned by reciprocal lattice vectors 1 2( )´G G  into 

small 1 2 ´G G patches, where {kl} are the k-points.  

(2) Next, we calculate the Berry flux through each small patch as 

 ( ) ( ) ( ) ( )1 1
1 2 1 1 2 2( ) lnl l l l lF U U U U - -= + +k k k G k G k  (S3.1)  

where Ui(kl) is a link variable, which gives the phase acquired by the wave function of the nth 

band as an electron moves from lk  to l ik G+  given by: (index i = 1,2)  

 ( ) ( ) ( )
( ) ( )

†

†

det

| det |
l l i

i l
l l i

U
  
  

k k G
k

k k G

+
=

+
 (S3.2) 

 (3) Finally, we compute the sum of the Berry flux through each patch to obtain the lattice 

Chern number for the nth band: 1
1(2 ) ( )n lc i F -= å k .  

The WPs are centered around the L-points of the BZ. The separation found from the 

Berry curvature plot (see Fig. 1(k) in the main text and Fig. S2.2), is mainly along field direction 

(z), with a minor contribution along the Γ−𝐿 direction. The coordinates for the separation (1/2 on 

either side of each L-point) at Hz = 8 T for the upper half of the BZ are: (0.678, 0.520, 0.520), 

(0.520, 0.678, 0.520), (0.520, 0.520, 0.678), in the G(G1, G2, G3) axis system, where (0, 0, 0) is 

the -point and (0.5, 0, 0) is the L-point along G1. 
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Figure S3.1: Calculated Berry curvature distribution in the G axes system. The coordinates for 
the separation (1/2 on either side of each L-point) at Hz = 8 T for the upper half of the BZ are: (0.678, 
0.520, 0.520), (0.520, 0.678, 0.520), (0.520, 0.520, 0.678), in the G(G1, G2, G3) axis system (see 
Fig. 1j in the main text), where (0, 0, 0) is the -point and (0.5, 0, 0) is the L-point along G1. 
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S4. Single-crystal growth and structural characterization. 

 

S4.1 Crystal growth.  

High-quality, single crystals of Bi-Sb alloys were grown by travelling molten zone 

(TMZ) technique,12 specifically designed to grow crystals with uniform compositions of alloys 

that form solid solutions, but have very large segregation coefficients, as is the case for the Bi1-

xSbx system. The basic principle is to create a crystal at the composition of the solidus (xs) from a 

charge that also has the composition of the solidus xs, by melting only a small section of the 

 

Figure S4.1: The principle of the TMZ single crystal growth technique in binary phase diagram 
of Bi-Sb alloys. The TMZ growth technique to grow a crystal of uniform composition xS consists of 
moving a liquid zone of composition xL across the crystal. The charge from which the single crystal is 
grown has also the composition xS. The end of the charge from which the liquid zone is started has the 
composition xL even when solid. [Ref. 13]. 
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charge that has the composition of the liquidus (xL) at the melting point and moving that molten 

section across the charge (see Fig. S4.113). To obtain a crystal of Bi88Sb12 (xs=0.12), the 

composition of the molten zone was maintained at the Bi97Sb3 composition (xL=0.03). The bulk 

of the charge was a Bi88Sb12 polycrystal, but the leading end, calculated to have the same volume 

as the molten zone, was a Bi97Sb3 polycrystal. According to the binary phase diagram of Bi-Sb, 

with the Bi97Sb3 liquid composition, solid Bi-Sb alloys will start to precipitate out of the liquid 

phase at the trailing end of the molten zone with a solid-phase composition of Bi88Sb12. We 

purchased the starting materials, 99.999 at.% pure Bi and Sb, but in-house Bi zone-refinement 

before use was necessary to obtain crystals with a low-temperature residual charge-carrier 

concentration < 1017 cm-3. The traveling speed of the molten zone was set to be 1 mm/hour to 

ensure equilibrium cooling conditions and avoiding coring. The growth apparatus was horizontal 

with a free top surface to accommodate the fact that the alloys expand upon solidification.  

In practice, while we had aimed for xS=12 at.%, the resulting single crystal had a 

composition of approximately x=11 at%, with an uncertainty and non-uniformity (see below) of 

composition of 1% over the whole length (80 mm) of the crystal, which was much longer than 

the samples used for the measurements (typically 5 × 2 × 1 mm). The Bi85Sb15 crystal was grown 

using two TMZ passes, under the same circumstances, except that the liquid phase composition 

contained xL=5.8 at% Sb and the bulk of the charge was a Bi84Sb16 polycrystal (xS =16 at.%).  
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The Bi95Sb5 semimetal crystal was grown in-house by the Bridgeman technique. A 

charge with the 

composition of the liquidus 

xL=5 at.% was created by 

melting a solid mixture of 

high-quality elemental 

bismuth and antimony at 

the desired at.% in the 

furnace at 700 °C. The 

liquid was then cooled to 

350 °C. The liquid mixture 

was cooled slowly at rate 

of 0.1 °C/min from 350 °C 

to 200 °C in a temperature 

gradient induced by natural 

convection inside the 

furnace. The temperature 

gradient cause solid Bi-Sb 

alloys to start to precipitate 

out of the liquid phase at 

the colder end with a solid-

phase composition of xS> 

xL. As the furnace temperature drops and more solid single crystal forms, the liquidus 
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Figure S4.2: X-ray diffraction spectrum (top) of the TMZ crystal 
of Bi89Sb11 (bottom).  
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composition xS also drops, creating a composition gradient along the length of the crystal. Slices 

are cut along the length of the crystal and compositions were checked by X-ray fluorescence 

(XRF). 

S4.2 Crystallography. 

 The TMZ single crystals (Fig. S4.2) were cleaved revealing shiny, metallic cleavage 

surfaces. Single-crystal flakes from the cleaved surfaces were collected at the positions marked 

in Fig. S4.2 on the crystal for characterization using X-ray diffraction (XRD). Si powder was 

sprinkled on the sample holder and leveled with the exposed surface of the flakes to serve as 

calibration peaks in the spectrum result (Fig. S4.2). The cleaved surface was confirmed to be the 

[001] plane. The Si 

lines were used to 

correct small 

misalignments 

between sample and 

XRD spectrometer; 

the corrections affect 

the [003] peaks the 

most, and the [006] 

peaks, to which they 

were closest, the least. 

Therefore, the 

following calculations 

  Starting end: 

Si 111  28.4  shift  ‐0.032  c (A)  x (%) 

Bi 003  22.59  corrected  22.622  11.78223  15.64 

Bi 006  46.05  corrected  46.082  11.80869  10.51 

Bi 009  71.87  corrected  71.902  11.80852  10.55 

    Mean (006,009)  10.53 

St. deviation  0.02 

  Measured sample (adjacent to starting end): 

Si 111  28.39  shift  ‐0.042  c (A)  x (%) 

Bi 003  22.55  corrected  22.592  11.79767  12.65 

Bi 006  46.05  corrected  46.092  11.80627  10.98 

Bi 009  71.84  corrected  71.882  11.81136  10 

    Mean (006,009)  10.49 

St. deviation  0.49 

  Finishing end: 

Si 111  28.41  shift  ‐0.022  c (A)  x (%) 

Bi 003  22.57  corrected  22.592  11.79767  12.65 

Bi 006  46.04  corrected  46.062  11.81354  9.57 

Bi 009  71.83  corrected  71.852  11.81563  9.17 

    Mean (006,009)  9.37 

St. deviation  0.2 

Table S4.1: Uniformity analysis, Bi89Sb11 TMZ crystal. 
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(Table S4.1) used only [006] and [009] peaks. The composition at each measured position (Fig. 

S4.2) was calculated by interpolating the measured lattice spacing c (Table S4.1) in the [001] 

direction with respect to the reported variation of lattice spacing of Bi-Sb alloy in literature.7 The 

accuracy of the measurement of x is the composite of the measurement accuracy (0.49%) and the 

possible variation in composition across the sample. The latter is approximately 0.1% since the 

measured sample is 2 mm wide, with a non-uniformity of 1% observed across a 2 cm piece of 

crystal. The final composition at each position on the sample was 10.5  0.5 at.%, which is 

rounded off to Bi89Sb11. The difference between the composition aimed for with the TMZ charge 

(12%) and that obtained (11%) was close to the standard deviation of the measurements.  

Single-crystal flakes from the cleaved surfaces of the Bi85Sb15 crystal were collected at 

positions near the two ends, 45 mm apart, of the crystal for characterization using electron 

dispersive spectroscopy (EDS). 

The atomic percentage of Bi and 

Sb at each position is summarized 

in the Table S4.2. The 

characterization measurement 

accuracy is 0.7 at.% with non-

uniformity of less than 2% 

observed across 45 mm. The 

sample used for transport 

measurements is adjacent to the 

sample collected at the starting end of the crystal which has composition rounded to Bi85Sb15. 

Starting end of the Bi85Sb15single crystal, from which the 

measured sample was cut 

Element  Net Intensity  Atomic %  Error (%) 

Bi  56575.3  84.88  1.1 

Sb  3462.3  15.12  4.8 

Finishing end of the single crystal 

Element  Net Intensity  Atomic %  Error (%) 

Bi  57888.6  82.93  1.11 

Sb  4121.6  17.07  4.73 

Table S4.2: Uniformity analysis, Bi85Sb15 TMZ crystal. 
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The Bridgeman single crystal was cleaved revealing shiny, metallic cleavage surfaces. 

The crystal was cut into slices perpendicular to the cleavage surfaces. Composition of each slice 

was checked by X-ray fluorescence (XRF). The composition of the measured sample was 50.5 

at.% The uniformity was checked by interpolating the compositions of adjacent slices which vary 

from 4.40.5 at.% to 5.40.5 at.% across a 4mm distance on the crystal, resulting a uniformity of 

better than 0.5% across the sample size. 
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S5. Sample characterization: Hall effect, magnetoresistance and thermal conductivity. 

S5.1 Sample mount and error bars. 

As explained in the main text, five 

samples originating from three separate single 

crystals were studied for thermal conductivity: 

#1 from the TMZ growth of composition 

Bi89Sb11, #2, #3 and #4 from the Bi88Sb12 

Czochralski crystal growth by Jacobus Meinhard 

Noothoven van Goor,14 and #5 from the TMZ 

growth of composition Bi85Sb15. One additional 

sample (other than those used for thermal 

conductivity measurements, and on which no 

electrical contacts were made) from each crystal 

was subjected to electrical measurements. 

The isothermal resistivity and Hall 

resistivity were measured along the [001] axis of 

separate samples cut from both the TMZ crystal 

and the Czochralski crystal using standard Hall 

bar-geometry setup (5-point probe method), with 

the magnetic-field direction perpendicular to the 

electric-field direction. The sample was mounted 

on a boron nitride block (see Fig. S5.1) that is 

electrically insulating, but thermally conducting. This was done to keep the temperature gradient 

along the length of the sample negligible, thus negating the effect of secondary Seebeck voltage 

 

 

Figure S5.1: Isothermal resistivity, 
magnetoresistance, and Hall measurement 
setup. (top) Hall and magnetoresistance setup 
for isothermal measurements in a transverse 
magnetic field; (bottom) setup for 
magnetoresistance measurements in a 
longitudinal magnetic field. 
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and ensuring isothermal measurement conditions.15 Electrical probing contacts were made with 

25 µm copper wires that were spot welded to the sample. Electrical current contacts were made 

using a current spreader and electrically contacted to the sample with a thin layer of silver epoxy 

to create an even distribution of current lines. Longitudinal magnetoresistivity was measured on 

the samples along the [001] crystal axis with the direction of the magnetic field parallel to the 

electric field. Measurements were conducted at discreet temperature points between 10 K and 

300 K. The sample was stabilized thermally at each temperature point for 30 minutes before each 

measurement was started. Electrical measurements were conducted with direct current and 

sweeping-down magnetic field from a maximum field of 9 T to a minimum field of -9 T in a 

Quantum Design Physical Property Measurement System with a sweeping rate of 5 mT/s. 

Controls software was programmed using LabVIEW. 

The error in the high-field Hall and resistivity measurements (i.e., when the product of 

the mobility times the field is larger than unity, or H > 5 mT at 10 K or 50 mT at 100 K) in the 

transverse magnetic-field setup comes from the geometrical effect. Since the sample is short 

(L/W ratio is approximately 1.8), at higher field (i.e. moB > 1), the effect of distorted current 

lines could lead to an underestimation of Hall resistivity by as much as 5 to 10%, as reported in 

literature.16  

S5.2 Low-field transverse measurements: zero-field resistivity, low-field Hall, carrier 

concentration, and mobility. 

The low-field (i.e., H < 5 mT at 10 K and < 50 mT at 100 K) Hall coefficients of Bi89Sb11 

(both TMZ and Czochralski) and Bi85Sb15 were measured and converted into a carrier 

concentration, and the low-field mobility then was derived from the resistivity and this carrier 

concentration. The results are given for both TMZ samples in Fig. 2 of the main text. In Fig. 



23 
 

S5.2., the data on the TMZ and Czochralski samples of composition Bi89Sb11 are contrasted. The 

analysis of the data at higher field is given in section S2.  

The Bi89Sb11 TMZ crystal had an electron density and mobility of 2.3×1018 cm-3 and 

13,700 cm2V-1s-1 at 300 K, and 1.2×1016 cm-3 and 559,000 cm2V-1s-1 at 50 K. Below 50 K, the 

polarity of the Hall effect switched from n-type to p-type, with a concentration and mobility of 

3×1015 cm-2 and 1,900,000 cm2V-1s-1 at 10 K, indicating an almost complete freeze-out of the 

charge carriers. A similar behavior is observed in the TMZ-Bi85Sb15 sample, as reported in Fig. 2 

of the main text. The Bi88Sb12 Czochralski crystals had electron densities and mobilities of 

8×1018 cm-3 and 1,050 cm2V-1s-1 at 300 K, which froze out to 1.4×1016 cm-3 and 20,000 cm2V-1s-1 

at 12 K. The fact that the increase in zz(Hz) was observed on two such vastly different crystals, 

with low-temperature mobilities varying by a factor 100 demonstrates the robustness of the main 

result to disorder scattering.  

Figure S5.2 Temperature dependence of the Bi89Sb11 resistivity, Hall carrier concentrations, and 
mobilities along the trigonal direction of a separate sample of the Czochralski crystal (black) which remains 
n-type, and of the TMZ crystal which is n-type above 50 K (blue) but becomes p-type below (red).
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S5.3 High-field longitudinal magnetoresistance effect and error analysis. 

As outlined in the main text, the longitudinal magnetoresistance (MR) measurements on 

WSMs, which generally have electrons of very high mobility, can contain extrinsic signals 

unless extreme care is taken in sample preparation, dimensions, and alignment. The extrinsic 

signals can be generated in three ways: current jetting17, the galvanomagnetomorphic 

effect18,19,20, and the geometrical MR21. Current jetting and the galvanomagnetomorphic effect 

give rise to an extrinsic negative longitudinal MR, the same sign as would the chiral anomaly.  

The galvanomagnetomorphic effect is not likely to occur in our samples, first, because their 

dimensions are orders of magnitude larger than the Larmor radius of the electrons in fields above 

1 T, and second, because the data in the main text show the transport to be robust to defect 

scattering, so that it likely also robust to surface scattering.  Current jetting is minimized and 

checked for by keeping sample dimensions small and placing the voltage contacts at different 

locations, looking for variations. 

The geometrical MR gives rise to an extrinsic positive MR, and arises either when the 

sample surface is not smooth,14 or when the field is slightly misaligned with respect to the current 

flow lines in the sample, as can occur during sample mounting.  This is the main cause of 

difficulties in the present measurements of longitudinal magnetoresistance. The positive 

geometrical magnetoresistance is given, in general,16,21,22 by 2 2(1 )
moGeom A B     and the 

relative correction for the positive geometrical MR is: 

2 2

mo

Geom A B  
        (S5.1) 
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 where B=0H is the magnetic induction in the direction perpendicular to the current 

and mo the mobility and the pre-factor A depends on the ratio between the length of the sample 

along the current flow direction to its width.  The pre-factor varies from A=1 for a Corbino disk 

geometry, to A=0 for an infinitely long and thin sample.  For the geometries of concern here, 

there is an uncertainty by almost a factor of 2 on A between the experimental values reported by 

Weiss and Welker 22on InSb and the calculated values from Wick16.  We therefore cannot use 

these estimates to calculate a correction term for the MR, so we use A only to calculate an error 

bar.  We adopt the Weiss & Welker values, taking A=0.05 for a length-to-width ratio near 10:1. 

In longitudinal measurements B


 is in theory parallel to the current direction, but in practice field 

misalignment by an angle  generates a transverse component | | sinB B  


 to the magnetic 

field vis-à-vis the current lines, so that the Lorenz force distorts them.  The relative error bar on 

longitudinal MR measurements is  

2 2 2sin ( )
mo

Geom A B  
        (S5.2) 

In some samples, this error is the main source of error in determining the Lorenz ratio, 

because it affects the electrical resistivity measurements, but much less the thermal conductivity 

ones for the reasons outlined in the main text.  In sample 6, however, the error (S5.2) is 

minimized, and the main source of error on the Lorenz ratio at T>60K comes from thermal 

conductivity measurements as discussed in section S10. 

S5.3.1 Czochralski samples 

MR measurements of the Czochralski crystals contain and additional extrinsic 

component, identified already by Noothoven van Goor14. Their surfaces display small striations 
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in which the current lines are 

not exactly aligned with 

respect to the magnetic field. 

The striations arise because 

the rotation during the 

Czochralski growth method 

results in annular 

irregularities along the 

sample length, some 0.05 

mm deep on a 3 mm 

diameter sample. Noothoven 

van Goor14 shows how these 

slight irregularities in the 

sample surface are sufficient to generate an extrinsic geometrical MR. The longitudinal MR of 

Czochralski Bi88Sb12 crystal sample 3, shown in Fig. S5.3, is uniformly positive at T>40 K, 

where the increase in zz in field is observed. At lower temperature and higher field, the sample 

develops a negative MR. Due to the difficulties described above, where extrinsic effects can 

induce either a striation-induced positive or a current-jetting-induced negative MR, it is 

impossible to attribute either behavior to intrinsic properties of the samples. It is also impossible 

to verify the WFL law experimentally in a magnetic field on samples with irregular sides. 

S5.3.2 TMZ samples 

Since both Bi89Sb11 TMZ samples have a high mobility of up to 2×106 cm2V-1s-1 at 10K, 

the extrinsic positive geometrical MR21 that can arise can become an order of magnitude larger 

 

Figure S5.3 Longitudinal magnetoresistance along the trigonal 
direction of Czochralski sample #3 as a function of magnetic 
field at the temperatures indicated. Van Goor reports14 that the 
MR of Czochralski samples is dominated by the extrinsic 
geometrical MR due to striations in the sample. The negative MR 
is only discernable at the lowest temperatures. Data such as these 
cannot be used to verify the WFL. 
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than the intrinsic (negative) 

sample MR unless extreme 

care is taken in sample 

preparation and alignment.   

For sample 1, this is 

illustrated in Fig. S5.4, 

where the longitudinal MR 

is given for the same 

sample in two different 

geometries: a   = 3.80 field 

misalignment completely 

eliminates the negative 

MR.  Clearly, no attempt 

was made to use these 

electrical data of the 

3.35x1.43x1.64 mm sample 

in any subsequent analysis. The thinned down sample, which was realigned with   = 0.150, 

displays a negative MR with an error bar that will be discussed next. Unfortunately, an attempt at 

further thinning resulted in the sample cleaving.  

Sample 6 was designed specially to minimize all extrinsic effects, as explained in the 

methods section. The main difference is that mechanical thinning is supplemented by etching, 

resulting in a smooth surface. The dimensions of sample 6 are 3x0.4x0.6 mm and the 

misalignment angle was minimized to   = 0.10.050 by the following process. Two blocks of 
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Figure S5.4 Effect of sample geometry on the longitudinal 
magnetoresistance measurements of the TMZ sample 1.  The 

main frame shows the longitudinal magneto-resistivity 
zz(Hz) of sample 1 after thinning down to dimensions of 
1.7x1.39x0.52 mm; the alignment of the longitudinal axis 
with the magnetic field is of order 0.150.05o.  The insert 

shows zz(Hz) of the same sample, but with sample 
dimensions 3.35x1.43x1.64 mm, and the alignment of the 

longitudinal axis with the magnetic field of order 3.8o. 
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BN ceramics were precision cut and glued to the base to serve as precise guides for the sample to 

stand upright on the platform, with the applied field of Quantum Design PPMS to be 

perpendicular to the 

platform. These guides 

constrain both degrees of 

freedom of sample 

misalignment. Once the 

sample was mounted to the 

platform with silver epoxy, 

solvents were used to 

dissolve the glue and the 

guides were removed. The 

precision of the guides and 

the final alignment were 

checked with goniometer (Wixey Model WT41) to be 89.9 0.050 .The sample was mounted in a 

4 probe geometry. The voltage wires were attached to the sample along the spine of the sample 

to minimize effect of current jetting17. The voltage wires were attached to the sample with a 

significant distance from the current wires to avoid regions of large current line distortion. The 

measured resistivity zz(Hz) is shown in Fig. 4a. The same data extended to 2 K are shown in Fig. 

S5.5. No quantum oscillations are observed even at 2K, as expected from an ideal WSM. 

The relative errors in magnetoresistance measurements introduced by the geometry are 

examined next. The geometries are such22 that for the 3.35x1.43x1.64 mm sample 1, A  0.2 and 

= 3.8 o; for the 1.7x1.39x0.52 mm sample 1, A  0.25 and = 0.15 o; and for sample 6, A  0.05 
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Figure S5.5 Longitudinal magnetoresistance of the TMZ 
sample 6. The sample is 3x0.4x0.6 mm and the misalignment 
angle   = 0.10.05o. No quantum oscillations are observed down 
to 2 K. 
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and = 0.1 o.  At 60 K, the mobility of the TMZ Bi89Sb11 crystal is of order of 50 m2 V-1s-1.  The 

relative errors for the 3 samples above are thus, at 5 T, a factor of 70, 11% and 1%, and a factor 

of 3 times higher at 9T.   

The error bars increase as the temperature is lowered below 60 K.  At 10 K mo = 2×106 

cm2 V-1 s-1 and only sample 6 gives magnetoresistance data that are accurate within 50%. 

Accurate mobilities are not available in the 30-60K range, due to the fact that the polarity of the 

Hall effect changes in that range.  Since the low-temperature mobility of charge carriers along 

the trigonal direction of Bi follows a T2 law23, it is reasonable to expect that the error bars 

increase with T-4.  Consequently, the determination of the absolute magnitude of the negative 

magnetoresistance (and thus the Lorenz ratio) cannot be made accurately below 60 K.  At 50 K, 

the error bars given above have already doubled. 

 



30 
 

S6 Error analysis of thermal conductivity measurements. 

The thermal conductivity measurement error has a systematic component that dominates 

the absolute values of the conductivity reported, and a relative component that dominates the 

error bars in the temperature and field dependence. The systematic error in the absolute values is 

composed of a geometric error, an error in the estimate of the heat flux, and an error in 

thermocouple calibration. The uncertainty of the geometry of the sample is of the order of 10%. 

Heat losses were calculated from the measured heat leaks of the instrument, which vary with 

temperature, but are of the order of 1 mW/K at 300 K, smaller than the thermal conductance of 

the sample. Below 200 K, instrumental heat losses are negligible. The Cu-Constantan 

thermocouples were calibrated in magnetic field using the process described next and 

summarized in Table S6.1.   

The sensitivity of Cu-Constantan thermocouples used in thermal conductivity 

measurements of this work has been checked experimentally. The Seebeck coefficients of 

constituent 25 µm diameter copper and Constantan (Ni-Cu alloy) wires used to fabricate the 

thermocouples were measured as follows: A temperature gradient was created along the length 

of a slender piece of glass with one end bonded to a resistive heat source and one end bonded to 

a heat sink. At steady-state condition, the heat sink temperature is controlled by the temperature 

controller of Quantum Design PPMS, and the heat flux was constant. At two specific points on 

the glass, where the ends of the sample wires were welded, temperatures of these points were 

measured with Cernox® temperature sensors that are calibrated in the temperature and field range 

of the experiment by Quantum Design. The voltage between two ends of the sample wires were 

measured with a Keithley nanovoltmeter. The measurements were conducted at discreet 

temperature points between 5 K to 300 K, in sweeping-down magnetic field from maximum field 
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of 7 T to minimum field of -7 T in Quantum Design PPMS. Controls software was programmed 

using LabVIEW. 

We calculate the Seebeck coefficient of the sample wires using the following formulas: 

          (S6.1) 

 

           (S6.2), 

where  and  are the voltages measured between the two ends of sample wires,  and  

are temperatures measured at the two ends of sample wires, and  is the Seebeck coefficient of 

the measuring circuit. Accordingly, we calculate the Seebeck coefficient of the Cu-Constantan 

couples using: 

  (S6.3). 

The resulting values are reported in Table S6.1. 

T(K)   at zero 
field (V/K) 

Max. deviation of 
 in field (V/K) 

Relative deviation 
of  field (%) 

 from NBS125 
(V/K) 

Deviation of  
from NBS125 

(%) 
      

60 1.30E-05 1.33E-05 2.2 1.38E-05 -5.8 
40 9.42E-06 1.02E-05 8.1 1.02E-05 -7.3 
20 5.33E-06 5.83E-06 9.4 5.50E-06 -3.0 
10 2.44E-06 2.62E-06 7.3 3.03E-06 -20 

Table S6.1 The thermocouple calibration procedure. The calculated field dependence of Cu-
Constantan thermocouples is the difference between columns 2 and 3, given in % in column 4. The total 
deviation from National Bureau of Standards (NBS) table 125 (data repeated in column 5) is given in 
column 6. 
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The absolute values of the error, the deviation from NBS reported in the last column, is 

below 6% down to 60 K, where most of the data are plotted, but can reach 7% at 40 K, and up to 

20% below 40 K. Below 20 K, the thermocouples lose their sensitivity, which makes the data 

noisy, and the calibration errors can reach 20%, which affects the temperature dependence 

reported in Fig. 3(c) (main text). Combined with the geometric error, the total error at 20 K is 

22%. For these reasons, we do not report absolute values for the thermal conductivity below 20 

K in Fig. 3(c) (main text). Above 60 K, the total error is 12%, but the relative error on the 

temperature dependence is below 6%. 

The relative error in the magnetic-field dependence is dominated by the magnetic-field 

sensitivity of the thermocouples. The dependence on field up to 7 T was checked, is reported in 

Table S6.1, and is given as error bars in Fig. 3(b) (main text). This uncertainty is less than or 

equal to 2% down to 60 K, and less than 10% at 34 K, the lowest temperature where the 

electronic component of Ezz is reported. Note that the error bar on the curve at 16 K in Fig. 3(b) 

(main text) is the only relative error that is relevant to the field dependence; the absolute error, 

which affects the zero-field value, is much larger and of the order of 25% (= 2 20.22 0.1  ), as 

discussed above. 
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S7 Thermal conductivity zz measurements along the trigonal direction. 

S7.1 Zero-field conductivity zz and its electronic (E) and lattice (E) contributions.. 

Fig. 2(d) (main text) shows the zero-field thermal conductivity of Bi89Sb11 sample #1. 

The equivalent figure for the TMZ sample of Bi85Sb15 and of the Czochralski Bi88Sb12 sample #3 

is given in Fig. S7.1. The thermal conductivity is separated into L and E by transverse thermal 

MR measurements described in S7.3. 

S7.2 Longitudinal magneto-thermal conductivity zz(Hz): sample-to-sample reproducibility  

Besides the sample used for the transverse Hall measurements, three more samples were 

cut from the Czochralski crystal, with the data on two presented in this section. One (#4) was 

subjected to a study of the angular dependence of the effect and the data are shown below in 

Section 8. The zero-field zz of sample #3 was analyzed again in terms of an electronic and 

lattice contribution, as had been done for sample #1 (main text); results are shown in Fig. S7.1.  

0 100 200 300
T (K)

0

1

2

3

4

5

T
he

rm
al

 C
on

du
ct

iv
ity

 (
W

/m
K

)

Total

Electronic

Lattice

Bi88Sb12

T//<001>

 

Figure S7.1 Zero-field lattice and electronic thermal conductivity of the TMZ sample of 
Bi85Sb15 and of Czochralski Bi88Sb12 Sample #3. The error bars on the latter represent only the 
relative error (see analysis section S9). 
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The zz (Hz) data on samples #3 and #4 shown in Fig. S7.1 at zero field and in magnetic 

field have curves are similar to those in Fig. 3 (main text). A region with 0zz

z

d
dH

   is visible 

clearly above a critical field, illustrating the robustness 

of the effect on impurity scattering, since these samples 

come from a crystal that has a mobility 100 times 

smaller than the TMZ samples at 10 K. Czochralski 

sample #2 shows very similar data, and is described 

below. 

In addition, we examined the sample length 

dependence of the ( )zz z

z

d H
dH

 slope of the TMZ 

Bi89Sb11 sample #1. The slope, taken at 4.5 T, is shown 

Figure S7.3 Length dependence of 
the slope of zz(Hz) of sample 1. No 
length dependence is observed 
experimentally. 

Figure S7.2 Trigonal thermal conductivity in longitudinal magnetic field of samples #3 and #4, 
cut from the Czochralski crystal.  
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in Fig. S7.3. No length dependence is observed that is significantly above the error bars in the 

temperature range of the reported results (T>60 K).  

For completeness, we mention that anomalously large quantum oscillations in the 

( )zz zH of TaAs24 is interpreted as a manifestation of chiral zero sound. We see no evidence for 

this behavior in Bi1-xSbx (x>10%) alloys. 
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S7.3 Transverse magneto-thermal conductivity zz(Hy). 

In the presence of a magnetic field Hy applied along the bisectrix direction y=[010], the 

thermal conductivity along the trigonal direction, zz(Hy), decreases monotonically, see Fig. S7.4. 

This is the ordinary behavior of high-mobility materials such as graphite25 and Bi and Bi1-xSbx 

alloys.26 It is used to isolate the lattice term as lim ( ( ))
yL H zz yH  . The experimental data for 

zz(Hy) clearly saturates for T<120 K, and the saturation value is labeled L and plotted as red 

points in Fig. 2(d) (main text) and Fig. S7.1. At T>120 K, the saturation of zz(Hy) is not 

achieved in the fields available, and L(T) in Fig. 2(d) (main text) and Fig. S7.1 is extrapolated as 

a dashed red line following a T-1/3 law26 to 300 K. E is taken to bezz=L. 

 

Figure S7.4 Trigonal thermal conductivity in transverse magnetic field of TMZ samples 
Bi89Sb11 samples #1 and Bi85Sb15. 
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S8. Angular dependence of zz(Hz) 

As mentioned in the main text and shown 

in Fig. 4(d) (main text), the angular dependence of 

the effect was measured on sample #4. zz (H) is 

measured as a function of temperature and 

magnetic field H applied at an angle  between 

the direction of field and temperature gradient in 

the trigonal direction ( = 0° for H=Hz along 

[001] plane) / bisectrix direction ( = 90° for 

H=Hy along [010] plane), as illustrated in Fig. 

S8.1. The data are summarized in Figure 8.2 and 

shown as function of both field and angle in Figure 

S8.3. The value ,( 9T)E zz zz MINH      , 

where zz, MIN is the value of zz at the field where it 

is minimal, is reported in Figure S8.2 . The angular 

dependence follows a cos()n law with n>4, a 

much higher exponent than expected from the 

component of H projected along z. Note that 

sample #2 at  = 0 again reproduces the data on 

samples #3 and #4 quite well.  

 

 

 

Figure S8.1 Angle between the direction 
of the magnetic field H and the trigonal 
axis along which zz (H) is measured.  

 

Figure S8.2 Angular dependence of 
thezz (Hz) increase. zz dependence 
on angle  defined as  =0° for H=Hz 
along [001], and  = 90° for H=Hy 
along [010]. 
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Figure S8.3 zz (H) of Czochralski sample #4 as a function of temperature and H for the 
different values of . 



39 
 

S9. Test of zz(Hz) for surface effect.  

To test the hypothesis that 

the increase in thermal 

conductivity reported in Fig. 3(b-

d) (main text) is due to the Weyl 

nature of the Bi85Sb15 and Bi89Sb11 

samples studied, the same 

experiments were carried out on 

semimetallic samples of Bi95Sb5 

that are not TIs at zero field, and 

thus do not move into the Weyl 

phase at high values of Hz. The zz 

(Hz) of this Bridgeman sample (see 

S4.1) is shown in Fig. 3(a) (main 

text), and shows 0zz

z

d
dH

   at 

all fields, consistent with the thesis 

that 0zz

z

d
dH

  is evidence for the chiral anomaly in the Weyl phase. In order to exclude 

further the possibility that perhaps the 0zz

z

d
dH

  effect might be an extrinsic effect due to 

surface conduction, a second piece of the same crystal was mounted, this time with electrically 

conducting Ag-epoxy contacts on the top and bottom surface. The results are unchanged. This 

 

Figure S9.1: Thermal conductivity zz of Bi95Sb5 along the 
trigonal (z=[001]) direction, mounted with Ag-epoxy 
contacts. The results are the same as when this sample is 
mounted with electrically insulating contacts (Main text, Fig. 
3(a)). 
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test was also repeated on a piece of the Bi89Sb11 crystal that showed the positive 0zz

z

d
dH

  , 

and again the Ag coating on the surface had no effect. 
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S10 Reproducibility of the verification of the Wiedemann-Franz law (WFL) on a second 

sample. 

 Figure 4b in the man text shows the verification of the WFL and gives the value for the 

Lorenz ratio L  on sample 6, on which it has been possible to measure the thermal conductivity 

zz(Hz) and the electrical resistivity zz(Hz) simultaneously, and on which, per section S5.3, the 

error on the geometrical magnetoresistance is kept around 3% at T  60 K.  Whereas the main 

result of this article, the measurements of the thermal conductivity in longitudinal field, has been 

reproduced on 6 samples, the verification of the WFL requires accurate and intrinsic 

measurements of zz(Hz) that are reported only for sample 6. Sample 6 has been thinned by acid 

etching and mounted using precision-cut guides with an alignment to the field of 0.10.  As 

explained in section S5.3, zz(Hz) in all samples has extrinsic contributions from geometrical 

effects, due to sample shape and misalignment, but they are minimized in sample 6.  Attempts at 

eliminating these effects by thinning the other samples resulted in sample breakage.  As 

explained in section S5.3, the geometrical error in the measurements of zz(Hz) is treated as a 

contribution to its error bar, which contributes to the error bar on L. 

 In this section, we present WFL verification data in magnetic field on sample 1: while 

less accurate, they agree with data showed in Fig. 4b.  This section  uses the zz(Hz) data of Fig. 

4a and the resistivity data of Fig. S5.4. As discussed in S5,3, here the geometrical MR error is of 

order of 11 - 33% (depending on the field) at T  60 K,  but could be double that if other values 

of A are considered.   The error becomes  prohibitively large at low temperature (T<60 K) where 

the mobility mo is large.  The effect of this contribution is to overestimate the resistivity and thus 

overestimate the Lorenz ratio L. 
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Figure S10.1 Lorenz ratio L/L0 at Hz = 6 T for Bi89-

Sb11, sample 1. L/L0 is here obtained by the 
derivative method, Eq. S8.1, While less accurate than 
the values of L/L0 reported for sample 6 in the main 
text, the results on sample 1 are consistent with those 
on sample 6, illustrating the reproducibility of the 
verification of the WFL in field.

 The determination of the Lorenz ratio as done in Fig. 4b has a second source of error, 

namely the need to subtract the 

lattice thermal conductivity L 

from the measured total.  This is 

done by measuring the thermal 

conductivity with the field aligned 

along the bisectrix direction, as 

explained in section S7.3   For 

sample 6, we were able to measure 

all properties on the same sample.  

For sample 1, the thermal and 

electrical data were taken on the 

same crystal but samples of 

different sizes and separate 

measurements.  To work around 

the accuracy problems associated with the subtraction of L, we devised a new method to derive 

the WFL ratio of sample 1 in the presence of an external magnetic field, based, not on the 

absolute values of electrical and electronic thermal conductivity (Eq. 4 in the main text) itself, 

but on their field derivatives. The Lorenz ratio, normalized to L0, is then calculated for sample 1 

as: 

 ( ) ( )0 0/ /zz z zz zL L d dH TL d dH = .     (S10.1) 
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and is shown in Figure S10.1.  Here zz zd dH is taken from the inset to Fig. 4(c) and zzd dHz  

from Fig. S5.4 at 6 T.  Because the conductivities change linearly in field from about 4 to 8 T, 

estimated L is not field-dependent in that range.   

 The error bar in Fig. S10.1 has a different origin that the error bars in Fig. 4b.  It  a 

combination of three errors.  First, the error due to the geometrical magnetorestance, discussed in 

section S5.3, is still present.  Second, the samples used for Fig. S10.1were mounted separately 

for the electrical and thermal measurements, so that the geometric uncertainties associated with 

the contact placements (about 10%) and sample dimensions affect the measurements in Fig. 

S10.1; this was not the case for Fig. 4b, where the copper wires of the type-T thermocouples 

served simultaneously for the electrical and thermal measurements in both field directions.  

Third, derivative methods have more noise that direct methods.  Taken together, and adding the 

uncertainty on the value of A, the error bar on the determination of the Lorenz ratio on sample 1 

in Fig. S10.1 is of the same order of magnitude as the measured value itself. 

 In summary, while less accurate than the Lorenz ratio obtained by the direct method on 

sample 6, the results reported in Fig. S10.1 are consistent with the results obtained on sample 6 

in the main text, Fig. 4(b).  
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