Supplementary information

Two-dimensional hole gas in organic semiconductors

In the format provided by the authors and unedited

Supplementary Materials for

Two-dimensional hole gas in organic semiconductors

Naotaka Kasuya, Junto Tsurumi, Toshihiro Okamoto, Shun Watanabe*‡* , and Jun Takeya*‡ ‡* To whom correspondence should be addressed; E-mail: swatanabe@edu.k.u-tokyo.ac.jp, and takeya@k.u-tokyo.ac.jp

This PDF file includes:

- A. Details of transport measurements
- B. Determination of Fermi level
- C. Sample dependence of transport properties
- D. Magneoresistance of heavily doped C_8 -DNBDT-NW

A. DETAILS OF TRANSPORT MEASUREMENTS

Sample preparation

The electric double-layer transistors (EDLTs) studied in this work were fabricated on a polyethylene naphthalate (PEN) substrate. The PEN film (Teijin Ltd., Q 65HA, 125 μ m) was pre-baked at 150 *◦*C for 3 h to reduce internal stress and cooled down slowly to room temperature. After cleaning the PEN film with acetone and 2-propanol in an ultrasonic bath, parylene (dix-SR, KISCO Ltd.) was coated onto the PEN film via chemical vapor deposition, achieving a thickness of 200 nm. The single-crystal bilayer C_8 -DNBDT-NW was grown on the parylene layer from 3-chlorothiophene with a concentration of 0.020 wt% at 70 *◦*C via the continuous edge casting method.^{1–3} Gold (62 nm) /chromium (8 nm) were evaporated on the parylene/PEN substrate and single-crystal C_8 -DNBDT-NW through shadow masks to form the source, drain, side gate electrodes, and voltage probes. Laser etching (V-Technology Co., Ltd., Callisto (266 nm)) was carried out for the C_8 -DNBDT-NW layer to form Hall bar (Figure. A-1).

SI Fig. A-1: **Optical microscopy image** Polarized optical microscopy images of (a) bilayer C₈-DNBDT-NW single crystal printed on the parylene-SR/PEN substrate, (b) after the evaporation of gold and chromium electrodes, and (c) after the laser etching.

The ion gel film was spin-coated onto the PEN film (Teijin Ltd., $Q51$, $25 \mu m$) with a solution composed of poly(vinylidene fluoride-*co*-hexafluoropropylene)(P(VDF-HFP)), ionic liquid (1-Ethyl-3-methylimidazolium: [EMIM] and bis(trifluoromethylsulfonyl)imide: [TFSI], respectively) and, acetonitrile (1:2:10 wt. ratio). After cutting the ion gel with the PEN film, EDLTs were completed by the lamination of the ion gel and the PEN film onto the Hall bar-shaped single-crystal C_8 -DNBDT-NW and side-top gate.

Transport measurement

Low-temperature magnetotransport measurements were performed at least 12 h after the EDLT sample was inserted into a He gas-exchange cryostat with a superconducting magnet. Transfer characteristics in the linear regime (at drain voltage $V_D = -0.10$ V) were continuously recorded by a sweeping gate voltage V_G at a rate of 50 mV per 30 s. Introduction of the holes onto C_8 -DNBDT-NW at 260 K was undertaken by applying V_G , for which V_G was negatively increased from 0 V to the target voltage at a rate of 50 mV per 30 s. When V_G was changed, samples were heated up to 260 K and discharged with $V_G = 0$ V. After charging the C_8 -DNBDT-NW by applying the target V_G at 260 K, the temperature *T* dependence of the sheet resistance R_{sheet} is measured by monitoring the drain current I_{DS} and the voltage probes. Constant $V_D = -0.10$ V is applied during the slow ramping of *T* downwards and upwards with the ramping rate of 0*.*2 K min*−*¹ . Hall measurements were performed with a constant DC I_{DS} (1 μ A). During sweeping, an external magnetic field *B* was applied perpendicular to the sample plane, not exceeding *±*10 T and with a slow sweeping rate of 0.01 T s^{−1}.

B. DETERMINATION OF FERMI LEVEL

The observation of metallic states in single-crystal C_8 -DNBDT-NW with a high carrier density exceeding 4×10^{13} cm^{−2} in this work is accompanied by Fermi degeneracy. To investigate the relationship between the carrier density *n* and Fermi level μ' , we estimate the Fermi level of C_8 -DNBDT-NW from the following equation:

$$
n = \int_{-\infty}^{\infty} D(E) (1 - f(E)) dE \tag{1}
$$

Where $D(E)$ is the density of states of C_8 -DNBDT-NW and $f(E)$ is the Fermi distribution function $f(E) = [1 + \exp((E - \mu')/(k_B T))]^{-1}$. The carrier density *n* is estimated from the Hall effect at 180 K, and is assumed to be temperature-independent at least within the temperature from 180 K to 260 K. The density of states of C_8 -DNBDT-NW is calculated using CRYSTAL 17 at the B3LYP functional and POB-DZVP basis set level.

C. SAMPLE DEPENDENCE OF TRANSPORT PROPERTIES

Transistor characteristics of C8**-DNBDT-NWEDLT**

Figures C-1a and b show the output and transfer characteristics of C_8 -DNBDT-NW EDLT (sample 5), respectively, where typical transistor characteristics were observed. Hysteresis shown in output and transfer curve is attributed to relatively large gate/drain bias sweep rate. In our system with the ionic gel composed of [EMIM][TFSI] and P(VDF-HFP), the output and transfer characteristics were measured at 260 K, which is slightly above the freezing point of [EMIM][TFSI].⁴ This is because unintentional electrochemical doping can be suppressed effectively by reducing temperature. Because the gate bias scan rate is considerably faster than that of ions $'$ motion at 260 K,⁴ the hysteresis of transfer curve $(|I_{DS}|$ in the backward scan is larger than that in the forward scan) is observed typically in EDLT devices (as already shown in Fig. 2a). When defects or electrochemical reaction takes place during the gate bias sweep, the opposite hysteresis $(|I_{DS}|$ in the forward scan is larger than that in the backward scan) should be observed. Thus, the observation of hysteresis does not contradict to low defect density at the surface of organic semiconductors. For clarity, with the known ion conductivity⁴ and device geometry, the ion response time to charge up the electric double layer at 260 K is evaluated to be approximately 10^3 sec, which is considerably larger than the gate/drain bias sweep. However, because all low temperature

measurements were performed after sufficiently long charging process, the hysteresis has no influence on experimental results.

SI Fig. C-1: **Transistor characteristics of C₈-DNBDT-NW EDLT (sample 5) at 260 K.**(a) Output curve. (b) transfer curve I_{DS} ; drain current, I_G ; gate current, V_D ; drain voltage, V_G ; gate voltage. Transistorr characteristics were acquired with a voltage sweep rate of 10 mV sec*−*¹ .

Sheet conductivity σ_{sheet} **at 260 K**

Figures C-2a and b show the reproducibility of multiple gate sweep and the sample dependence of sheet conductivity σ_{sheet} at 260 K, respectively, obtained by $\sigma_{\text{sheet}} =$ $(L_{4T}/W)(I_{DS}/V_{4T})$ as a function of V_{G} (L_{4T} is the length between four-terminal voltage probes, W is the channel width, and V_{4T} is the potential difference between four-terminal voltage probes). All measurements are performed with $V_D = -0.10$ V during V_G sweeping at a rate of 50 mV per 30 s. σ_{sheet} reaches around 60 μ S in all samples reproducibly, although threshold voltage depends on the samples.

SI Fig. C-2: V_G **dependence of** σ_{sheet} **at 260 K.**(a) Multiple V_G sweep in sample 2. (b) Sample dependence of *σ*sheet

Temperature dependence of sheet resistance *R*sheet

Figure C-3 shows the temperature *T* dependence of sheet resistance $R_{\text{sheet}} = \sigma_{\text{sheet}}^{-1}$ of sample 2, 3 and 4 (the $R_{\text{sheet}}(T)$ of sample 1 is described in the main text). In sample 2, Insulator-to-metal crossover around quantum resistance $h/e²$ (black dash line in the panel) is observed with negatively increasing V_G from -1.0 V to -2.2 V. The positive dR/dT is observed reproducibly for the samples 3 and 4 (Fig. C-3 b).

SI Fig. C-3: The temperature dependence of sheet reisistance R_{sheet} .

Hall mobility μ_{Hall} and **Hall carrier density** n_{Hall}

With the experimentally-obtained Hall voltage V_{Hall} , the Hall mobility μ_{Hall} $\sigma_{\text{sheet}} R_H$ and Hall carrier density $n_{\text{Hall}} = (eR_H)^{-1}$ are determined, in which the Hall coefficient *R*H is obtained from Hall resistance $R_{xy} = V_{\text{Hall}}/ I_{\text{DS}} = R_{\text{H}}B$. For sample 2, μ_{Hall} at $V_{\text{G}} = -1.0$ V decreases as temperature decreases with the activation energy $E_a = 4.2 \text{ meV}$ obtained by fitting with an Arrhenius-type thermally activated model $\mu_{\text{Hall}}(T) \propto \exp(-E_a/(k_B T))$ (see the dotted curve in C-4a).

By contrast, the temperature dependence of μ_{Hall} at $V_{\text{G}} = -2.2$ V clearly increases monotonically with a decrease in temperature (Fig. C-4a), where μ_{Hall} is estimated to be 5 cm² V*−*¹ s *[−]*¹ at 180 K, and increases up to 25 cm² V*−*¹ s *[−]*¹ at 10 K. The temperature dependence of μ_{Hall} can be fitted with $\mu \propto T^{-q}$ ($q > 0$). The exponent q in the power-dependence is estimated to be $q = 0.86$. This is in a good agreement with those dominated by phonon

SI Fig. C-4: The temperature dependence of Hall mobility μ_{Hall} and Hall carrier density n_{Hall} . (a) and (c) The temperature dependence of μ_{Hall} and n_{Hall} respectively of sample 2 at various V_G . (b) and (d) The temperature dependence of μ_{Hall} and n_{Hall} respectively of sample 3 at V_{G} = −1.6 V and sample 4 at V_{G} = −1.6 V compared with that of sample 2 at V_{G} = −2.2 V.

scattering, which has been observed experimentally and theoretically for C_8 -DNBDT-NW.⁵ This typical metallic temperature behavior is also observed in the sample 3 at V_{G} = -1.6 V and sample 4 at V_G = *−*1*.6* V (Fig.C-4b). Although the high μ_{Hall} exceeding 20 cm² V^{−1} s *−*1 is experimentally observed at *T* = 10 K, a discrepancy in the temperature dependence of μ_{Hall} from the power-law behavior is found below $T \sim 50$ K. This behavior is consist with a typical 2D electron/hole system, in which carrier transport is dominated by phonon scattering down to low temperatures because of few impurities in the conducting channel and then dominated by defect impurities scattering at cryogenic temperature, resulting in suppressing mobility.⁶ The Hall carrier density n_{Hall} is estimated to be $1 \times 10^{14} \text{ cm}^{-2}$ at 180 K and 5 *[×]* ¹⁰¹³ cm*−*² at 10 K (Fig.C-4c). Remarkably high carrier density approaching 1 *[×]* 10¹⁴ cm^{−2} at 180 K corresponds to 0.25 holes per one C₈-DNBDT-NW molecule, which is the highest carrier density observed in OSCs to the best of our knowledge, and clearly shifts the Fermi energy below the top of the valence band, which leads the Fermi degeneracy. The temperature dependence of n_{Hall} is also observed in sample 4 with $n_{\text{Hall}}(180\text{K}) = 1 \times 10^{14}$ cm*−*² (Fig. C-4d).

D. MAGNEORESISTANCE OF HEAVILY DOPED C₈-DNBDT-NW

The presence of degenerated holes is further investigated through magnetotransport measurements. Figure D-1a shows the longitudinal magnetoresistance (defined as (*R*(*B*) *−* $R(0)/R(0)$ with respect to the application of *B* perpendicular to the sample plane. The positive magnetoresistance is observed over a wide temperature range, which is in a good agreement with the well-established Lorentz magnetoresistance. The characteristic phenomenon that features 2D electron system is quantum galvanomagnetic effects such as Shubnikov-de Haas (SdH) effect. In general, SdH oscillation due to the quantized Landau levels is observable in sufficiently strong magnetic field, *i.e.* $\omega_c \tau = \mu B_z \gg 1$ (ω_c ; the cyclotron angular momentum, τ ; the momentum relaxation time). The mobilities in 2DHG in the wide-gap semiconductors are not high compared to those in 2DEG because of the high effective mass of holes in the valence band. Hence, the direct observation of SdH oscillation has not been achieved to date. On the other hand, in weak magnetic fields, the magnetotransport can be described by the semiclassical Boltzmann transport framework; the positive magnetoresistance is expected with a parabolic dependence to the applied magnetic field, *i.e.*, $(R(B) - R(0))/R(0) = \mu_{MR}^2 B^2$. Here, the mobility μ_{MR} is the only fitting parameter that can reproduce the magnitude of the positive magnetoresistance (shown in black curves). We summarize the temperature dependence of two mobilities determined from the Hall effect (μ_{Hall}) and longitudinal magnetoresistance (μ_{MR}) in Fig. D-1b. While the temperature dependence μ_{Hall} shows the saturation behavior as temperature decreases, which is interpreted as a crossover in hole transports from phonon scattering to ionized impurity scattering, μ_{MR} increases monotonically as temperature decreases with $\mu_{MR} \propto T^{-q}$ $(q = 0.87)$. This discrepancy can be explained by the difference in scattering mechanisms.

SI Fig. D-1: The magnetoresistance of sample 1 at $V_G = -2.2$ V. (a) The temperature dependence of magnetoresistance of sample 2 at V _G= -2.2 V. (b) The comparison between the Hall mobility and the mobility obtained from magnetoresistance.

A. Reference

- ¹ Soeda, J. *et al.* Inch-size solution-processed single-crystalline films of high-mobility organic semiconductors. *Applied Physics Express* **6**, 076503 (2013).
- ² Yamamura, A. *et al.* Wafer-scale, layer-controlled organic single crystals for high-speed circuit operation. *Science Advances* **4**, eaao5758 (2018).
- ³ Kumagai, S. *et al.* Scalable fabrication of organic single-crystalline wafers for reproducible TFT arrays. *Scientific Reports* **9**, 15897 (2019).
- ⁴ D.M. Correia *et al.* Molecular relaxation and ionic conductivity of ionic liquids confined in a poly(vinylidene fluoride) polymer matrix: Influence of anion and cation type. *Polymer* **171**, 58–69 (2019).
- ⁵ Tsurumi, J. *et al.* Coexistence of ultra-long spin relaxation time and coherent charge transport in organic single-crystal semiconductors. *Nature Physics* **13**, 994–998 (2017).
- ⁶ Davies, J. H. *The Physics of Low-Dimensional Semiconductors*, 290–366 (Cambridge University Press, New York, NY, USA, 1998).