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SUPPLEMENTARY NOTE 1. BRDF MODEL FOR DISORDERED METASURFACES

The method used in the main text to predict the visual appearance of macroscopic objects requires the knowledge of
the BRDF of disordered metasurfaces. We tackle here a longstanding issue with the modelling of random scattering
surfaces. The difficulty to model disordered metasurfaces comes from the need to take into account not only the
intricate coherent phenomena occurring at the scale of a few particles (high-index resonances of individual particles,
interaction with a layered substrate, mutual interaction between particles in a correlated disorder) but also the fact
that the disordered metasurface covers very large areas, much larger than a few wavelength squared.
Here, we present an approximate BRDF model that relies on both full-wave electromagnetic computations to predict

the scattering by an individual particle on a layered substrate and electromagnetic scattering theory to predict the
optical response of a virtually infinite surface made of such scatterers. As classically done, the multiple scattering by
ensembles of particles is described perturbatively [S1] and leads to corrections to the radiative properties obtained
with the independent scattering approximation (ISA) wherein the mutual interaction between particles is neglected.
The strength of the model, which is used to create the rendered images of the present work, is that it disentangles
the respective roles of individual particles and of structural correlations on the diffuse intensity, thereby providing
considerable insight on the control knobs for visual appearance.
We start by introducing the notions of coherent and incoherent intensities and then describe the approach employed

in the present work to compute the specular and diffuse components of the BRDF.

Coherent and incoherent intensity

We consider an ensemble of N particles incorporated in a planar stratified medium. All materials are assumed
to be non-magnetic (relative permeability, µ(r) = 1). We further consider harmonic fields at frequency ω with the
e−iωt convention and drop the explicit time dependence for simplicity. From Maxwell’s equations, one shows that the
scattered electric field Es(r) produced by the system for an arbitrary background field Eb(r) is described by a set of
two equations, as [S1, S2]

Es(r) =
∑

p

∫

Gb(r, r
′)Tp(r

′ − rp, r
′′ − rp)E

p
exc(r

′′)dr′dr′′, (S1)

Ep
exc(r) = Eb(r) +

∑

q 6=p

∫

Gb(r, r
′)Tq(r

′ − rq, r
′′ − rq)E

q
exc(r

′′)dr′dr′′. (S2)

Tp is the transition operator of the p-th particle, which relates the field exciting the particle and the polarization
density induced in it. It is directly given by Mie theory for particles with spherical symmetry [S3] and can be computed
numerically otherwise [S4]. Gb is the dyadic Green function in the background medium, which describes the electric
field produced by a radiating point electric dipole at any point of space [S5]. Equation (S1) states that the total
scattered field Es is the sum of the field scattered by all particles in the system. Each particle p is excited by a field
Ep

exc, which, following Eq. (S2), is the sum of the background field and the field scattered by all other particles q 6= p.
This system of two equations constitutes a rigorous description of multiple light scattering by assemblies of particles. It
is the classical starting point of multiple-scattering theories [S1] and can be solved exactly by computational methods
on finite ensembles of particles (as, for instance, to compute the results reported in the Supplementary Note 2).
In the present study, we are interested in determining the optical response of a large (macroscopic) surface illu-

minated by a partially coherent source (e.g., sunlight) and should therefore look for the statistical properties of the
scattered light upon configurational average. For identical particles (Tp ≡ T), the average is made over the particle
positions and is defined as

〈g(r,R)〉 =

∫

g(r,R)p(R)dr1dr2..., (S3)

where g(r,R) is a function and p(R) is the probability density function of finding the particles in configuration R =
[r1, r2, ...]. Decomposing the scattered field as the sum of its average and a fluctuating part, Es(r) = 〈Es(r)〉+ δEs(r),
with 〈δEs(r)〉 = 0, one can write the average intensity of the total field, E = Eb +Es, as the sum of two terms,

〈|E(r)|2〉 = |〈E(r)〉|2 + 〈|δEs(r)|
2〉. (S4)

The first term, |〈E(r)〉|2, is the so-called coherent intensity, whose propagation in bulk media is assimilated to that
in an effective medium with parameters often derived from mixing rules (e.g., Maxwell-Garnett, Bruggeman) [S1].
The second term, 〈|δEs(r)|

2〉 = 〈|Es(r)|
2〉 − |〈Es(r)〉|

2, is the so-called incoherent intensity, responsible for the diffuse
scattering. For statistically translationally-invariant (and thus, laterally infinite) planar media, these two terms
respectively yield the specular and diffuse components of the scattered light of interest in the present study.
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Specular reflectance model

To determine the specular component of the BRDF of disordered metasurfaces, we employ the state-of-the-art
multiple-scattering theory developed in Ref. [S6]. This earlier work derives analytical expressions for the complex
reflection and transmission coefficients of a infinitely-large monolayer of identical particles in a uniform background.
The effect of the substrate on the specular components is introduced later on.
The reflection and transmission coefficients (for s and p incident and scattered polarizations) upon excitation by a

linearly-polarized planewave with amplitude Eb, wavevector ki = kbk̂i and polarization êi are respectively defined as

rcohêiEb = 〈Es(r,kr)〉 , tcohêiEb = êiEb + 〈Es(r,kt)〉 , (S5)

where kr and kt ≡ ki are the wavevectors of the specularly reflected and transmitted planewaves. From Eq. (S1),
one understands that the key quantity to describe the average scattered field 〈Es(r,kr)〉 is the average excitation field
〈Ep

exc(r)〉, obtained by averaging Eq. (S2). The method developed by Garcia-Valenzuela et al. relies in particular
on the ansatz that the average exciting field is composed of specularly transmitted and reflected planewaves, see Eqs.
(18b) in Ref. [S6], which is perfectly sound considering that the monolayer is statistically invariant by translation and
is excited by a planewave.
We introduce the scattering amplitude of a particle in a homogeneous medium as

Ap(ks,ki) =
1

4π

[

I− k̂s ⊗ k̂s

]

Tp(ks,ki), (S6)

where Tp(p
′,p′′) is the Fourier transform of Tp(r

′ − rp, r
′′ − rp) in Eqs. (S1) and (S2), and ks = kbk̂s and ês are

the wavevector and polarization of the scattered planewave. Considering a statistically isotropic and translationally
invariant system composed of identical spherical particles (Ap ≡ A), we can neglect the possibility for polarization
conversion. After some maths, one arrives at fully analytical expressions for the reflection and transmission coefficients
of monolayers of spheres in a homogeneous background as [S6]

rcoh =
αAr

1− αAt +
α2

4 (A2
t −A2

r )
, tcoh =

1− α
2

4

(

A2
t −A2

r

)

1− αAt +
α2

4 (A2
t −A2

r )
. (S7)

Here, we have defined α = ρ2πi/ (kb cos θi), and the forward and backward scattering amplitudes At = êt ·A(ki,ki)êi
and Ar = êr ·A(kr,ki)êi with êr and êt ≡ êi the polarization in reflection and transmission. The expressions in the
independent scattering approximation are recovered by expanding Eqs. (S7) in powers of α (i.e., for small densities
and near normal incidence), that is, rcoh = αAr and tcoh = 1 + αAt. It is worth noting that the amplitudes of the
coefficients in the latter expressions exhibit an unphysical divergence at grazing angles. This shortcoming is completely
resolved in Eqs. (S7) [S6]. This will be shown below in the computational results reported in the Supplementary Note
2.
Once the reflection and transmission coefficients for the monolayer in the uniform background are obtained, the

impact of a substrate on specular reflectance and transmittance is accounted for via Fresnel equations [S6]. In solving
this problem sequentially, one makes the approximation that the interaction between particles via the substrate
does not contribute to the average exciting field. The quantitative agreement observed between the model and
computational results that will be reported below suggests that this approximation is valid for the metasurfaces
considered in this work, even when high-index substrates are considered (Supplementary Figs. 8 and 10). The validity
of this sequential approach is likely to degrade for particle-substrate systems exhibiting an efficient coupling between
free-space modes and guided photonic or plasmonic modes in the layered substrate.
The specular component of the BRDF can finally be expressed as a function of the reflection coefficient of the

particle monolayer on the substrate rst as

f spe
r (ks, ês,ki, êi) =

δ(π − θs − θi)δ(φs − φi)δês,êi

sin θs cos θs
|rst(ks, ês)|

2, (S8)

This ensures the specular reflectance efficiency be
∫

2π
f spe
r (ki, êi,ks, ês) cos θsdΩs = |rst(ki, êi)|

2, as expected.

Diffuse reflectance model

The diffuse reflectance of the surface plays a primary role in the present work. State-of-the-art models for the
diffuse intensity apply either to (i) particle monolayers suspended in a homogeneous background only (this allows the
scattered field to be decomposed onto the vector spherical harmonics basis) [S7], or (ii) particles much smaller than
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the wavelength on a substrate (this allows using a Green tensor formalism for radiating electric dipoles in layered
media) [S8]. Here, we consider particles exhibiting electric and magnetic dipoles and quadrupoles resonances (e.g., Si
particles of Fig. 2 in the main text) on substrates. The existing models are thus insufficient for our purpose.
We start by considering the field scattered by an individual particle p on an arbitrary substrate. The far-field

scattered upon illumination by an incident planewave reads

Ep
s (ks, z) = 2πiEb

exp [±iks,zz]

ks,z
Ap(ks,ki)êi exp

[

i(ki,‖ − ks,‖) · rp,‖
]

, (S9)

where ki,‖ and ks,‖ are the projections of the wavevectors of the incident and scattered planewaves on the surface
plane and ks,z = ks · ẑ = kb cos(θs) is the projection of the wavevector of the scattered planewave on the surface
normal z. Compared to Eq. (S6), the scattering amplitude Ap now takes implicitly into account the interaction
between the particle and the substrate. Ap can be computed for particles of any shape in arbitrary layered media
with virtually any Maxwell equations solver and a near-to-far-field transformation [S9]. Projecting Es(ks, z) on an
arbitrary polarization ês and taking the absolute square leads to the differential scattering cross-section [S3] of an
individual particle p

dσ
(1),p
s

dΩ
(ks, ês,ki, êi) =

k2b cos
2(θs)

4π2|Eb|2
|ês · E

p
s (ks, z)|

2 = |ês ·Ap(ks,ki)êi|
2. (S10)

Let us now consider the field scattered by an ensemble of N identical particles distributed on a surface of area
S. We will further take the limit N,S → ∞ such that the surface particle density ρ = N/S remains constant. The
field scattered by the particle ensemble is Es(ks, z) =

∑

p
Ep

s (ks, z). In the ISA, one neglects the field scattered

by neighboring particles on the exciting field Ep
exc in Eqs. (S1)-(S2), such that one could simply write Ap ≡ A for

identical particles. This approximation however breaks down as soon as the particle density ρ is not vanishingly small
and at grazing angles. A more realistic description is obtained by considering that the particles are “dressed” by the
interaction with their neighbours. For ensembles of identical particles, it is convenient to define a tensor cp describing
the change in the scattering amplitude of particle p due to the other particles as

Ap(ks,ki) = A(ks,ki)cp(ks,ki). (S11)

The scattering amplitude thus fluctuates from particle to particle due to multiple scattering, the latter being fully
described by the unknown tensor cp. To proceed, we write cp as the sum of its average (upon particle configurations)
and a fluctuating part as cp = 〈c〉 + δcp, where 〈cp〉 = 0. To reach an expression for the differential scattering
cross-section of the particle ensemble following Eqs. (S4) and (S10), we then assume that the particles are excited by
the average (coherent) field, which is quite standard in multiple scattering theory [S1], and take the limit of small
fluctuations, 〈|δcp|

2〉 ≪ |〈c〉|2, leading to

dσs

dΩ
(ks, ês,ki, êi) =

k2b cos
2(θs)

4π2|Eb|2
(〈

|ês · Es(ks, z)|
2
〉

− |ês · 〈Es(ks, z)〉 |
2
)

,

= N
dσ

(1)
s

dΩ
(ks, ês,ki, êi)Sr(ks,‖,ki,‖)C(ks,ki), (S12)

with C ≡ |〈c〉|2. We have also defined the static structure factor Sr(ks,‖,ki,‖) ≡ S(ks,‖,ki,‖) − ρ|Θ(ks,‖ − ki,‖)|
2/S

where Θ is the Fourier-transform of a window function equal to 1 in the area occupied by the particles (becoming a
Dirac delta function for an infinite surface), and S is the (two-dimensional) structure factor

S(ks,‖,ki,‖) =
1

N

〈

∑

p,q

exp
[

i(ki,‖ − ks,‖) · (rp,‖ − rq,‖)
]

〉

. (S13)

Analytical (or semi-analytical) expressions for the static structure factor can be found in the literature [S10]. Here,
we use the Baus-Colot model for two-dimensional, statistically isotropic and translationally-invariant liquids of hard
disks [S11].
The diffuse component of the BRDF is finally obtained by normalizing the differential cross-section by the apparent

surface S cos(θi) to obtain a scattering efficiency, and by the explicit dependence on the scattering angle cos(θs) [S12],
leading to

fdif
r (ks, ês,ki, êi) = ρ

dσ
(1)
s

dΩ
(ks, ês,ki, êi)Sr(ks,‖,ki,‖)

C(ks,ki)

cos(θi) cos(θs)
. (S14)
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From Eq. (S14), one therefore finds that the BRDF of the metasurface is proportional to the density of particles ρ,

the scattering diagram of an individual particle dσ
(1)
s /dΩ and the structure factor Sr to account for a correlations in

pairs of particles (Sr = 1 for uncorrelated disorder). The possibility to distinguish between individual and collective
effects brings great physical insight for design, which is crucial in our work. These scattering properties are corrected
by the function C, which represents a first-order correction to the ISA (wherein C = 1) and describes the modification
of the (coherent) exciting field from the incident field due to multiple scattering. It is worth noting that the ISA

tends to greatly overestimate the diffuse intensity at grazing angles since both the scattering cross-section dσ
(1)
s /dΩ

and the structure factor take finite values and the cosines at the denominator diverge.
Obtaining a rigorous expression, or even a numerical estimate, of C for arbitrary metasurfaces is a notoriously

difficult and still unresolved problem, which therefore necessarily relies on approximations. An important contribution
here is to propose a practical, heuristic method to compute an estimate of C that leads to physically sound and accurate

predictions of the diffuse component of the BRDF. To start, let us note that the specular and diffuse BRDF components
must evidently be related with each other, in the sense that an increase (resp., decrease) of the specular reflectance
must be accompanied by a decrease (resp., an increase) of the diffuse reflectance. Assuming as above that the particles
are excited by a planewave with a modified amplitude to account for multiple scattering effects, we can establish a
relation between the specular and diffuse components, as

1− Tst(θi, êi)−Rst(θi, êi) =
ρσe(θi, êi)

cos(θi)
γ(θi, êi). (S15)

We generalize here an expression that was derived in Ref. [S8] in the case of point dipole scatterers. Tst and Rst

are the specular transmittance and reflectance through the monolayer of particles on the layered substrate, evaluated
from Eq. (S7), σe is the extinction cross-section of an individual particle on the layered substrate and γ describes
the variation of the intensity exciting the particle due to the presence of neighboring particles. The left-hand side
of Eq. (S15) thus describes the extinction from the particle monolayer by removing the specular reflectance and
transmittance, and the right-hand side describes the extinction expected from an assembly of particles whose excitation
is modified by a coefficient γ.
In practice, Tst and Rst are obtained from the multiple-scattering model presented in the previous section, ρ is

an input parameter and σe is computed using fully-vectorial Maxwell’s equations solvers. We can thus compute the
excitation coefficient γ for all angles θi and both s and p polarizations.
The coefficients C in Eq. (S14) and γ in Eq. (S15) are evidently related to each other. On phenomenological

arguments, we propose to define the correction coefficient as the harmonic mean of the excitation coefficients γ for
the incident and scattered planewaves, that is

C(θs, ês, θi, êi)
−1 =

1

2

(

γ(θi, êi)
−1 + γ(θs, ês)

−1
)

. (S16)

This ensures that the diffuse component of the BRDF behaves correctly in all situations. For instance, a dominant
specular behavior is expected at increasing particle densities and/or at grazing angles of incidence. This will result
in a small excitation coefficient γ(θi), leading to a suppression of the diffuse term. Similarly, the diffuse intensity is
expected to be weak at grazing scattering angles. This behavior will be obtained via a small excitation coefficient
γ(θs). Finally, at low particle densities and near normal incident and scattering angles, the excitation coefficients γ
approach one, leading to a correction coefficient C ≈ 1, such that Eq. (S14) naturally tends to the rigorous expression
obtained within the ISA, as expected.
Although our model for the diffuse component of the BRDF is most likely unable to provide quantitative predictions

for arbitrary metasurfaces, it is physically sound and intuitive, and it yields very satisfactory predictions for the broad
panel of metasurfaces already considered in the present study, as will be confirmed by comparisons with full-wave
computations in the next section.
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SUPPLEMENTARY NOTE 2. VALIDATION OF THE BRDF MODEL WITH FULL-WAVE

MULTIPLE-SCATTERING COMPUTATIONS

To test the accuracy of our approximate BRDF model, we perform full-wave computations of the scattering by
disordered metasurfaces, taking all multiple scattering phenomena into account rigorously. The method, which is
presently developed by some of us [S13, S14], relies on the concept of a global polarizability matrix to handle possibly
dense systems composed of hundreds of particles in interaction in layered media. It can model particles exhibiting
high-order multipolar resonances (i.e., beyond the electric dipole) and use either open or periodic boundary conditions.
The method is expected to provide accurate quantitative predictions of the specular and diffuse reflectances and of the
scattering diagram, except at grazing incident and scattering angles due to the finiteness of the system. Indeed, full-
wave simulations can only handle finite number of particles (making up systems of a few wavelengths squared), which
is not necessarily representative of macroscopic surfaces in terms of scattering. We tackle this issue by combining two
approaches.
First, we estimate the average specular and diffuse reflectances integrated over the upper hemisphere by using

a supercell approach, i.e., by computing the power radiated into the diffraction orders of a periodic system whose
unit cell contains a large number of particles. Indeed, as the size of the supercell increases, the discrete spectrum of
diffracted orders is expected to become a faithful approximation of the (continuous) radiation diagram of the infinite
surface. Then, the (0, 0)th diffraction order efficiency tends towards the specular reflectance, and the sum of all other
diffraction-order efficiencies tends toward the diffuse reflectance. As shown below, we have checked that the average
response converges towards stabilized values, which may then be considered as exact statistical predictions of the
infinite, translationally-invariant surface.
Second, to estimate the diffuse scattering diagram, we consider a finite-size system as large as possible, compute the

radiation diagram by solving Maxwell’s equations and average over independent realizations to obtain the fluctuating
field (〈|δE|2〉 = 〈|E|2〉 − |〈E〉|2). Due to the finite size of the considered system, the predictions are necessarily
incorrect at grazing incident and scattering angles. Indeed, while diffuse scattering by infinitely large surfaces should
vanish as θ approaches π/2, it does not for finite-size surfaces. Nevertheless, these calculations provide a quantitative
prediction of the radiation diagram for illumination and viewing directions reasonably different from 90◦, from which
the predictive force of the model can be tested.

Convergence study with the supercell method

The simulations using the supercell approach are made for two particles: Silicon (Si) particles of radius r = 70 nm
(similar to the particles considered in Fig. 2 of the main text), and Silver (Ag) particles of radius r = 90 nm, identical
to those considered in Figs. 1, 3 and 4 of the main text.
We start by checking the convergence of the supercell approach with increasing number of particles N . Results are

reported in Supplementary Figs. 1 to 6. Simulations are performed for a set of three incident angles and polarisations
(θi = 0◦, 60◦ for TE polarisation, 60◦ for TM polarisation) and two wavelengths (λ = 580 nm and 440 nm). The
results are averaged over 10 disorder realisations, and the error bars correspond to the standard deviation.
We first consider monolayers of particles in air. Each particle is described by electric and magnetic dipoles. This

allows us to simulate large ensembles of particles (up to N = 500) and investigate the asymptotic convergence of the
supercell method with a reasonably low computational load. The results are presented in Supplementary Figs. 1-3.
For all computations, we observe a stabilization of the average towards a constant value and a decrease of the standard
deviation with increasing N . Convergence appears to be obtained. Interestingly, it appears that the asymptotic value
can be already estimated with good accuracy for systems containing a few tens of particles.
As a second step, we consider the more realistic case of particles on a substrate (thereby using the Green tensor of

a stratified medium in the computations) and incorporate electric and magnetic quadrupolar terms in the scattering
properties of the each particle. We consider here a smaller range of particle number N (due to heavier computational
load). The results are presented in Supplementary Figs. 4-6, where we observe a good convergence already for N & 40.
Based on this, we choose N = 50 for the following tests to obtain a good balance between convergence accuracy (with
confidence interval of about 0.02 in absolute value) and computational time (on the order of 10 minutes per wavelength
for particles on substrates).
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Supplementary Figure 1: Convergence test of the supercell method for the specular and diffuse reflectance
spectra. Reflectance takes values between 0 and 1. The reported values and the error bars are the average values
and the standard deviations obtained upon 10 disorder realizations. The black dashed lines serve as guides to the
eye. The system is a statistically uniform monolayer of spherical Si particles with radius r = 70 nm in air at a

surface coverage f = 0.1 and correlation parameter p = 0.1. The wavelength is λ = 580 nm.
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Supplementary Figure 2: Same as Supplementary Fig. 1 for a wavelength λ = 440 nm.
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Supplementary Figure 3: Same as Supplementary Fig. 1 for spherical Ag particles of radius r = 90 nm.
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N is considered here, compared to Supplementary Figs. 1-3. The system is a statistically uniform monolayer of
spherical Si particles with radius r = 70 nm on a glass substrate at a surface coverage f = 0.1 and correlation

parameter p = 0.1. The wavelength is λ = 580 nm.
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Supplementary Figure 6: Same as Supplementary Fig. 4 for spherical Ag particles of radius r = 90 nm.
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Comparison between model predictions and full-wave computational results with the supercell method

Supplementary Figures 7, 8, 9 and 10 show the specular and diffuse reflectance spectra over the range considered
for the predictions reported in the main text, for Si and Ag particles on either a glass substrate or a layered SiO2/Si
substrate with h = 400 nm, respectively. The numerical results are compared with the predictions of the BRDF
model to test its accuracy. We also add the predictions obtained with the independent scattering approximation
(ISA) to highlight the benefit of our model. As explained above, the ISA model is expected to largely overestimate
the reflectance (both specular and diffuse) by the surface, especially at grazing angles. This expectation is confirmed
by our simulations. By comparison, keeping in mind a confidency interval of about 0.02 on the numerical results,
the BRDF model for the specular reflectance [S6] nicely agrees with the numerics in most cases, with only a small
overestimate in some cases (e.g., at 60◦ in TM-polarization), while our heuristic model for the diffuse reflectance
generally tends to slightly underestimate it. Nevertheless, the predicted reflectances remain accurate even at large
angles of incidence and the important spectral features that play a major role in the produced appearances are
accurately reproduced in all cases. The former avoids the unphysical predictions of the ISA model for which the
surface would “generate” energy and the latter gives us great confidence in the capability of our approach to synthetise
realistic images of various objects covered of disordered metasurfaces.
To be more quantitative on the benefit of our BRDF model compared to the ISA, we compute the colour difference

∆E between predictions from the models and the full-wave supercell computations. ∆E is a real-valued positive
quantity that aims at quantifying the colour difference as perceived by the human eye; a ∆E 6 1 is generally
considered as an imperceptible colour difference, which becomes perceptible at a glance (yet without being strikingly
different) up to about 10. These numbers should however be taken with caution as the perception of colour difference
is a complex psychophysical process that varies with the observer, the object and the observation conditions, and
various ∆E models yielding quantitatively different results have been developed over the years [S15]. Here, the
calculation of ∆E is based on the CIE2000 standard with illuminant E (equal weigth to all wavelengths), taking the
spectra shown in Supplementary Figs. 7-10 as inputs. Results are displayed in the Supplementary Tables I-IV. When
analysing these numbers, one should also keep in mind that the colour predicted for the diffuse reflectance is not the
colour that would be observed under a certain viewing angle due to the integration over the upper hemisphere. With
a ∆E on the order of 5 on average and slightly above 10 at the highest, our model incorporating multiple scattering
leads to better predictions than the ISA on both specular and diffuse reflectances in general (23 situations out of 24),
often reducing the ∆E by a factor of 2 or more. Note that the ISA can reach very large values of ∆E (up to about
50 in our tests) at oblique incidence, clearly showing that the ISA model should not be used for BRDF predictions.
All in all, these comparisons make us very confident about the specular and diffuse colours predicted for particles

laying on both homogeneous and layered substrates in Figs. 1, 2 and 3 of the main text.
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Supplementary Figure 7: Comparison between the model predictions models and numerical data obtained with
the supercell approach for the specular and diffuse reflectance spectra of a monolayer of spherical silicon particles
with radius r = 70 nm deposited on a glass substrate with a filling fraction f = 0.1 and correlation parameter
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Supplementary Figure 9: Same as Supplementary Fig. 7 for spherical silver particles with radius r = 90 nm.
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Supplementary Figure 10: Same as Supplementary Fig. 9 for a SiO2/Si substrate with a thickness h = 400nm.
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0◦ 60◦ TE 60◦ TM
∆EISA ∆EMS ∆EISA ∆EMS ∆EISA ∆EMS

Specular refl. 10.62 4.43 11.96 2.67 27.64 6.30
Diffuse refl. (integrated) 6.01 3.10 9.62 3.75 13.10 3.59

Supplementary Table I: Colour difference between predictions from either the ISA model (∆EISA) or the present
multiple-scattering model (∆EMS) and full-wave supercell computations. The calculation of ∆E is based on the

CIE2000 standard with illuminant E (equal weigth to all wavelengths) for the metasurface considered in
Supplementary Fig. 7 (Si particles on a glass substrate).

0◦ 60◦ TE 60◦ TM
∆EISA ∆EMS ∆EISA ∆EMS ∆EISA ∆EMS

Specular refl. 7.77 2.82 7.90 1.70 53.72 11.07
Diffuse refl. (integrated) 8.96 5.27 6.68 8.46 18.89 2.26

Supplementary Table II: Same as Supplementary Table I for the metasurface considered in Supplementary Fig. 8
(Si particles on a SiO2/Si substrate).

0◦ 60◦ TE 60◦ TM
∆EISA ∆EMS ∆EISA ∆EMS ∆EISA ∆EMS

Specular refl. 5.43 1.11 10.29 2.59 13.93 8.60
Diffuse refl. (integrated) 5.89 5.55 8.79 2.11 6.70 4.83

Supplementary Table III: Same as Supplementary Table I for the metasurface considered in Supplementary
Fig. 9 (Ag particles on a glass substrate).

0◦ 60◦ TE 60◦ TM
∆EISA ∆EMS ∆EISA ∆EMS ∆EISA ∆EMS

Specular refl. 6.03 4.53 11.23 4.47 15.81 10.74
Diffuse refl. (integrated) 7.84 6.38 13.37 8.30 11.43 4.86

Supplementary Table IV: Same as Supplementary Table I for the metasurface considered in Supplementary
Fig. 10 (Ag particles on a SiO2/Si substrate).
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Validation of scattering diagrams for uncorrelated and correlated disorder with finite-size computations

The simulations for finite-size systems are performed for monolayers of either Si or Ag particles in air at a fixed
density of ρ = 2.5 µm−2 (f = 0.039 and f = 0.064, respectively). Results are shown in Supplementary Figs. 11
and 12 for an incident planewave (θi = 30◦ TE-polarisation) at two wavelengths (λ = 440 nm and 580 nm), and two
correlation degrees, p = 0.1 and p = 0.5. The results are obtained for 500 independent disorder realizations (needed
to smooth out the speckle pattern) of ensembles of 200 particles, which therefore requires significant computational
time. Recalling that the full-wave computational results are expected to be inaccurate for grazing scattered angles, we
observe a striking similarity on the impact of structural correlations on scattering. While the structures with p = 0.1
scatter light with no strong preferential direction, the sharp angular features due to structural correlations are nicely
reproduced for the structures with p = 0.5.
This agreement between two largely different approaches makes us very confident that the visual effects predicted in

Figs. 1 and 4 in the main text for correlated disorders are indeed real. Even more convincing are the experiments on
centimetre-scale samples, reported in Fig. 5 of the main text, the Supplementary Note 5 below, and the Supplementary
Video 3, which clearly show the impact of short-range structural correlations on light scattering and visual appearance.
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SUPPLEMENTARY NOTE 3. TOLERANCE TO PARTICLE POLYDISPERSITY

Bottom-up nanofabrication is a promising approach for the deployment of large-scale disordered metasurfaces in
visual appearance design. However, one has to deal with polydispersity in particle size, that is generally of the order
of 10 %. To evaluate the robustness of the scattering properties of the metasurfaces to polydispersity, we perform
rigorous full-wave computations similar to those of the previous section, i.e. taking all interactions between particles
and interfaces into account. We generate configurations of particles of radii given by a normal distribution with mean
r and standard deviation σr. The ratio δr = σr/r determines the degree of polydispersity.
Let us start by testing the diffuse iridescence with a monolayer of Ag particles on top of a layered, SiO2/Si substrate

with h = 400 nm. The Supplementary Fig. 13 shows the specular and diffuse reflectance spectra, computed with
the supercell method, for the monodisperse system (blue and red markers) and for the polydisperse system (black
markers) with a polydispersity δr = 10%. Quite remarkably, the spectra are almost unaffected by polydispersity. This
can be explained by considering that the observed spectral and angular features stem essentially from the interference
between the field scattered by the particle and the field multiply-reflected in the layer, and not from the (spectrally-
broad) optical resonances of the individual Ag particles. This further indicates that the diffuse iridescence shown in
Fig. 3 of the main text would persist even for a polydispersity of (at least) δr = 10% in size.
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Supplementary Figure 13: Tolerance of specular and diffuse reflectance spectra on particle polydispersity for a
monolayer of Ag particles with average radius r = 90 nm deposited on a SiO2/Si substrate with h = 400 nm at a
filling fraction f = 0.1 and correlation parameter p = 0.1. This system leads to the “diffuse iridescence” effect
reported in Fig. 3 of the main text. The blue and red markers show the spectra for the monodisperse system

(already shown in Supplementary Fig. 10) and the black square markers those for the polydisperse system with a
particle size polydispersity δr = 10%. Polydispersity has a negligible effect on the spectral features.
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The same conclusion is reached for the diffuse halo shown in Fig. 4 of the main text and obtained for a monolayer of
Ag particles with a short-range correlation. The Supplementary Fig. 14 shows the scattering diagrams of the diffuse
intensity for weakly correlated (p = 0.1) and strongly correlated (p = 0.5) systems for δr = 0, 5 and 10 %. The angular
distribution and amplitude of the scattered light are basically unaffected by polydispersity, because the scattering
properties of the Ag particles vary weakly on average with the particle size fluctuations, and the modification of the
scattering diagram due to short-range correlations is due to the structure factor only, which is independent of the
particle size. The diffuse halo shown in Fig. 4 of the main text will thus withstand polydispersity up to at least
δr = 10%.
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Supplementary Figure 14: Tolerance of the scattering diagrams of the diffuse intensity on particle polydispersity
for a monolayer of Ag particles with average radius r = 90 nm in air at a particle density ρ = 2.5 µm−2 and

correlation parameters p = 0.1 and p = 0.5, illuminated by a TE-polarised planewave with wavelength λ = 580 nm
and incident angle 30◦. The particle size polydispersity δr goes from 0 to 10 %. The effect of polydispersity up to

δr = 10% is negligible.
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The weak sensitivity to size polydispersity is helped by the fact that the optical response of individual Ag particles
(or equivalently, the induced dipole moments) varies relatively weakly with small size variations. This contrasts
with high-index dielectric particles exhibiting spectrally sharp Mie resonances as illustrated in Fig. 2 of the main
text. To illustrate this, we compute the specular and diffuse reflectance spectra of a disordered metasurface made
of Si particles with average radius r = 70 nm on a glass substrate with a polydispersity δr = 10%. As shown in
Supplementary Fig. 15, the resonances are smoothed out with a weaker amplitude and a broader linewidth. This
would lead to a reduced glossiness and fainted diffuse colours. Note that this conclusion applies to all dielectric
metasurfaces considered in the literature for applications in structural colouration.
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Supplementary Figure 15: Same as Supplementary Fig. 13 for Si particles with average radius r = 70 nm on a
glass substrate. The impact of polydispersity is stronger here due to Mie resonances that spectrally broaden with
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19

A less obvious question is whether the exotic visual effects coming from mesoscale interference resist polydispersity.
A first answer is provided in Supplementary Fig. 16, where we compute the scattering diagrams of disordered metasur-
faces made of Si particles for weak (p = 0.1) and strong (p = 0.5) short-range structural correlations. The variation of
the scattering amplitude (here at λ = 440 nm) with polydispersity is fully explained by the spectral broadening effect
described above. More importantly for us, short-range structural correlations still lead to a significant modification
of the scattering diagram for the diffuse intensity with a reduction of the intensity around the specular direction and
an enhancement at larger angles. This indicates that the diffuse halo with dielectric metasurfaces, as demonstrated
experimentally in our work (Fig. 5 of the main text), would persist even for a size polydispersity of about 10%.
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Supplementary Figure 16: Same as Supplementary Fig. 14 for Si particles with average radius r = 70 nm at
λ = 440 nm. The suppression of the diffuse intensity near the specular direction due to structural correlations

remains clearly visible.
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SUPPLEMENTARY NOTE 4. VALIDATION OF THE RENDERED IMAGES

The comparison of the BRDF model predictions with full-wave multiple-scattering computations presented in the
Supplementary Note 2 ensures that the reflectance properties of the disordered metasurface are predicted with good
quantitative agreement. Here, we proceed with the validation of the visual appearance of macroscopic objects covered
by a disordered metasurface. The rendering technique used in this work on the spherical probe and speedshape objects,
as described in the Methods, is said to be predictive. Indeed, given a surface with macroscopic deformations (i.e.,
having curvature radii much larger than the wavelength), characterized by specific reflectance properties and light
sources with specific positions, directions and spectra, the light propagation between the source, the surface and the
observer can be considered as exact. We do not discuss here the approximation due to the use of environment maps for
outdoor environments. Thus, beyond the actual predictive capability of the BRDF model, the main approximations
on the appearance predictions made here may be categorized as follows.
The first approximation concerns the applicability of a BRDF model in general. Indeed, a real material may be

partly transparent and exhibit subsurface scattering, in which case light can exit the medium at a point from the
surface that differs from the entry point. In the present work, we assumed that light impinging on the surface at a
point does not “spread” on macroscopic distances in the monolayer to exit at another point, which is very reasonable.
We further assumed that light scattered in transmission through the monolayer of particles on substrate is lost by
absorption for all wavelengths. This is the case of the Si substrates considered in Figs. 1 and 3 of the main text, and
is also realistic for tinted glass substrate used in Figs. 1, 2 and 4.
The second approximation concerns the discretization of the BRDF, which stems from the fact that the scattering

properties of the particles are computed numerically. As described in the Methods, the BRDF is discretized in the
wavelengths with a 10 nm resolution, and in the incident and scattering angles with 0.5◦ and 1◦ resolutions for
the zenith and azimuth angles. To verify that the considered resolutions are sufficient, we compute the BRDF of a
disordered metasurface producing strong spectral and angular variations due to both a layered substrate and structural
correlations, with different spectral and angular resolutions, and compared the resulting rendered images. Results are
shown in Supplementary Fig. 17 for the spectral resolution, and in Supplementary Fig. 18 for the angular resolution.
One can hardly distinguish any difference by eye in the various appearance features.
Thus, the rendered images shown in this work do not suffer from spectral or angular discretisation and are repre-

sentative of the visual appearances that would be observed in reality given the BRDF of the disordered metasurfaces
and the lighting environment.
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Supplementary Figure 17: Rendered images for the spherical probe computed at two different spectral
resolutions. The disordered metasurface is a monolayer of silver particles of radius r = 90 nm on a SiO2/Si substrate
with h = 400 nm with a surface coverage f = 0.1 and a correlation degree p = 0.5. The two rendered images for a

2 nm resolution (left) and a 10 nm resolution (right) are indistinguishable by eye. This justifies the 10 nm resolution
used for the numerical computations in this work.
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Supplementary Figure 18: Rendered images for the spherical probe computed at three different angular
resolutions. We hardly notice any difference by eye when the original angular resolution (0.5◦ and 1◦ for the zenith
and azimuth angles, left image) is degraded (middle and right images). This fully justifies the angular resolution

used for the numerical computations in this work.
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SUPPLEMENTARY NOTE 5. QUANTITATIVE BRDF MEASUREMENTS ON DISORDERED

METASURFACES

In addition to the appearance acquisition of the two centimetre-scale metasurfaces (Fig. 5 of the main text), we
perform quantitative BRDF measurements of the two samples. The BRDFs are recorded with a home-made spec-
trogoniometre setup calibrated with a Lambertian diffusor using a supercontinuum laser as a source. Supplementary
Figure 19 shows normalized measurements performed as a function of the wavelength λ and the detection zenith angle
θ. The samples are illuminated with an angle of incidence θi = 30◦. To avoid blocking the incident light for a large
set of angles, the measurements are performed 20◦ above the plane of incidence. Note that the black stripe at θ ≈ 20◦

comes from the detector support blocking the incident laser.
As expected, the spectra reveal the presence of Mie resonances that produce the diffuse colours observed in Fig. 5

of the main text. The spectral shift between the weakly and strongly correlated media, which induces a variation of
the diffuse colour between the two samples, is due to the ageing of the negative resist, which has been used for the
fabrication of the two samples, over an interval of two months. More importantly, for the weakly correlated metasurface
(p = 0.1), the reflection peak extends over the complete set of detection angles with a small redshift as θ decreases,
whereas for the strongly correlated metasurface (p = 0.5), nearly all the reflected intensity in the detection plane is
collected in backreflection around angles centered on θ ≈ 50◦, in full consistency with the appearance acquisitions
reported in Fig. 5 and with the numerical predictions of Supplementary Fig. 11.
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Supplementary Figure 19: Quantitative BRDF measurement on disordered metasurfaces with

varying structural correlations. The BRDF spectra are measured 20◦ above the plane of incidence for light
incident at θi = 30◦. Short-range structural correlations lead to a suppression of the diffuse intensity near the

specular direction θ ≈ −30◦ (yellow dashed line) and an increase in backscattering around θ = 50◦.
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