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1 Influence of Bragg Disk Variability on Virtual Apertures

Defining virtual apertures to target overlap regions of interest from the averaged diffraction

patterns may introduce artifacts in heterogeneous samples wherein the variability of the

Bragg disk positions leads to the inclusion of pixels from outside the interference region, so

we verify that the chosen virtual aperture region does not include errant contributions from

the diffuse background or other interference regions. Biasing from this effect was avoided by

imaging samples with relatively low sample variability due to local tilting and/or strain as

shown below and through using relatively small virtual apertures. We note that all samples

used were very homogeneous, seen in the variation in disk position of the order of 0.01 nm´1

within the provided representative acquisition region in Supplemental Figure 1 (we note that

there is some uncertainty associated with fitting disk locations associated with thin moiré

structures such as these). Bleed-in of these unintended regions manifested in regions along

the edges of a given disk’s virtual dark field with considerably less intensity (or an unexpected

low or high-frequency intensity variation from bleed-in of another overlap region), allowing

us to further screen our virtual aperture masks. A down-sizing of the overlap regions of

roughly 25% was therefore adequate to account for this variation in disk position of « 10%

of the Bragg disk diameter. We note that the viability of this down-sizing approach requires

a decent number of pixels in the overlap regions, placing restrictions on the choice of camera

length and convergence angle as discussed in Supplemental section 4.

2 Choice of Acquisition Parameters

Typically the convergence semi-angle is chosen to minimize the probe size through achiev-

ing the right balance between abberations and the diffraction limit in approaches that do

not make use of the probe tails. For the interferometric approach we use, the optimal con-

vergence semi-angle is somewhat larger and depends on a few additional sample-dependent

considerations, such as the moiré twist angle and the substrate choice and orientation. We

note that a relatively large probe size is needed to obtain sufficiently many pixels in the

disk overlap regions of interest, particularly for samples with larger twist angles or when the
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Supplemental Figure 1: Bragg Disk Variability (a) Virtual dark field images corre-
sponding to the overlap of all three layers from the θ13, θ12 “ 0.22

˝

, 1.5
˝

sample shown in
Main Figure 1. Scale bar is 25 nm. (b) Representative convergent beam electron diffrac-
tion (CBED) patterns within the numbered regions depicted in (a). (c) Enlarged regions
from the CBED patterns illustrating degree of Bragg disk variability. (d) Representative
CBED pattern and enlarged regions illustrating the signal to noise in the diffraction pattern
obtained for a real space pixel.
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camera factor is larger as a result of the small accelerating voltage. However increasing the

probe size past its conventional optimal also increases the signal to noise associated with

each pixel. Large probe sizes may also lead to overlap with undesired Bragg disks from the

substrate or an inability to resolve separate overlap regions in multi-layered samples. As

seen in figure 3a of the main text, a small bleed-in of the smaller moire pattern was hard to

complete exclude. We give a few considerations and equations for choosing an appropriate

set of imaging conditions below, but note that the optimal set-up will be dependent on choice

of sample, substrate, and detector.

A set of two Bragg disks each with radius r at a distance D away from 000 reflection that

are offset by θij from one another have the area of overlap given below. In practice the

probe radius should be multiplied by a factor representing the proportion of theoretically

accessible pixels that can reasonably be extracted using our approach (we downsize each

region by 25%).

Apθijq “ 2r2cos´1
p
D

a

2 ´ 2 cos θij

2r
q ´

b

´D2p´1 ` cos θijqp´D2 ` 2r2 ` D2 cos θijq (1)

When we have a trilayer system (taking the convention that the largest angle is θ13 “ θ12 `

θ23), we have areas of overlap associated with layers 123, 23, and 12 of Apθ13q, Apθ23q´Apθ13q

and Apθ12q ´Apθ13q respectively. To obtain any pixels at all in the 123 layer overlap region,

this requires that
?
2r{D ą

?
1 ´ cos θ13. We found that a convergence angle of 1.71 mrad

and camera length of 800 mm was sufficient for imaging features on the moiré length-scale

for the range of samples presented in this work. At these imaging conditions the Bragg

disk radius r is 0.18 nm´1 and the distance D between the central beam and a first order

Bragg reflection is 2.09 nm´1. Therefore the condition
?
2r{D ąą

?
1 ´ cos θ13 is satisfied

for angles up to even a few degrees and we are left with sufficiently many pixels to obtained

the virtual dark fields as described. We note that some of these limitations may be overcome

by focusing on only higher order reflections instead of only the first and second peaks used

in this work or from allowing the overlap regions to vary over the sample instead of using a
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fixed regions identified from the averaged diffraction pattern (which would permit use of a

larger fraction of accessible pixels).

3 Attribution of Bragg Disks to Layers

We are unable to determine if a measured trilayer sample is in the θ13 ă θ23 or θ13 ą θ23

regime from the 4D-STEM data-set alone, as the approach described is insensitive to out-

of-plane orientation. We therefore leverage additional information to attribute each of the

measured Bragg disks to a given graphene layer. This is accomplished using the known order

in which each graphene layer was picked up, optical micrographs of the individual graphene

layers prior to, and after assembly into the heterostructure, and conventional dark-field

electron micrographs of the samples assembled on TEM grids. Taken together we are able

to attribute regions of the dark field images (Supplemental Figure 2A-C) to either twisted

trilayer graphene or a region of twisted bilayer graphene in which only layers 1 and 3 are

present. We then attribute Bragg disks to graphene layers by collecting a 4D-STEM data over

the TLG/BLG interface as seen in Supplemental Figure 2F, which show that the smallest

twist angle in the sample is between layers 1 and 3. Comparison of the graphene 2110 Bragg

reflections in other selected portions of the sample ( Supplemental Fig. 2G) further suggests

that θ13 only gradually increases from left to right in the sample and that θ13 ăă θ23 for

all of the investigated regions of this sample. We note that we are unable to distinguish

between layers 1 and 3 in this approach and assume that θ12 ą θ23 throughout. As we do not

consider any substrate effects in this work, this convention has no bearing on our analysis.

4 Predicted Intensities for Bilayer Interfaces

The intensity of two overlapping Bragg disks can be modeled by the following, where I and g

are the intensity and reciprocal space vector for a given Bragg disk, A and B are coefficients,

and u is the inter-layer displacement vector [1]. We note that this expression assumes a

center of inversion symmetry within the sample [2].

Ipgq “ Apgq cos2pπg ¨ uq ` Bpgq
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Supplemental Figure 2: Attribution of Bragg disks to layers for θ13 ăă θ23 regime
TTLG sample (a-c,f) Dark field electron micrographs obtained from the trilayer structure,
with optical microscope images shown in (d-e). BLG graphene region corresponds to the
presence of only layers 1 and 3, seen by comparison to (d-e). 4D-STEM data-sets used in
this work were obtained in the the boxes overlaid in (a-c). The 4D-STEM scan obtained over
the TLG/BLG boundary and corresponding 1010 Bragg disks illustrate that θ13 ! θ23. (g)
Selected 2110 Bragg disks for 4D-STEM analysis, illustrating that θ13 ! θ23 holds true for
all data-sets shown here. Bragg disk intensities are shown on a logarithmic scale throughout.
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In general the fitting parameters A and B depend on the Bragg reflection in question and

thus reciprocal space vector. However whenever the underlying atomic lattice has local

C3 symmetry, the fitting parameters will be the same for all Bragg reflections of the same

order (such that the intensity depends only on the magnitude of g). In previous work

this dependence of the overlap intensity on the orientation of g allowed us to distinguish

between differently oriented soliton features. However independently fitting the overlap

intensity along each of these reciprocal lattice directions is not strictly necessary if we aim

to only distinguish soliton from pockets of high symmetry stacking but not determine their

orientation. In this work, we therefore instead only investigated the average intensities in

the first and second order Bragg disks. This simpler approach distinguishes between AA,

AB, and SP-type stacking orders but averages away the information necessary to distinguish

between different SP orientations. In practice we averaged the intensity associated with all

six first order Bragg reflections to minimize measurement noise.

I1 “ pI0110 ` I1010 ` I1100 ` I0110 ` I1010 ` I1100q{6

I2 “ pI2110 ` I2110 ` I1210 ` I1210 ` I1120 ` I1120q{6

When we write the displacement vector in the lattice vector basis as u “ c1a1 ` c2a2 where

a1 “ a0p1, 0q, a2 “ a0p1{2,
?
3{2q and a0 is the lattice constant for graphene, we can compute

the averaged intensity of all first and second order Bragg reflections as follows:

I1 “ A1pcos
2
pπc1q ` cos2pπc2q ` cos2pπpc1 ´ c2qq ` B1

I2 “ A2pcos
2
pπpc1 ` c2qq ` cos2pπp2c1 ´ c2qq ` cos2pπp2c2 ´ c1qqq ` B2

These resulting expressions highlight that the average intensities, once normalized to re-

move dependence on the constants (such that Ai “ 4{9 and Bi “ ´1{3 for Ii in the range

of [0,1]), can be used to distinguish between all relevant high-symmetry stacking orders in

graphene trilayers without the need for any fitting parameters. Therefore only two intensity

expressions and thus a bi-variate colormap are sufficient to resolve the two unknowns c1, c2.
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However, avoiding rigorously fitting the diffraction intensities in favor of a simple normal-

ization, while convenient, leaves the stacking order attributions sensitive to noise. This is

addressed in further detail Supplemental section 10. Accompanying multi-slice simulations

( Supplemental Figure 4) support the validity of this approach for the trilayer structures

shown in this work.

We note that materials with in-plane projections that break inversion symmetry about u “ 0

(such as the ABt trilayers since ABC ‰ ABA) require the inclusion of additional odd terms

[2]. We are however able to overcome this by instead shifting the origin of the displacement

field u to coincide with the ABC-type stacking u “ a1{3 ` a2{3 “ a0{2p1, 1{
?
3q, which is

a center of inversion symmetry for the in-plane projection of u. The resultant expression

for the ABt trilayer intensities is then as follows for the normalized intensities Ii. We also

note that now A1 ă 0 as the ABC-type stacking order at the origin is a associated with

a local minima in scattering intensity instead of a local maxima as was the case for the

AAA-stacking, as is seen in the accompanying multi-slice simulations. Practically this is

accomplished using the following expressions for the normalized ABt intensities.

I1 “
4

3
´

4

9
pcos2pπpc1 ´ 1{3qq ` cos2pπpc2 ´ 1{3qq ` cos2pπpc1 ´ c2qq

I2 “
4

9
pcos2pπpc1 ` c2 ´ 2{3qq ` cos2pπp2c1 ´ c2 ´ 1{3qq ` cos2pπp2c2 ´ c1 ´ 1{3qqq ´

1

3

It is also important to note as that the derived expressions for intensity modulation depend

only on the in-plane projection of the displacement vectors, so we can investigate samples

that differ only in their out-of-plane orientation (such as tAB and AtB) with an identical

framework.

5 Predicted Intensities for Trilayers

We can derive the expected intensity within a region of three overlapping graphene Bragg

disks from the weak phase object approximation in a similar manner to previous work [1,

2]. We first assume that we have a centrosymmetric trilayer structure in which each layer’s
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Supplemental Figure 3: Stacking order maps for rigid AtA and tAB. Schematics
illustrating the stacking order map expected for a rigid AtA structure (a) and tAB structure
(b), obtained via the expressions provided in Supplemental section 7. (c, d) Histograms
illustrating the relative prevalence of each stacking configuration, binned according to average
first and second order Bragg disks intensities (using 80x80 bins) wherein color indicates
counts.
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projected electrostatic potential is V prq. We define the displacement vectors u12, u23, and

u13 associated with layers 1&2, layers 2&3, and layers 1&3 respectively. The total projected

potential is then given by the sum V pr´u12q `V prq `V pr`u23q. Assuming that diffraction

occurs within a single plane and using the weak phase object approximation, the ψ associated

with the outgoing electron beam can therefore be expressed as the following, in terms of the

unscattered electron beam ψ0 and the relativistic interaction parameter σ

ψprq « p1 ` iσV pr ´ u12q ` iσV prq ` iσV pr ` u23qqψ0prq (2)

The Fourier space intensity Ipkq is then given by the following, in which f denotes convo-

lution.

Ipkq “ |ψpkq|
2

“ |pδpkq ` iσ
ÿ

g

δpk ´ gqV pgqp1 ` e2πig¨u12 ` e´2πig¨u23qq f ψ0prq|
2 (3)

Assuming that the convergence semi-angle is chosen to ensure that Bragg disks within a

single layer do not overlap, we therefore have the following relationship between the projected

displacement vectors and the modulation in intensity Ij for a set of selected Bragg disks at

positions gj. We note that we defined Apgq “ 4σ2|V pgq|2, Bpgq “ ´3σ2|V pgq|2 and used

that e2ix ` e´2ix “ 2cosp2xq “ 4cos2pxq ´ 2.

Ipgjq “ Apgjqpcos2pπgj ¨ u12q ` cos2pπgj ¨ u13q ` cos2pπgj ¨ u23qq ` Bpgjq (4)

6 Comparison to Multi-slice Simulations and Finite Probe Effects

In order to validate the derived intensity expressions used to form the bi-variate colormap

with which the diffraction patterns are analyzed, we preformed a series of multi-slice simula-

tions. Multislice simulations were carried out using ABTEM [3] with an acceleration energy

of 80 keV, convergence semi-angle cutoff of 4.0 mrad, and rolloff of 0.5, and a potential

sampling of 0.2 Å. We made use of the infinite projection scheme for all plots shown. The

intensities in the first and second order Bragg disks in the resultant theoretical diffraction
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patterns were integrated to obtain the results shown in Supplemental Figure 4 using the

same procedure outlined in Supplemental section 3.

The obtained dependence of Bragg disk intensity on stacking order from multi-slice (circles)

agree well with the analytical expressions presented (solid lines) and do not lead to any

qualitative differences in the colored plots shown. We do note a small (20%) discrepancy

between the multi-slice intensities and those obtained from the expression used within the

soliton regions between AAB and BAB regions within the ABt sample. Analyzing the data

with respect to the derived expression will therefore impart a small overestimation of these

soliton regions, however we note that this intensity discrepancy is less than noise-driven

normalization bias discussed in Supplemental section 10 and standard deviation of averaged

line-cuts shown (Fig. 2F, 2L) and therefore likely does not feature predominantly in analysis.

Supplemental Figure 4: Comparison between Simulated, Expected, and Exper-
imental Intensities. (a,d) Comparison of the intensity distribution for AtA and tAB
bilayers obtained via multi-slice simulation and from the expressions provided in Supple-
mental section 7 with (b,e) corresponding line-cuts.

We also note a small systematic reduction in the second order Bragg disk intensity associated

with the AAA stacking regions when comparing the experimental data to the predicted

intensities, which is robust to noise. We ascribe this to an averaging effect associated with

the finite spatial resolution. This effect arises because the AAA regions display an appreciable

contraction to form domains on the order of a nanometer across or less, below the 1.25 nm

spatial resolution imposed by the finite probe width. The regions labeled AAA within the

experimental stacking order maps and line-cuts therefore include a measurable bleed-in from

neighboring low intensity regions, decreasing the intensity of the peak in the second order
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Bragg disk intensities. This effect is observed predominantly in the second order intensity

owing to the fact that the second order intensity peak is considerably sharper than the first

order intensity peak associated with this region. This decrease in intensity persists following

normalization due to the ABA regions, which are expected to have comparable second order

intensity and instead retain sizes larger than the spatial resolution following reconstruction.

We note however that while this prevents us from drawing quantitative claims regarding the

atomic reconstruction of the smaller moiré pattern, it does not effect the measurements of

the larger scale moiré reconstruction shown in main text Figure 4. Further we are still able

to measure the rough trends in atomic reconstruction within the smaller moiré qualitatively

as these intensity signatures can still provide evidence of a relative contraction of the AAA

domains compared to the ABA domains.

7 Effects of Normalization Bias

In avoiding the use of fitting parameters, the simpler interferomic approach employed in

this work is more susceptible to noise. In particular, variation in the peak and background

scattering intensity over a sample (driven by factors such as sample tilting and impurities

such as carbon build-up and hydrocarbon residues) will impart a spatial variation in the

coefficients A and C presented in Supplemental section 7. This limitation is not specific to

this work, as previous fitting of these interference fringes assumed that the fitting parameters

were uniform over the field of view. However such an approach is still preferable to obtaining

constants based on the maximum and minimum intensities within a data set. This bias was

mitigated by smoothing the virtual dark field images with a Gaussian filter (σ “ 0.5 nm)

prior to normalization, however it remains important to determine if the observed stacking

distributions are robust with respect to this noise-driven normalization bias.

Supplemental Figure 5 illustrates line profiles associated with the observed stacking order

modulation within AtA ( Supplemental Figure 5A, 5C) and tAB ( Supplemental Figure 5B,

5D) samples, a portion of which ( Supplemental Figure 5A-B) was already shown in Figure

2 and is repeated here for convenience in comparison. When the normalization constants
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Supplemental Figure 5: Effects of Normalization Bias on Observed Reconstruc-
tion (a,c) Line-cut illustrating the progression of stacking order within an AtA sample as
shown in Figure 2 of the Main text obtained from normalizing the entire data-set together (a)
and from a locally optimal normalization (c). (b,d) Analogous line-cuts for the tAB sample.
Rigid intensity profiles (dotted lines) are computed using the expressions in Supplemental
section 7. Domain sizes were obtained from the full width at half max of I2110 ` I2110 ` I1210
with I0110 ` I1010 ` I1100 only serving to distinguish between sites as in Fig 2. We note for
comparison that geometric portioning in Fig 3 and Supplemental Figs 6,9,10 uses a slightly
different convention described in Supplemental section 11. These two conventions yield com-
parable trends. Shaded regions represent the standard deviation throughout.
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are chosen based on the maximum and minimum values in the entire smoothed data-set (

Supplemental Figures 5A-B), we observe a contraction of the AAA domains, as noted in the

main text. The same general trend is seen when normalizing to the averaged line profile (

Supplemental Figure 5C-D), and the extent of contraction observed is roughly 13 percent

larger in the AAA domains (the two methods yield domain sizes of 48% and 35% of the

rigid domain size respectively). We note that the presented standard deviation predicts a

reduction in domain size to 27-72% of the rigid lattice, and the error margin from the standard

error is insignificant as over 200 line-cuts were used. For the tAB sample ( Supplemental

Figure 5B, 5D), wherein the AAB domains shrink, the two methods yield AAB domain sizes

of 63% and 46% of the rigid domain size respectively and the standard deviation in line-cuts

predicts a AAB domain size of 36-94% of the rigid domain (again with a negligible margin

from the standard error).

We therefore note that the approach used is sufficient to draw qualitative claims regarding the

approximate extent of reconstruction in these samples, but a systematic normalization bias

motivates more a quantitative investigation in ongoing future work. All results presented in

the main text were obtained from samples with an extent of noise and sample homogeneity

comparable that in Supplemental Figure 5 and claims regarding reconstruction are avoided or

discussed in the context of these caveats. We would like to emphasize that the reconstruction

trends that we most seek to emphasize for this work pertain to the larger-scale moire pattern

(and specifically the persistence of AtB regions), for which such a high uncertainty is not

present. Further, the bias discussed does not obscure the trends drawn.

8 Supplemental Atomic Stacking Maps

Additional atomic stacking maps for AtA and tAB regions and corresponding stacking statis-

tics are provided in Supplemental Figure 6. We can see from these atomic stacking maps

that AtA samples ( Supplemental Figure 6A-B) in the 1.81˝ and 1.0˝ regime are structurally

alike, similar of twisted bilayers within this twist angle range [1]. The atomic stacking of tAB

samples ( Supplemental Figure 6C-D) in the 1.5 degree and 0.1 degree regime show a pattern
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of reconstruction to decrease the proportion of AAB stacking with little preference between

ABC and BAB, as noted in the main text, and is more dramatic at smaller twist angles.

Additional atomic stacking maps for TTLG regions and corresponding stacking statistics

(obtained via the procedure outlined in Supplemental section 11) are provided in Figures S7

and S8. Supplemental Figure 9 displays the portions of each stacking order seen within the

larger AtA, AtB, and tAB domains. We see that the larger scale moire pattern has little

effect on the extent of reconstruction within AtA domains, which appear very similar to the

stacking distribution seen within the θ13 « 0 regions (shown as dotted lines in Supplemen-

tal Figure 9). Maps of stacking portion against both variable twist angles in Supplemental

Figure 10 shows that the relative portion of AtA/tAA, AtB/tAB, and SP stacking within

the larger scale moiré pattern depends primarily on the smaller twist angle, motivating the

analysis and visualization in Figure 3A of the main text.

9 Continuum Relaxation Model

To calculate the relaxation-redistributed local twist angle, we employ a continuum relaxation

model in local configuration space [4]. In twisted trilayer graphene with two independent

twist angles, there does not exist a largest length scale and the system is incommensurate [4].

Therefore, instead of formulating the problem in real space, we adopt configuration space,

which describes the local environment of every position in layer Lℓ and bypasses a periodic

approximation [5]. Every position in real space r in Li can be uniquely parameterized by

three shift vectors biÑj for j “ 1, 2, 3 that describes the relative position between a given

point r with respect to all three layers. Note that biÑj “ 0 if i “ j since the separation

between a position with itself is 0, which leads to a four-dimensional configuration space.

For a given real space position r, the following linear transformation relates r and biÑj in

layer i with respect to layer j, and following linear transformation maps the relaxation from

the local configuration to the real space positions r:

biÑj
prq “ pE´1

j Ei ´ 1qr, (5)
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Supplemental Figure 6: Supplemental Atomic Stacking in AtA and tAB trilayers.
(a) Plot illustrating how the proportion of AAA stacking (grey), ABA + BAB stacking
(blue), and lower symmetry stackings (black and yellow) change with twist angle in the AtA
regions measured. Hexagonal insets illustrates how stacking areas are partitioned within
the moiré unit cell. (b) Corresponding maps of local atomic stacking in representative
AtA regions. (c) Plot illustrating how the proportion of BAB + AAB stacking (grey),
ABC stacking (blue), and lower symmetry stackings (black and yellow) change with twist
angle in the tAB regions measured. Hexagonal insets illustrates how stacking areas are
partitioned within the moiré unit cell. (d) Corresponding maps of local atomic stacking
in representative tAB regions. All scale bars are 25 nm. Scale bars represent standard
deviations and dotted lines are piece-wise linear fits to guide the eye. Error bars denote
standard deviations collected from 3-253 points for each data point.
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Supplemental Figure 7: Supplemental Atomic Stacking in TTLG trilayers (1/2).
(a) Maps of local atomic stacking from the larger moiré pattern only, corresponding to the
local in-plane offset between between layers 1 and 3. (b) Local atomic stacking obtained from
considering all three graphene layers. (c) Stacking order maps expected of rigid structures
with the same twist angles, obtained from the equations in Supplemental section 8. All scale
bars are 50 nm. Data-sets in panels 4-5 are shown in the main text.

Supplemental Figure 8: Supplemental Atomic Stacking in TTLG trilayers (2/2).
(a) Maps of local atomic stacking from the larger moiré pattern only, corresponding to the
local in-plane offset between between layers 1 and 3 for panels 1-4 and between layers 2 and 3
for panels 5-6. (b) Local atomic stacking obtained from considering all three graphene layers.
(c) Stacking order maps expected of rigid structures with the same twist angles, obtained
from equations presented in Supplemental section 8. All scale bars are 50 nm. Data-sets in
panels 4-5 are shown in the main text.
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Supplemental Figure 9: Atomic Stacking Trends in TTLG (a) Plot illustrating how
the proportion of AAA (grey), ABA+BAB (blue), and SP stacking (black) depend on the
three measured twist angles θ12, θ13, and θ23 change within AtA domains. Dashed lines
represent the stacking portions measured for a pure AtA sample with θ13 « 0 as shown in
Supplemental Figure 6. (b) Plot illustrating how the proportion of ABB + AAB (grey),
ABC (blue), and SP stacking (black) depend on the three measured twist angles change
within AtB domains, and AAB + BAB (grey), ABC (blue), and SP stacking within tAB
domains. Dotted lines are piece-wise linear fits to guide the eye. Solid lines are the stacking
portions expected of rigid structures.
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Supplemental Figure 10: Dependence of stacking order on both variable twist
angles Plot illustrating how the proportion of AtA/tAA stacking, tAB/AtB stacking, and
lower symmetry stackings change with each independent twist angle, illustrating that the
overall AtA/tAA and tAB/AtB domain sizes are predominantly affected by the smallest
twist angle. Error bar widths are standard deviations from 3-112 measurements for each
data point.
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where Ei and Ej are the unit cell vectors of layers i and j respectively, rotated by θij. In

the trilayer system, there is no simple linear transformation between real and configuration

space. The relation between the displacement field defined in real space, U piqprq, and in

configuration space, upiqpbq, can be found by evaluating upjqpbq at the corresponding biÑjprq

and biÑkprq with Eq. (5) to obtain

U piq
prq “ upiq

pbiÑj
prq, biÑk

prqq, (6)

where j, k ‰ i and j ă k.

The relaxed energy has two contributions, intralayer and interlayer energies:

Etot
pup1q,up2q,up3q

q “ Eintra
pup1q,up2q,up3q

q ` Einter
pup1q,up2q,up3q

q, (7)

where upℓq is the relaxation displacement vector in layer ℓ. To obtain the relaxation pattern,

we minimize the total energy with respect to the relaxation displacement vector.

We model the intralayer coupling based on linear elasticity theory:

Eintrapup1q,up2q,up3q
q “

3
ÿ

ℓ“1

ż

1

2

”

GpBxu
pℓq
x ` Byu

pℓq
y q

2

` KppBxu
pℓq
x ´ Byu

pℓq
y q

2
` pBxu

pℓq
y ` Byu

pℓq
x q

2
q

ı

db, (8)

where G and K are shear and bulk moduli of monolayer graphene, which we take to be

G “ 47352meV{unit cell, K “ 69518meV{unit cell [4, 6]. Note that the gradient in Eq. (8)

is with respect to the real space position r.

The interlayer energy accounts for the energy cost of the layer misfit, which is described

by generalized stacking fault energy (GSFE) [7, 8], obtained using first principles Density

Functional Theory (DFT) with the Vienna Ab initio Simulation Package (VASP) [9–11].

GSFE is the ground state energy as a function of the local stacking with respect to the

lowest energy stacking between a bilayer. For bilayer graphene, GSFE is maximized at the
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AA stacking and minimized at the AB stacking. Letting b “ pbx, byq be the relative stacking

between two layers, we define the following vector v “ pv, wq P r0, 2πs2:

¨

˚

˝

v

w

˛

‹

‚

“
2π

a0

»

—

–

?
3{2 ´1{2

?
3{2 1{2

fi

ffi

fl

¨

˚

˝

bx

by

˛

‹

‚

, (9)

where a0 “ 2.4595 Å is the graphene lattice constant. We parameterize the GSFE as follows,

V GSFE
j˘ “ c0`c1pcos v ` cosw ` cospv ` wqq

`c2pcospv ` 2wq ` cospv ´ wq ` cosp2v ` wqq

`c3pcosp2vq ` cosp2wq ` cosp2v ` 2wqq, (10)

where we take c0 “ 6.832meV{cell, c1 “ 4.064meV{cell, c2 “ ´0.374meV{cell, c3 “

´0.0095meV{cell [4, 6]. The van der Waals force is implemented through the vdW-DFT

method using the SCAN+rVV10 functional [12]. Note that we amplify the GSFE by a fac-

tor of 10. Physically, amplifying the GSFE enhances the strength of relaxation. It has been

shown that the energy difference between AA and AB stackings can vary by a factor of 4

depending on the van der Waals functionals used [8]. In terms of V GSFE
ℓ˘ , the total interlayer

energy can be expressed as follows:

Einter
“

1

2

ż

V GSFE
1` pB1Ñ2

q db `
1

2

ż

“

V GSFE
2´ pB2Ñ1

q ` V GSFE
2` pB2Ñ3

q
‰

db

`
1

2

ż

V GSFE
3´ pB3Ñ2

q db,

where BiÑj “ biÑj ` upjq ´ upiq is the relaxation modified local shift vector. Note that

we neglect the interlayer coupling between layers 1 and 3. The total energy is obtained

by summing over uniformly sampled configuration space. In this work, we discretize the

four-dimensional configuration space by 54 ˆ 54 ˆ 54 ˆ 54.

Finally, we calculate the local twist angle between layers i and j as redistributed by relaxation
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as follows,

θij,localprq “

ˇ

ˇ

ˇ

ˇ

θij ` sin´1

ˆ

∇ ˆ U pjqprq

2

˙

´ sin´1

ˆ

∇ ˆ U piqprq

2

˙ˇ

ˇ

ˇ

ˇ

. (11)

As regions of local AtA, tAA, and or AAt stacking appear as domains where the local twist

angle |θij,localprq| « 0, we were able to use a threshold of 0.25 degrees to obtain the stacking

statistics shown in Figure 4 of the main text. These stacking order trends and the local twist

angle maps ( Supplemental Figure 10) illustrate a pattern of atomic relaxation consistent

with what we observed in the experimental data, with large AtA regions apparent when

θ13 ăă θ23 and large tAB regions apparent when θ13 ąą θ23.

Supplemental Figure 11: Theoretical Predictions of Local Twist Angles Predic-
tions for θij,localprq obtained from the procedure described in Supplemental section 12 for θ12
(top), θ23 (middle), and θ23 (bottom) for a series of twist angles. Twist angles are defined
such that θ12 and θ23 are of opposite sign, and θ12 is 1.6 degrees in all twist angle maps
shown.
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10 Comparison to Scanning Probe Measurements

The nature of atomic reconstruction we measure is markedly different than that proposed

in previous work on samples with comparable experimental conditions, wherein it was sug-

gested that slightly misaligned MATTLG samples (θ13 of « 0.25˝) relax to almost exclusively

AtA regions, with the AtB and SP regions stretched into thin domain boundaries and/or

topological defects that contribute insignificantly to the STM measurements [13] while we

measure appreciable AtB regions down to θ13 “ 0.20˝. We also see domains of either AtA

and AtB (when θ13 ! θ23) or tAB and tAA (when θ23 ! θ13) containing distinct distributions

of twist angles associated with the small-moiré pattern. We note that these domains appear

similar to the clusters of stacking features, termed plaquettes (P) and twistons (T), presented

previously as consisting of AAA domains [13]. One possible scenario that would yield qual-

itative agreement between our results, STM, and theory is that the plaquettes and twistons

represent domains of local AtB (P) and AtA (T) or tAB (P) and tAA (T) symmetry. This

would coincide with the bright spots in STM measurements (large local density of states,

DOS) not all corresponding to AAA-type stacking, instead reflecting a richer distribution of

stacking orientations. It is possible that the sample presented in [13] is structurally similar

to the samples we present in Fig. 3 panels 2 and 3. In this case, the DOS maxima mea-

sured by STM would reflect both AAA and AAB symmetry (in the AtA and AtB regions,

respectively) as flatbands are expected and observed in AAB regions as well [14]. In AtB

regions, a lower local DOS of adjacent ABB regions would be expected from an STM mea-

surement since the STM tip would be probing the Bernal bilayer side, as reported previously

[14]. This effect may then result in the visualization, by STM, of a triangular lattice of the

most prominent AAB symmetry. We also note that such logic would hold true if the sample

presented in [13] was instead structurally similar to the samples we present in Fig. 3 panels

4, as we would still expect DOS maxima reflecting both AAA and (predominantly) AAB

symmetry. Although we note this prior work included a careful consideration to exclude local

DOS effects to attribute micrographs to sample topology. It is plausible given the presence

of thick hBN on only one side that there is a large difference in height between these regions,
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yielding a similar effect. However, we note that the discussion presented here is speculative

and discrepancies between our two measurements may be influenced by subtle differences in

annealing and encapsulation or hereto unknown nuances in our experimental conditions. We

primarily hope to emphasize that interferomic transmission electron microscopy may serve

as a helpful tool to complement scanning probe measurements and other techniques that

measure sample morphology via indirect signatures such as height variation and are difficult

to analyze without prior information regarding sample morphology.

References

1. Kazmierczak, N. P. et al. Strain fields in twisted bilayer graphene. Nature materials

20, 956–963 (2021).

2. Van Winkle, M. et al. Quantitative Imaging of Intrinsic and Extrinsic Strain in Tran-

sition Metal Dichalcogenide Moirz’e Bilayers. arXiv preprint arXiv:2212.07006 (2022).

3. Madsen, J. & Susi, T. The abTEM code: transmission electron microscopy from first

principles. Open Research Europe 1, 13015 (24 2021).

4. Zhu, Z., Carr, S., Massatt, D., Luskin, M. & Kaxiras, E. Twisted trilayer graphene: A

precisely tunable platform for correlated electrons. Physical review letters 125, 116404

(2020).

5. Cazeaux, P., Luskin, M. & Massatt, D. Energy Minimization of Two Dimensional In-

commensurate Heterostructures. Archive for Rational Mechanics and Analysis 235,

1289–1325. arXiv: 1806.10395 [physics.comp-ph] (Aug. 2019).

6. Carr, S. et al. Relaxation and domain formation in incommensurate two-dimensional

heterostructures. Phys. Rev. B 98, 224102. https://link.aps.org/doi/10.1103/

PhysRevB.98.224102 (22 2018).

7. Kaxiras, E. & Duesbery, M. S. Free energies of generalized stacking faults in Si and

implications for the brittle-ductile transition. Phys. Rev. Lett. 70, 3752–3755. https:

//link.aps.org/doi/10.1103/PhysRevLett.70.3752 (24 June 1993).

24

https://arxiv.org/abs/1806.10395
https://link.aps.org/doi/10.1103/PhysRevB.98.224102
https://link.aps.org/doi/10.1103/PhysRevB.98.224102
https://link.aps.org/doi/10.1103/PhysRevLett.70.3752
https://link.aps.org/doi/10.1103/PhysRevLett.70.3752


8. Zhou, S., Han, J., Dai, S., Sun, J. & Srolovitz, D. J. Van der Waals bilayer energet-

ics: Generalized stacking-fault energy of graphene, boron nitride, and graphene/boron

nitride bilayers. Phys. Rev. B 92, 155438 (15 2015).

9. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B

47, 558–561 (1 1993).

10. Kresse, G. & Furthmüller, J. Efficiency of ab initio total energy calculations for metals

and semiconductors using a plane-wave basis set. Computational Materials Science 6,

15–50. issn: 0927-0256 (1996).

11. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy cal-

culations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (16 1996).

12. Peng, H., Yang, Z.-H., Perdew, J. P. & Sun, J. Versatile van der Waals Density Func-

tional Based on a Meta-Generalized Gradient Approximation. Phys. Rev. X 6, 041005

(4 2016).

13. Turkel, S. et al. Orderly disorder in magic-angle twisted trilayer graphene. Science 376,

193–199 (2022).

14. Tong, L.-H. et al. Spectroscopic visualization of flat bands in magic-angle twisted

monolayer-bilayer graphene: coexistence of localization and delocalization. Physical Re-

view Letters 128, 126401 (2022).

25


	SpringerNature_NatMater_1783_ESM.pdf
	Influence of Bragg Disk Variability on Virtual Apertures
	Choice of Acquisition Parameters
	Attribution of Bragg Disks to Layers
	Predicted Intensities for Bilayer Interfaces
	Predicted Intensities for Trilayers
	Comparison to Multi-slice Simulations and Finite Probe Effects
	Effects of Normalization Bias
	Supplemental Atomic Stacking Maps
	Continuum Relaxation Model
	Comparison to Scanning Probe Measurements


