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Supplementary Text 

Section I: Polariton model 

The polariton dispersion was fitted using a coupled oscillator model neglecting linewidths: 

 

[
𝐸𝑐𝑎𝑣 Ω/2
Ω/2 𝐸𝑒𝑥

] [
𝛼
𝛽] = 𝐸 [

𝛼
𝛽]. 

Here, the cavity mode is represented as 𝐸𝑐𝑎𝑣 = 𝐸0 + ℏ2𝑘∥
2/2𝑚𝑐𝑝 with mode energy 𝐸0 at 𝑘∥ = 0 

and effective mass 𝑚𝑐𝑝 of the cavity photon. Eex is the exciton energy of the sample. E is the 

eigenvalue of the polaritons, and α and β represent the Hopfield coefficients satisfying |𝛼|2 +
|𝛽|2 = 1.  

To simulate the far-field emission and the real-space polariton distribution observed in the 

experiment, we first consider the following differential equation:  

𝐸 [
𝜓
𝜙

] = − [
ℏ2∇2

2𝑚𝑐𝑝
0

0 −𝛿
] [

𝜓
𝜙

] + [
𝑉 0
0 0

] [
𝜓
𝜙

] + [
0 Ω/2

Ω/2 0
] [

𝜓
𝜙

], 

where 𝜓 and 𝜙 are the wavefunctions for cavity photon and exciton; 𝑚𝑐𝑝 = 0.1 𝑚𝑒𝑉 (𝜇𝑚/𝑝𝑠)2⁄  

is the effective cavity photon mass; the detuning energy is 𝛿 = 110 𝑚𝑒𝑉; the Rabi splitting is Ω =

280 𝑚𝑒𝑉. The shape of the barrier is as described before, and the height is 150 𝑚𝑒𝑉. We can 

achieve the eigenmode in real space and eigenenergy for the system with the finite element method. 

The band structure in Fig. 1b was calculated with a supercell (one single cell along the x-direction 

and six cells on each side of the interface) shown in Fig. S2b. The polariton density distribution of 

the topologically protected edge state in Fig. 1c was calculated with kx = 2.6 μm-1 and ky = 0.  

Then, by assuming all the eigenstates are equally distributed, the intensity of the far-field 

emission can be predicted by: 

𝐼(𝑘, 𝐸) = ∑ |𝐹𝜈𝜇(𝜓𝑛,𝓀)|
2

𝑛,𝓀,𝜈,𝜇

|𝛼𝑛,𝓀|
2

Γ𝐸(𝐸, 𝐸𝑛,𝓀)Γ𝑘(𝑘, 𝓀, 𝜈, 𝜇), 

where 𝑘 is the wavevector and 𝓀 is the wavevector inside the first Brillouin zone. The terms 𝜓𝑛,𝓀, 

𝐸𝑛,𝓀 and |𝛼𝑛,𝓀|
2
 are the photonic part of the 𝑛th eigenmode at 𝓀, the corresponding eigenenergy 

and the module square of Hopfield coefficients, respectively. The functional 𝐹𝜈𝜇  gives the 

coefficients of the Fourier transformation where 𝜈(𝜇) denotes the order of the Fourier coefficient 

in the reciprocal lattice direction 𝑘1(𝑘2) . At last, the function Γ𝐸  and Γ𝑘  are the broadening 

functions in energy and wavevector:  

Γ𝐸(𝐸, 𝑛, 𝓀) =
𝛾𝑛,𝓀

2

(𝐸 − 𝐸𝑛,𝓀)
2

+ 𝛾𝑛,𝓀
2

 

Γ𝑘(𝑘, 𝓀, 𝜈, 𝜇) = exp (−
(𝑘 − 𝓀 − 𝜈𝑘1 − 𝜇𝑘2)2

Δ(𝓀)2
). 
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Where the broadening energy corresponds to the lifetime of the cavity photon with 

𝛾𝑛,𝓀 =
ℏ|𝛼𝑛,𝓀|

2

2𝜏𝑐𝑝
. 

In the simulation, we assume the lifetime is 𝜏𝑐𝑝 = 0.08 𝑝𝑠. For broadening in wavevector, we have 

Δ(𝓀) = Δ (1 − |𝛼𝑛,𝓀|
2

) 

and Δ = 1.25 𝜇𝑚−1 is the inverse of scattering length for excitions. 

Section II: Characteristics of the valley edge state 

To investigate the topological properties of the system quantitatively, we introduce the 

simplified Hamiltonian 𝐻 =
ℏ2∇2

2𝑚
+ 𝑉 , where 𝑚  is the effective mass for the lower branch of 

polariton, and 𝑉 is the potential determined by the cavity. With the special design of the cavity, 

we break the 𝐶3𝜈 the symmetry of the system and lift the degeneracy at the Dirac point 𝐾 and 𝐾′. 

Even though the dispersions near the 𝐾 and 𝐾′ points are identical, they are different from 

each other topologically. This can be shown by calculating the valley Chern number for half of the 

Brillouin zone: 

𝐶𝐾 𝐾′⁄ =
1

2𝜋𝑖
∫ 𝑑𝑘2

 

𝐻𝐵𝑍

𝐹12(𝑘). 

The Berry connection 𝐴𝜇(𝑘) and the associated field 𝐹12(𝑘) are given by 1： 

𝐴𝜇(𝑘) =  ⟨𝜓𝑛(𝑘)|𝜕𝜇|𝜓𝑛(𝑘)⟩ 

𝐹12(𝑘) = 𝜕1𝐴2(𝑘) − 𝜕2𝐴1(𝑘), 

where |𝜓𝑛(𝑘)⟩ is the normalized wavefunction of 𝑛th band such that it satisfies the eigenvalue 

problem 𝐻|𝜓𝑛(𝑘)⟩ = 𝐸𝑛|𝜓𝑛(𝑘)⟩. The term 𝜕𝜇 is short for 𝜕 𝜕𝑘𝜇⁄  and 𝜇 = 1,2  stands for two 

directions on the torus. 

With these definitions, we calculate the Berry curvature and valley Chern number. In Fig.S1, 

we show the numerically calculated Berry curvature 2. Integrating over half of the Brillion zone 

for the 𝐾 (𝐾′) point, we can get the valley Chern number 𝐶𝐾 𝐾′⁄ . For different valley above and 

below the domain wall and find  

Δ𝐶𝐾 𝐾′⁄ = 𝐶
𝐾 𝐾′⁄
𝑢𝑝𝑝𝑒𝑟

− 𝐶𝐾 𝐾′⁄
𝑙𝑜𝑤𝑒𝑟 = ±1. 

According to the bulk-boundary correspondence 3, this results in a forward (backward) propagating 

mode near the 𝐾 (𝐾′) point. On the other hand, if we reverse the configuration above and below 

the domain wall, the difference of valley Chern number gives Δ𝐶𝐾 𝐾′⁄ = ∓1. This statement can 

be numerically verified by the band structure shown in Fig. S1 and Fig. S2. In Fig. S2, we further 

confirm the field distribution of the edge state is indeed strongly localized in the domain wall 

between opposite valley Chern numbers.  
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Section III: Dynamic simulation 

To simulate the transport of the valley Hall edge state and other states, we consider the Schrödinger  

equation as follows: 

𝑖ℏ𝜕𝑡 𝜓 =  −
ℏ2∇2

2𝑚𝑝𝑙
𝜓 + 𝑉𝜓 

where 𝜓 is the wavefunction of polariton; 𝑚𝑝𝑙 = 0.14 𝑚𝑒𝑉 (𝜇𝑚/𝑝𝑠)2⁄  is the effective mass of 

exciton-polariton; the energy barrier and the potential geometry are the same as the simulations in 

Section I. In a near threshold approximation, we can ignore the pumping, decay, and nonlinear 

term. We construct a zigzag-shaped topological interface with the periodic boundary condition. 

By carefully choosing the initial states, we can simulate the dynamics of exciton-polariton in the 

cavity. Specifically, we consider three typical initial states: 

1. The normal state: we consider the following Gaussian shape initial wavefunction: 

𝜓0 =  𝛹 × 𝐸𝑥𝑝 [−
𝑥2 + 𝑦2

Δ2
] 

Where Δ = 3 in the unit of lattice constant in the simulation. The Ψ is the superposition of all 

eigenstates with 𝑘𝑥 = 𝑘𝑦 = 0. The wavefunction only spreads instead of propagating along the 

edge. (Supplementary Video 1.mp4) 

2. The topological valley Hall edge state: To see the evolution of the edge state, we first find the 

stationary state of the system with periodic boundary conditions in the x-direction. We choose the 

eigenstate inside of the gap and denote it as 𝜓𝑖𝑛𝑖 (blue star in Fig. S6). Notice 𝜓𝑖𝑛𝑖 is infinite in 

the x-direction, we must truncate it before we put it into the Z-shaped system. This is done by 

assuming the initial wavefunction is a Gaussian wave packet: 

𝜓0 = 𝜓𝑖𝑛𝑖 × 𝐸𝑥𝑝 [−
𝑥2

Δ2
]  

Where Δ = 2√6 in the unit of lattice constant in the simulation. With such an initial condition, we 

can see that the topological edge state transport on the topological interface barely feels 

backscattering from the corners. (Supplementary Video 2.mp4) 

3. The backscattering of the non-topological edge state: Choosing the 𝜓𝑖𝑛𝑖 state just above the 

topological gap state (green star in Fig S6) with the initial condition: 

𝜓0 = 𝜓𝑖𝑛𝑖 × 𝐸𝑥𝑝 [−
𝑥2

Δ2
]  

We find strong backscattering when the wavefunction hits the corner (Supplementary Video 

3.mp4), since the state is above the topological bandgap and does not have the topological 

protection. 
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Supplementary Fig. 1| The Berry curvature result for the bulk state. The inserted picture 

shows the configuration of the bulk area. The red quadrilateral in the inset represents the unit cell. 
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Supplementary Fig. 2| The distribution of the edge state near the 𝑲 point. The states are well 

localized near the edge. In the left panel a, the configuration of the potential above the domain 

wall gives 𝐶𝐾 =
1

2
 in the bulk state. Below the domain wall, the potential configuration (which is 

obtained by rotating the upper one by 180°) gives 𝐶𝐾 = −
1

2
 in the bulk state. Thus, we get Δ𝐶𝐾 =

1, which gives a forward (right) propagating edge state. In the right panel b, we have an opposite 

configuration which gives a backward (left) propagating state near the 𝐾 point. 
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Supplementary Fig. 3| The topological edge state of the polariton valley Hall insulator with 

the design of coupled micropillars. a, Projected band structure of the topological interface in a 

supercell finite in the y direction. The topologically protected valley edge states are confined to 

the interface, as indicated by the solid red dots. The lattice period is a = 1.2 μm, and the diameters 

of the large and small pillars are 0.95 and 0.51 μm, respectively. b, The real-space polariton density 

distribution of the topologically-protected edge state corresponding to the state marked by a blue 

star in a.  

  



8 

 

 

Supplementary Fig. 4| The calculated energy band and polariton distributions of the valley 

edge state with a CsPbBr3 optical birefringence. Due to the birefringence, the widely used 

CsPbBr3 cavity has two linear polarized polariton branches. The two orthogonally polarized 

polariton branches exhibit an energy splitting of ~8 meV 4. Panel a shows the projected band 

structure of the topological interface in a supercell that is finite in the y direction. The in-plane 

anisotropy was described with a photon effective mass tensor along the x and y axis as [𝑚𝑥𝑥, 𝑚𝑥𝑦; 

𝑚𝑦𝑥, 𝑚𝑦𝑦] = [1.12 𝑚𝑐𝑝, 0.88 𝑚𝑐𝑝; 0.88 𝑚𝑐𝑝, 1.12 𝑚𝑐𝑝], where 𝑚𝑐𝑝 = 0.1 𝑚𝑒𝑉 (𝜇𝑚/𝑝𝑠)2⁄  is the 

effective cavity photon mass without birefringence. 𝑚𝑥𝑦 represents the effective mass of the x 

polarization along the y-axis. For the topological interface along the x-axis, there are two sets of 

energy bands with x and y polarization, as shown in a. The edge states with x and y polarizations 

have different energies (red stars in a) and real-space distributions (b and c). For the topological 

boundary structure with a 120° sharp corner described in our manuscript, the in-plane refractive 

index tensors on the two edges are different, leading to distinct eigenstates. Consequently, when a 

topological edge state propagates across the 120° sharp corner, backscattering occurs because of 

the energy discontinuity.  
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Supplementary Fig. 5| The circular polarization-resolved momentum-space PL dispersions. 

a and b, left and right-circular polarized PL dispersions of the topological interface along the x-

axis, respectively. c, the line cut plots of the PL at 2.896 eV in a and b. Here, no obvious asymmetry 

between left- and right-circular polarizations was observed. Due to the lack of photon spin degree 

of freedom, no spin-valley locking was observed in our perovskite microcavity.  
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Supplementary Fig. 6| The topological edge state of the polariton valley Hall insulator for 

the dynamic simulation. The blue and the green stars represent the initial state of the topological 

and the backscattering non-topological edge state, respectively. Due to the use of a simplified 

model that only considers the lower polariton branch, larger effective mass parameters were 

employed, resulting in slight differences in the band structure compared to Fig. 1 in the main text. 
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