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Characterization of the local oscillator and spectral purity transfer

Figs. 6 and 7 depict characterization measurements of the frequency comb and local oscillator

described in the Methods section. Table 1 includes the parameter values for the resonant

features in the laser noise model given in Eqn. 3 of the Methods section.
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Figure 6 | Left: A three-cornered hat comparison between the local oscillator (21 cm Si)
and two reference lasers based on a 6 cm Si cavity operating at 4 K and a 40 cm ULE
cavity operating at room temperature characterizes the performance of the local oscillator
at short averaging times (<10 s). The data is taken with a zero dead-time Lambda-type
frequency counter operating with a 10-ms gate time. Right: The typical single-day stability
of the local oscillator at longer averaging times is evaluated using the atomic servo correction
signal for the 1D Sr lattice clock (30 s servo attack time). The stability is determined by
averaging datasets from 13 days that are each at least 20000 seconds in length after fitting
and removing a linear frequency drift from each dataset. On average, the single-day datasets
exhibit thermal noise limited stability out to 1000 s, though one dataset showed no departure
from thermal noise out to 10000 s (see Fig 2b). The black dashed line is a flicker frequency
noise floor of 3.7 × 10−17 obtained by fitting the Allan deviation between 40-1000 seconds.
This is in good agreement with the previously published value of 4 × 10−17[1]. The error
bars represent one standard error confidence intervals.
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Figure 7 | Estimated instability added to the local oscillator by the optical frequency comb.
This is inferred by performing a multi-line comparison measurement against an identical
frequency comb [2] in order to characterize the differential noise between their 1542 nm and
698 nm outputs. The two systems are stabilized to a common reference at 1542.14 nm and
the heterodyne beat between the systems at 698 nm is recorded. An Allan deviation of
this measurement is shown in Fig. 4 in the main text. Left: Fractional frequency noise
power spectral density of the two-comb 698 nm hetrodyne beat. The accumulated optical
phase drift observed over a seven hour measurement is only 1.5× 2π, which corresponds to
a fractional frequency offset with respect to the 698 nm carrier of 1.3 × 10−19. The large
feature between 5-50 Hz arises due to acoustic noise present at the time of the qualification
measurement. Since relocating the system to JILA, the vibrational and acoustic isolation
has been improved significantly. By analyzing the three-cornered hat comparison data from
Fig. 6 in the frequency domain one infers that this spectral feature has been reduced by at
least an order of magnitude since, if present, it would appear to limit the stability of the 40
cm ULE cavity at these Fourier frequencies. Right: The contribution from the comb to the
Dick effect limit for clock stability is computed by inserting the measured frequency noise
power spectral density into Eqn. 2 in the main text. For the operating conditions used here
(550-600 ms interrogation time and 570 ms dead time), the comb contribution is negligible.

Table 1 | Eqn. 3 in Methods presents the functional form of the local oscillator noise model.
The parameters corresponding to the resonant features in this model are tabulated below.
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Index fi (Hz) ai (1/Hz3) Γi (Hz)

1 5.7 7.0e-34 1.0

2 12.7 1.5e-34 1.5

3 20.0 4.0e-34 0.1

4 30.0 5.0e-34 0.1

5 40.0 5.0e-34 0.1

6 45.0 1.0e-34 4

7 55.0 4.0e-34 1.2

Magnetic field noise rejection from a four-point locking sequence

As discussed in the main text, fluctuations in the magnetic field background in the laboratory

will induce Zeeman shifts in the clock transition due to the presence of nuclear spin in 87Sr.

The Zeeman sensitivity for the |1S0,mF = 9
2
〉 → |3P0,mF = 9

2
〉 transition is approximately

490 Hz/G [3], so rapid changes in the magnetic field at the 100 µG level can induce 10−16

level frequency excursions in the 1D lattice clock. In the discussion that follows, a frequency-

domain treatment of this noise coupling is presented. A similar analysis in the time-domain

is available elsewhere in the literature [4].

A measurement of the detuning of the laser from the line center, ∆[n] where n is the

experimental cycle index, will include an additional contribution from the magnetic field

background:

∆[n] = ∆laser[n] + ∆field[n] (1)

For the present discussion all other sources of technical noise are omitted for the sake

of simplicity. We make the further simplifying assumption that neither the laser nor the

background field exibit long-term drift so we can repeatedly interrogate the clock transition

without active feedback. This allows one to neglect the impact of the servo on the frequency
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Figure 8 | Diagram depicting the frequency measurements required for a four-point lock
in the 1D lattice clock. By averaging these four measurements one may reject frequency
noise arising from first-order Zeeman shifts induced by slowly varying magnetic fields in the
laboratory.

record of the clock. The purpose of the present discussion is to derive the impact of short

term noise from the laser and background field on the clocks frequency record.

To reject the magnetic field noise in the 1D clock, the detuning of the laser from resonance

is measured using a four-point spectroscopy sequence as described in the main text. The four

point measurement sequence for the 1D lattice clock is depicted in Fig. 8. The important

thing to note is that the first-order Zeeman shifts on the |1S0,mF = ±9
2
〉 → |3P0,mF = ±9

2
〉

transitions will be anticorrelated and should largely cancel when all four measurements are

averaged provided that the magnetic field doesn’t change dramatically over the course of the

measurements (in this work, fluctuations in the second-order Zeeman shift are too small to

have a significant impact on the clock stability and are ignored in the present discussion).

The discussion that follows also applies to the spectroscopy sequence used in the 3D clock,

though in that case ∆field is intrinsically a factor of 22 smaller [3]. These four measurements

yield the following
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∆[1] = ∆laser[1]−∆field[1] (2)

∆[2] = ∆laser[2]−∆field[2] (3)

∆[3] = ∆laser[3] + ∆field[3] (4)

∆[4] = ∆laser[4] + ∆field[4] (5)

〈∆laser〉 ≈
1

4
(∆[1] + ∆[2] + ∆[3] + ∆[4]) (6)

where 〈∆laser〉 denotes the average laser detuning from resonance over the span of all four

measurements and the sign convention chosen for ∆field corresponds to the |1S0,mF = 9
2
〉 →

|3P0,mF = 9
2
〉 transition. The frequency record for the laser is then estimated by averaging

successive four-point measurement cycles

∆̂laser =

{
...,

1

4
(∆[1] + ∆[2] + ∆[3] + ∆[4]) ,

1

4
(∆[5] + ∆[6] + ∆[7] + ∆[8]) , ...

}
(7)

In order to understand the impact of laser and field noise on ∆̂laser, one can derive transfer

functions H[ωm] and G[ωm] corresponding to the coupling of laser and field noise respectively

in the Fourier domain. To this end, it is useful to point out that the sequence in Eqn. 7 can

be constructed by applying the following two operations to the laser and field noise.

Step 1: Filter the laser and field noise and add the resulting sequences:

∆filt[n] = h ∗∆laser[n] + g ∗∆field[n] (8)

where ∗ denotes the convolution operator and
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h[n] =
1

4

3∑
k=0

δ[n− k] (9)

g[n] =
1

4
(−δ[n]− δ[n− 1] + δ[n− 2] + δ[n− 3]) (10)

are discrete-time filter functions corresponding to the desired transfer functions. This oper-

ation yields

{...,∆[1],∆[2],∆[3],∆[4],∆[5],∆[6], ...}

→
{
...,

1

4
(∆[1] + ∆[2] + ∆[3] + ∆[4]) ,

1

4
(∆[2] + ∆[3] + ∆[4] + ∆[5]) , ...

}
= {...,∆filt[4],∆filt[5], ...} (11)

Step 2. Downsample the data by a factor of four.

{
...,

1

4
(∆[1] + ∆[2] + ∆[3] + ∆[4]) ,

1

4
(∆[2] + ∆[3] + ∆[4] + ∆[5]) , ...

}
→{

...,
1

4
(∆[1] + ∆[2] + ∆[3] + ∆[4]) ,

1

4
(∆[5] + ∆[6] + ∆[7] + ∆[8]) , ...

}
= ∆̂laser (12)

The impact of both magnetic field noise and laser noise on ∆̂laser can be understood by

considering the discrete Fourier transform of the frequency record ∆filt followed by a reduction

in bandwidth due to downsampling.

∆filt[ωm] = H[ωm]∆laser[ωm] +G[ωm]∆field[ωm] (13)

where ωm = mωs

Ns
, ωs = 2π/Tc is our sampling rate in angular frequency units, Tc is our

experimental cycle time, and Ns is the total number of samples, and H[ωm] and G[ωm]
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Figure 9 | Transfer functions corresponding to the coupling of laser noise (left) and magnetic
field noise (right) to the frequency record of the clock when using the four-point interrogation
sequence depicted in Fig. 8. The x-axis is normalized by the clock cycle frequency ωs. The
dashed lines indicate the Nyquist frequency (ωs/8) after performing the four-point analysis.

denote the discrete Fourier transforms of the filter functions h[n] and g[n] respectively.

H[ωm] =
∞∑
n=0

h[n]e−jωmn =
1

4

3∑
k=0

e−jωmk =
1

4

1− e−j4ωm

1− e−jωm
=

1

4

e−j2ωm

e−jωm/2

sin (2ωm)

sin (ωm/2)
(14)

G[ωm] =
1

4

(
−1− e−jωm + e−j2ωm + e−j3ωm

)
(15)

H[ωm] and G[ωm] are simply transfer functions from laser and magnetic field noise to

our frequency record. The magnitudes of both filters are plotted in Fig. 9. We see that

∆laser[ωm] is effectively low-passed while ∆field[ωm] is high passed. Therefore, a four-point

interrogation sequence will reject magnetic field noise provided that the fluctuations in the

field are sufficiently slow. After downsampling the data, the bandwidth of the coupled noise

is reduced by a factor of four. The dashed lines in Fig. 9 indicate the Nyquist frequency

after downsampling.

Note that, at Fourier frequencies approaching the Nyquist rate, laser and magnetic field

induced noise couple to the frequency record with almost equal magnitude. This spectroscopy

sequence is therefore not effective at rejecting high frequency magnetic field induced noise
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as it is unable to distinguish between the two noise sources.

Along with a reduction in bandwidth, the downsampling of the data by a factor of four

leads to an additional aliasing process. One might assume that this would lead to an increase

in the Dick effect limit since laser noise at Fourier frequencies ωm = ωs

4
and ωm = ωs

2
will be

aliased down to DC. In fact, the Dick effect limit remains the same since H[ωm] = 0 at these

frequencies. H[ωm] therefore functions as an anti-aliasing filter. However, G[ωs

4
] is non-zero,

so magnetic field noise at this frequency can alias down to DC and degrade the long-term

stability of the clock.
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