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SUPPLEMENTARY INFORMATION

A. Output state of the quantum memristor

Let us rewrite for convenience the input state

|ψin(t)⟩ = α(t) |0⟩A + β(t) |1⟩A . (5)

When going through a beam splitter with reflectivityR(t) the
state evolves into:

|ψout,CD(t)⟩ = α(t) |0⟩C |0⟩D +

+ β(t)
√
1−R(t) |1⟩C |0⟩D +

+ iβ(t)
√
R(t) |0⟩C |1⟩D , (11)

which corresponds to the following density matrix (let us
omit the time t and the subscripts C and D for ease of read-
ing):

ρout,CD = |ψout,CD⟩ ⟨ψout,CD| = |α|2 |00⟩⟨00|+

+ αβ∗√1−R |00⟩⟨10| − iαβ∗
√
R |00⟩⟨01|+

+ α∗β
√
1−R |10⟩⟨00|+ |β|2(1−R) |10⟩⟨10|+

− i|β|2
√
R(1−R) |10⟩⟨01|+ iα∗β

√
R |01⟩⟨00|+

+ i|β|2
√
R(1−R) |01⟩⟨10|+ |β|2R |01⟩⟨01|.

Note that output D is used for the feedback of the quantum
memristor, whereas the user has only access to output C. The
output state related to mode C can be obtained from the pre-
vious density matrix by taking the partial trace over D, and
results in:

ρout,C = TrD(ρout,CD) = |α|2 |0⟩⟨0|C+
+ αβ∗√1−R |0⟩⟨1|C + α∗β

√
1−R |1⟩⟨0|C+

+ |β|2(1−R) |1⟩⟨1|C + |β|2R |0⟩⟨0|C, (12)

which is equal to the one shown in Eq. (7). In the matrix
representation for the basis |0⟩C , |1⟩C this state corresponds
to:

ρout,C =

(
|α|2 + |β|2R α∗β

√
1−R

αβ∗√1−R |β|2(1−R)

)
(13)

from which the purity is given by

Tr
(
ρout,C

2(t)
)
= 1− 2|β|4R(1−R), (8)

B. Converting photon-number encoding to path-encoding.

In Supplementary Information A we have developed the
theory of the quantum memristor with an encoding scheme
where the qubit is represented by a superposition of Fock
states, also known as single-rail encoding. In a path-encoded
picture (also known as dual-rail) the qubit is represented in-
stead by a single photon being in a superposition of two spa-
tial modes. The |0⟩ state corresponds to the photon being in
one mode, say mode A, and the |1⟩ state corresponds to the
photon being in the other mode, say mode B. In short, the
map from number encoding to path encoding is the follow-
ing:

|0⟩A → |1⟩A |0⟩B (14)
|1⟩A → |0⟩A |1⟩B (15)

so our equivalent input state will be

|ψin(t)⟩ = α(t) |1⟩A |0⟩B + β(t) |0⟩A |1⟩B . (16)

By looking at Eq. (11) it is evident that the |0⟩A state is
not affected by the beam splitter, which only acts on the |1⟩A
state. As a result, the dual-rail equivalent should be one where
mode A goes directly to the output, whereas mode B goes
into the tunable beam splitter (or its integrated equivalent,
i.e. a tunable Mach-Zehnder). This is precisely the scheme
shown in Fig. 2d. By evolving the input state through the
Mach-Zehnder we obtain

|ψout,ABC(t)⟩ = α(t) |1⟩A |0⟩B |0⟩C +

+ β(t)
√
1−R(t) |0⟩A |1⟩B |0⟩C +

+ iβ(t)
√
R(t) |0⟩A |0⟩B |1⟩C , (17)

which is the dual-rail equivalent of Eq. (11). The output
mode C is used as measurement port for updating the state
of the quantum memristor, whereas the user only has access
to the output modes A and B. In order to obtain the output
states of modes A and B, one has to write |ψout,ABC(t)⟩ in
terms of density matrix and then take the partial trace over C.
With similar calculations to the ones presented in the previous
paragraph, one obtains the following density matrix

ρout,AB =

|β|2R 0 0
0 |α|2 α∗β

√
1−R

0 αβ∗√1−R |β|2(1−R)

 (18)
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(written in the basis |00⟩AB , |01⟩AB , |10⟩AB). We can
straightforwardly obtain the purity

Tr
(
ρout,AB

2(t)
)
= 1− 2|β|4R(1−R), (19)

which is the same as in Eq. (8). As in the single-rail case,
we take ⟨nin⟩ and ⟨nout⟩ to represent the number of photons
going in and out of the Mach-Zehnder and this corresponds
to ⟨nin(t)⟩ = |β(t)|2, ⟨n⟩max = 1 and ⟨nout(t)⟩ = |β(t)|2

[
1−

R(t)
]
=

[
1 − R(t)

]
⟨nin(t)⟩. This shows for the quantum

memristor that the two pictures are perfectly equivalent.
The advantage of having switched to dual-rail encoding is,

unlike the single-rail encoding, the straightforward manipu-
lation of the qubit. In fact, any arbitrary state of the form of
Eq. (16) can be generated by a Mach-Zehnder interferom-
eter with a tunable phase shifters in one of the output arms.
This configuration was used as preparation stage for the quan-
tum memristor, and a similar configuration as a final tomogra-
phy stage after the quantum memristor for choosing arbitrary
measurment basis enabling the reconstruction of the density
matrix of the output state (see Fig. 2e). This tomography
stage was only used for characterization purposes and other-
wise set to perform an identity operation.

C. Fabrication of the integrated photonic quantum processor

The fabrication of the integrated photonic chip is based on
the femtosecond laser micromachining process [1]. Single-
mode optical waveguides, optimised for operation at 1550
nm, are inscribed in a alumino-borosilicate glass (Corn-
ing EAGLE XG, 1.1 mm thick) by focusing laser pulses
(Yb:KYW cavity-dumped mode-locked laser: 1030 nm
wavelength, 300 fs pulse duration, 520 nJ energy per pulse,
1 MHz repetition rate) with a 50× objective (0.65 NA)
equipped with an aberration-correction collar. The entire op-
tical circuit is inscribed at 25 µm from the bottom surface
of the substrate, by translating the substrate at the constant
speed of 40 mm/s. In particular, six overlapped laser scans
are performed along the desired waveguide path. In order to
obtain single-mode operation and reduce the waveguide bire-
fringence [2], the inscription process is followed by a thermal
annealing composed of a fast rising ramp of 12 °C/min up to
750 °C and by two subsequent slow falling ramps of 12 °C/h
and 24 °C/h, respectively down to 630 °C and 500 °C. After
that, the cooling process is completed with no control on the
temperature ramps. At the end of the waveguide fabrication
process, the measured insertion loss is 1.2 dB, corresponding
to a transmission of 76%. Each Mach-Zehnder interferome-
ter is composed of two balanced directional couplers (zero in-
teraction length and 7.5 µm coupling distance), that are con-
nected to the rest of the circuit by S-bend waveguides (40 mm
curvature radius) and by straight waveguides (separation p =
127 µm and length L = 2 mm).

In order to guarantee maximum efficiency and minimal
crosstalk of the phase shifting operation, thermal insulating
trenches are ablated at both sides of the optical waveguides
that are supposed to be phase-tuned. To fabricate the trenches
we used laser pulses (Light Conversion PHAROS: 1030 nm
wavelength, 1 ps pulse duration, 1.5 µJ energy per pulse, 20

kHz repetition rate) focused by a 20× water-immersion ob-
jective (0.50 NA) on the bottom surface of the substrate, while
the latter is translated at 4 mm/s entirely immersed in dis-
tilled water. This fabrication technique is usually referred to
as water-assisted laser ablation [3, 4]. In order to realise a sin-
gle trench with depth Dt = 300 µm, width Wt = 97 µm and
length Lt = L = 2 mm, four rectangular glass blocks (depth
Db =Dt/4 = 75 µm) are removed one after the other by ablat-
ing only the perimeter of each block and making it detach and
fall into the water. In this way, deep trenches are fabricated
on the bottom side of the substrate with near-unity yield.

After that, the substrate is flipped and the process continues
on the bottom side with the fabrication of the thermal phase
shifters [5]. Firstly, after a standard piranha cleaning bath, a
metal multilayer film, composed of 3 nm of chromium and
100 nm of gold, is deposited on the entire area of the chip
by using a magnetron sputtering system. Secondly, a fur-
ther thermal annealing (rising ramp of 10 °C/min up to 500
°C, followed by 60 min at this temperature and by a cool-
ing process with no thermal actuation) is employed to reach
a stable value of the electrical resistivity and to prevent elec-
trical drifts that would impair the stability of the phase shift-
ing operation. Lastly, the thermal phase shifters are patterned
by laser pulses (Yb:KYW cavity-dumped mode-locked laser:
1030 nm wavelength, 300 fs pulse duration, 200 nJ energy per
pulse, 1 MHz repetition rate) focused on the chip surface with
a 10× objective (0.25 NA). By translating the substrate at 2
mm/s, contact pads and electrodes are isolated by selectively
removing the metal. Resistive microheaters having width Wr

= p − Wt = 30 µm and length Lr = L = 2 mm are instead
isolated by the presence of the trenches. The average electri-
cal resistance of the microheaters is 38 Ω, while the resulting
electrical power needed to induce a 2π phase shift is as low
as 55 mW.

In the end, the photonic chip is mounted on an aluminium
heat sink, wire-bonded to a printed circuit board and pigtailed
to both input and output single-mode optical fibers. After the
pigtailing process, the total insertion loss from input to output
fibers is 2 dB, corresponding to a transmission of 63%.

D. Implementation of the feedback law for the quantum
memristor

The general solution of Eq. (4) is

R(t) = c+

∫ t

0

(⟨nin(τ)⟩ − 0.5) dτ. (20)

where we assumed ⟨n⟩max = 1 and c an arbitrary constant. In
our case we want to set c = 0.5 in order to restore the baseline
of R to zero.

Even more importantly, we must make sure that in all cases
R(t) remains bound in the interval [0, 1]. This means that a
saturation mechanism must be introduced so that the integral
does not diverge when ⟨nin(t)⟩ is constant or slowly varying.
The most physically meaningful way to do so is to integrate
over a sliding time window of width T , which can be written
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as

R(t) = 0.5 +
1

T

∫ t

t−T

(⟨nin(τ)⟩ − 0.5) dτ. (9)

In other words, at every given time t the memristor "forgets"
what happened before time t− T .

The resulting dynamics of our device can be tested by as-
suming, for example, a periodic input of the form ⟨nin(t)⟩ =
sin2(π/Tosc t). Depending on the relation between the os-
cillation period of the input, Tosc, and the integration time,
T , two limiting regimes can already be identified. When
Tosc ≫ T , i.e. the input is (almost) constant, Eq. (9) reduces
to R(t) = ⟨nin⟩, which inserted into Eq. (3) gives

⟨nout⟩LF = ⟨nin⟩ − ⟨nin⟩2 . (21)

In contrast, when the input oscillates very quickly such that
Tosc ≪ T , the integral tends to zero, so that R(t) = 0.5 and
consequently

⟨nout⟩HF = 0.5 ⟨nin⟩ . (22)

Note that when T = Tosc the integral is zero, as we are inte-
grating over a full period. Hence, integrating over more than
one period yields redundant results. For this reason, in the
main text we show examples with integration times only in
the range of one period.

Finally, we emphasize that, according to Chua’s own def-
inition [6], a memristive device is indistinguishable from a
nonlinear resistor at very low frequencies, and reduces to a
linear resistor at high frequencies. This is exactly the case of
our photonic quantum memristor, as shown in Eq. (21) and
(22).

For the practical implementation of Eq. (9) we discuss
how the feedback loop retrieves ⟨nin⟩. This is straightfor-
ward, as the input is linked to the measurement in port D by
⟨nin⟩ = ⟨nmeas,D⟩ /R (see Fig. 2a). In practice, we use a
microcontroller that samples ⟨nmeas,D⟩, estimates ⟨nin⟩ using
the previous value of R(t), performs the integral and conse-
quently updates the value ofR(t′). This operation is executed
at a sampling rate of approximately 20 kSa/s. A control is im-
plemented in the code that prevents R(t) from going exactly
to zero, otherwise the feedback would break.

E. Experimental setup

The experimental setup used for our demonstration is de-
tailed in Fig. 6. A collinear Type II SPDC source emits
pairs of identical photons at 1550 nm. The source is based
on a 30 mm PPKTP crystal with a poling period of 46.2 µm
adapted for downconversion from 775 to 1550 nm. The crys-
tal is pumped by a CW amplified diode laser (Toptica TA
Pro 780) with a pump power of approximately 80 mW. The
crystal is inserted in a Sagnac interferometer which produces
polarisation-entangled photons, although in this specific case
the entanglement is not used.

One of the photons (idler) is sent directly to the detectors
for heralding, while the other (signal) is coupled to the inte-
grated photonic processor via a single-mode fiber which is di-
rectly glued to its surface. In the photonic processor, the pho-
ton goes through the state preparation stage and then through

the quantum memristor. At the output, the processor is pig-
tailed to single-mode fibers attached to the detectors. We
use superconducting nanowire single-photon detectors (Pho-
tonSpot Inc.) with average detection efficiency above 95%.
We use three detectors: one for the heralding (idler) photon,
one for the feedback signal, and one for the output signal.

After the detectors, a logic unit analyses the signals. Every
idler-feedback coincidence triggers the generation of a square
voltage pulse in the feedback channel. Equally, every idler-
output coincidence triggers a voltage pulse in the output chan-
nel. With a pump power of about 80 mW in the source, the
maximum coincidence rate in each channel is approximately
3 × 104 counts/s. Both channels are then low-pass filtered
with RC = 100 ms filters. This has the effect of averaging
the trains of pulses and providing a continuous voltage signal
that is proportional to the pulse rate, which is in turn propor-
tional to the photon number. Measuring the output voltage of
the RC filters constitutes therefore a measurement of the pho-
ton number expectation value. Note that, following the dis-
cussion around Eq. (9) in the main text, the time constantRC
should be much smaller than the integration time T , which is
clearly the case as we used T = 10 s.

At this point, the output signal goes to an oscilloscope for
final data logging, while the feedback signal goes to a micro-
controller which computes ⟨nin⟩ and uses it to update the new
value of R(t) in the chip.

The system is then tested by varying the input number of
photon as a sine wave. This is performed by a function gen-
erator which acts on the the integrated quantum state prepa-
ration stage.

F. Memristive behaviour arising from the phase shifters

The step response of the phase shifters in our chip is re-
ported in Fig. 7. The curve is well approximated by a low-
pass filter with a cutoff frequency of fcut = 4.62 Hz. If the
memristor operates at frequencies fosc ≪ fcut the effect of
the shifters is negligible. However, when approaching fcut
the dynamics of the shifters starts to interfere with the dy-
namics of the feedback loop. To test the sole effect of the
shifters, we set here our microcontroller to implement the
identity R(θ) = ⟨nin⟩, rather than Eq. (4). At this point
the dynamics of the device is only governed by how quickly
the phase shifter can actually reach the value R(θ) set by the
microcontroller.

The resulting hysteresis figure, which we report in Fig.
8, is very similar to the one we obtained by implementing
the windowed integrator (see Supplementary Information D).
This is not surprising, considering that a low-pass filter and a
windowed integrator converge to the same limits both at low
and high frequencies. Furthermore, this result indicates an-
other viable path for the future development of these devices,
where one could engineer the response of the thermal shifters
to further simplify the quantum memristor layout by remov-
ing some components in the feedback signal processing.
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Figure 6. Experimental setup. Pumped by a continuous wave laser, a spontaneous parametric downconversion source using periodically-
poled KTP crystal (PPKTP) generates orthogonally polarised photon pairs with a wavelength of 1550 nm. By using a polarization beamsplitter
(PBS) the photon pairs are separated such that the measurement of one photon heralds the presence of the other photon that is coupled into
the photonic quantum memristor processor. The state preparation stage, consisting of a Mach-Zehnder interferometer with two tunable phase
shifters (PS) allows for the preparation of the input state for the quantum memristor. In the final part of the device, the photon undergoes a
tomography stage, which is used for characterisation purpose and otherwise set to perform an identity transformation. A logic unit analyses
the coincidences between the idler photon and the output and feedback photons from the outputs of the photonic processor, triggering the
emission of square pulses each time a coincidence is detected. By low-pass-filtering each channel with RC filters we obtain a measurement
of photon number both for the output and the feedback signals.
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Figure 7. Step response of the phase shifters. Specifically, this
shows the response of PS3 (see Fig. 2). We inject light in mode B
and monitor the output power in mode C with a photodiode. When
no voltage is applied to the phase shifter, the Mach-Zehnder is in
cross state. When applying a step of Vbar = 1.145 V, the Mach-
Zehnder switches to bar state, so the power in port C drops to zero.
The resulting curve is well approximated by the step-response of a
low-pass filter with cutoff frequency fcut = 4.62 Hz.

G. Experimental reconstruction of the output state’s density
matrix

The density matrix for the output state of our device was
obtained in Supplementary Information B:

ρout,AB =

|β|2R 0 0
0 |α|2 α∗β

√
1−R

0 αβ∗√1−R |β|2(1−R)

 (18)

and is written in the basis |00⟩AB , |01⟩AB , |10⟩AB. Our chip
features a tomography stage that allows in principle to fully
reconstruct the output state at modes A and B (see Fig. 2e).
The problem is that detecting photons at modesA andB auto-
matically selects the |01⟩AB or |10⟩AB states, thus cancelling
the |00⟩AB term (i.e. the upper-left term of the density ma-
trix). In other words, one cannot use photon detection in A
and B to characterise the absence of photons in A and B.
However, we know from Eq. (17) that the term |β|2R cor-
responds to the fraction of photons going to mode C, that is
the measurement port of the quantum memristor, connected

to the feedback loop (see Fig. 2e). Therefore, by temporarily
disconnecting the feedback loop, we can use the photon count
at output C to estimate |β|2R.

In essence, we first use the tomography stage at modes A
and B to reconstruct the submatrix relative to the |01⟩AB and
|10⟩AB terms, i.e. the lower-right 2x2 submatrix, using the
maximum-likelihood method. We then use the number of de-
tetected photons at output C to estimate the upper-left term,
and we obtain the final matrix by rescaling according to the
normalisation Tr(ρout,AB) = 1.

On a final note, it is worth mentioning that the off-diagonal
terms need to include an additional phase term ei(ϕMZ+ϕglobal).
Here, ϕMZ is the phase introduced by the Mach-Zehnder,
which we know because we are controlling the reflectivity
of the Mach-Zehnder, which is R = cos2(ϕMZ/2). On the
other hand, ϕglobal is the global phase that originates in the
chip by the difference in length of paths A and B. This can-
not be measured a priori, so we actually retrieve this term by
fitting the phase of the off-diagonal terms to our data, obtain-
ing ϕglobal = 5.6 rad.

Clearly, the output density matrix depends on the specific
settings of |β|2 and R (α depends on β because of the nor-
malisation |α|2 + |β2| = 1). We characterised the density
matrix for the combinations of |β|2 = [0, 0.3, 0.7, 1] and
R = [0, 0.3, 0.5, 0.7, 1]. Our results are summarised in Ta-
ble I.

One may argue that these measurements are performed
with the feedback loop of the quantum memristor switched
off, i.e. with a static value of R, and wonder in principle
weather the time-variation of R(t) introduces additional de-
coherence which is not accounted for in this tomographical
reconstruction. The key to understand this issue is in the time
scales. IfR(t) varied at a frequency comparable or faster than
the photon rate, each subsequent photon would experience a
different value of R(t), and the photon statistics collected by
the detectors would thus reflect a statistical mixture of differ-
ent photon states, i.e. we would be introducing decoherence.
In this device however,R(t) is updated based on the measure-
ment of an expectation value (see Eq. (4)), which requires
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Figure 8. Memristive behaviour originated by the phase shifters. Simulations of a feedback loop containing a low-pass filter before
the actuation of R(θ) (red lines) show good agreement with the experimental data (blue lines). The dynamics is very similar to the one
we presented in Fig. 3, which is unsurprising considering that low-pass filter and windowed integrator (see Supplementary Information D)
have a similar response. The data is more noisy because in this case we work with higher frequencies, so we have to use RC filters (see
Supplementary Information E) with RC = 10 ms rather than 100 ms. Finally, the reason why at 10 Hz ⟨nin⟩ does not cover the full [0,1]
range is because the state preparation stage is controlled by an identical phase shifter, which also looses effectiveness when driven around or
above its cutoff frequency.

to average over many photon counts, therefore being much
slower than the photon rate by definition. In our case, such
averaging happens over the characteristic time of a low-pass
filter with RC = 100 ms, which corresponds to several hun-
dreds photon counts. This represents the fastest time scale
at which it would even make sense to update R(t). On top
of that, however, the time scale at which the memristor actu-
ally updates in our experiment is determined by T (see Eq.
(9)), which is two orders of magnitudes larger. Therefore the
dynamic operation of the memristor is not introducing any
decoherence of the photon states compared to the static re-
construction explained in this paragraph.

H. Quantum reservoir computing

The input to the quantum reservoir is an amplitude-
encoded quantum state on a d-dimensional complex Hilbert
space. For m modes and p photons, the dimension d grows
combinatorially as

(
m+p−1

p

)
with this number giving the

maximum dimension of classical input vectors. A classical
input vector v⃗ ∈ Rn is continuously encoded into a quantum
state qi as qi := 1

||v||2
∑n

j=1 vj |j⟩, where |j⟩ is an eigenvec-
tor of the computational basis, with n ≤ d and vj the jth
element of v⃗. This state is fed into a beamsplitter matrix with
randomly set reflectivity for distributing the coherent quan-
tum information across all modes and subsequently fed into
⌊m

3 ⌋ quantum memristors. The output of each memristor is
used as input for another array of beamsplitters that enable a
coherent interference after the nonlinear map due to the quan-
tum memristors. We generally assume that the encoding and
measurement rails for a quantum memristor do not overlap,
thus for M parallel optical memristors one requires 3M op-
tical modes. For a full description one could compute the
process tensor [7] over the time series length, however it is
sufficient for us to consider a list of completely positive trace
preserving maps that take the input quantum state and update
the next map (dependent on the quantum memristor’s state).
The first map acts on the initial input state and the measure-
ment outcomes of the quantum memristors adapt the next im-

plementation map that acts on the next input to the reservoir.
This is repeated t times, where t is the length of the time se-
quence for the input data.

The tth output density operator of the quantum reservoir
is treated as the correlated output of the reservoir. This
final output state is measured via a positive operator-valued
measure (POVM) using the Fock basis F , with elements
defined as Fij...k = |ij . . . k⟩⟨ij . . . k|. A probability vector
corresponding to the outcome probabilities of these projectors
{tr[ρtFp00...0], tr

[
ρtF(p−1)10...0

]
, tr[ρtF] . . . , tr[ρtFij...k]} ∈

Rd serves as the training data for the classical readout net-
work.

Since the statistics of the photon counters are dependent on
the quantum memristor’s beam splitter settings of the previ-
ous iteration, the overall final output vector is correlated with
the entire input sequence. In this way, correlations across
time are propagated within the quantum reservoir and affect
the output probability vector. Note, that the exact input state
to the quantum memristors is no longer known, instead the
memory effect is implemented as a discrete-time update rule
analogous of Eq. (2), but with time steps defined as a set
number of channel uses (generally around a thousand photon
detection events each). This preserves the memory effect of
the quantum memristors and leads to a stateful quantum reser-
voir that can be exploited for learning tasks both quantum and
classical in nature.

The readout network itself is near trivial by design, as we
want to ensure any sophisticated estimation is performed by
the reservoir. The network exists purely as a linear mapping
between the unknown outputs of the quantum reservoir and
a human readable classifier. The output probability vector
from the quantum reservoir is fed into the input layer and
propagated through the network, which contains only a single
hidden layer. All neurons except those in the output layer do
not have an activation function and thus the neural network
implements an entirely linear transform. A softmax function
operates on the W neurons of the output layer of the neural
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|β|2 R ρout,TH ρout,EXP Fidelity [%] Tr
(
ρout,TH

2
)
Tr

(
ρout,EXP

2
)

1 0.0 0.0

0.00 0 0
0 1.00 −0.00− 0.00i
0 −0.00 + 0.00i 0.00

 0.00 0 0
0 1.00 −0.02 + 0.03i
0 −0.02− 0.03i 0.00

 99.62 1.00 0.99

2 0.3 0.0

0.00 0 0
0 0.70 −0.36− 0.29i
0 −0.36 + 0.29i 0.30

 0.00 0 0
0 0.70 −0.33− 0.27i
0 −0.33 + 0.27i 0.30

 97.19 1.00 0.95

3 0.3 0.3

0.09 0 0
0 0.70 −0.12− 0.37i
0 −0.12 + 0.37i 0.21

 0.09 0 0
0 0.70 −0.09− 0.36i
0 −0.09 + 0.36i 0.21

 98.73 0.84 0.81

4 0.3 0.5

0.15 0 0
0 0.70 −0.03− 0.32i
0 −0.03 + 0.32i 0.15

 0.15 0 0
0 0.70 −0.01− 0.31i
0 −0.01 + 0.31i 0.15

 99.33 0.74 0.73

5 0.3 0.7

0.21 0 0
0 0.70 0.03− 0.25i
0 0.03 + 0.25i 0.09

 0.22 0 0
0 0.70 0.05− 0.24i
0 0.05 + 0.24i 0.08

 99.69 0.67 0.66

6 0.3 1.0

0.30 0 0
0 0.70 0.00− 0.00i
0 0.00 + 0.00i 0.00

 0.31 0 0
0 0.69 −0.02 + 0.03i
0 −0.02− 0.03i 0.00

 99.71 0.58 0.57

7 0.7 0.0

0.00 0 0
0 0.30 −0.36− 0.29i
0 −0.36 + 0.29i 0.70

 0.00 0 0
0 0.31 −0.29− 0.29i
0 −0.29 + 0.29i 0.69

 94.92 1.00 0.91

8 0.7 0.3

0.21 0 0
0 0.30 −0.12− 0.37i
0 −0.12 + 0.37i 0.49

 0.21 0 0
0 0.31 −0.06− 0.36i
0 −0.06 + 0.36i 0.48

 97.75 0.67 0.64

9 0.7 0.5

0.35 0 0
0 0.30 −0.03− 0.32i
0 −0.03 + 0.32i 0.35

 0.35 0 0
0 0.31 0.02− 0.32i
0 0.02 + 0.32i 0.34

 99.20 0.55 0.54

10 0.7 0.7

0.49 0 0
0 0.30 0.03− 0.25i
0 0.03 + 0.25i 0.21

 0.49 0 0
0 0.30 0.06− 0.24i
0 0.06 + 0.24i 0.21

 99.68 0.50 0.50

11 0.7 1.0

0.70 0 0
0 0.30 0.00− 0.00i
0 0.00 + 0.00i 0.00

 0.71 0 0
0 0.29 −0.01 + 0.03i
0 −0.01− 0.03i 0.00

 99.63 0.58 0.59

12 1.0 0.0

0.00 0 0
0 0.00 −0.00− 0.00i
0 −0.00 + 0.00i 1.00

 0.00 0 0
0 0.01 0.04− 0.09i
0 0.04 + 0.09i 0.98

 98.45 1.00 0.99

13 1.0 0.3

0.30 0 0
0 0.00 −0.00− 0.00i
0 −0.00 + 0.00i 0.70

 0.29 0 0
0 0.01 0.06− 0.06i
0 0.06 + 0.06i 0.70

 98.87 0.58 0.59

14 1.0 0.5

0.50 0 0
0 0.00 −0.00− 0.00i
0 −0.00 + 0.00i 0.50

 0.49 0 0
0 0.01 0.05− 0.04i
0 0.05 + 0.04i 0.50

 99.07 0.50 0.50

15 1.0 0.7

0.70 0 0
0 0.00 0.00− 0.00i
0 0.00 + 0.00i 0.30

 0.70 0 0
0 0.01 0.04− 0.02i
0 0.04 + 0.02i 0.29

 99.24 0.58 0.58

16 1.0 1.0

1.00 0 0
0 0.00 0.00− 0.00i
0 0.00 + 0.00i 0.00

 0.99 0 0
0 0.01 0.00− 0.00i
0 0.00 + 0.00i 0.00

 99.05 1.00 0.98

Table I. Tomography of the output states. The results are obtained for several combinations of input states (determined by |β|2) and
reflectivity R of the Mach-Zehnder. All the measurement are in excellent agreement with the theoretical values, showing an average fidelity
F = 98.7%, and showing that no additional decoherence is significantly introduced by our device.
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network q⃗ ∈ RW as:

s(x⃗) =

W∑
i

exp(qi)∑
j exp(qj)

e⃗i, (23)

and is only needed to map such output into a human-readable
probability vector. The final output of the classifier is con-
sidered to be the largest of these probability values. No addi-
tional computational power comes from this nonlinear map as
it is simply a function on the final output vector of the neural
network.

Image classification by sequential data analysis. The first
task discussed was a classical image classification problem.
Both the training and testing sets consist of images of hand-
written digits zero, three and eight, which are chosen for their
similarity [8, 9]. Each image is composed of 18 × 12 pixels
whose columns serve as the input to the quantum reservoir,
encoded using the above amplitude encoding for each col-
umn and then sequentially fed into the network using a finite
number of samples. Generally a thousand instances for each
encoded state was found to be sufficient to gather approx-
imately correct statistics, yielding the aforementioned 95%
accuracy.

For comparing the cases of quantum and classical reser-
voir computing we have chosen as strategy to keep the topol-
ogy fixed (meaning optics and readout layer). This allows to
switch between the quantum and classical cases by only vary-
ing a) how the data is encoded and b) how the reservoir’s out-
put is measured. The quantum case is explained above and
we give a brief description of the classical simulation here.
Instead of encoding data into quantum states, we use finitely
bound coherent states that tend to the classical limit.

For input data assumed to be a real vector v⃗ ∈ Rn of length
n, we define a set of n coherent states as

|ψk⟩ = e−
k2

2

d∑
n

kn√
n!

|n⟩ , (24)

on an underlying d-dimensional Fock space (taking a finite
truncation of the normally infinite series). This gives a list
of n encoding input states that we form a statistical mix-
ture of as ci = Ci

∑
j vj |ψj⟩⟨ψj |, Ci being a normalisa-

tion constant such that tr[ci] is unity. This classical mixture
ci ∈ B(Hd) serves as the ’classically’ encoded input state, se-
quenced the same as it is for the quantum case. After propaga-
tion through the quantum reservoir, projective measurements
are performed similar to the quantum case a discrete number
of times to produce a sample probability that is then used to
update the quantum memristor, ready for the next encoded
state of the input sequence. We then see a considerable drop
in the overall classification performance, thus giving strong
evidence that the performance we are seeing is due to quan-
tum effects.

Furthermore, disabling the quantum memristor’s update
ability for the original scheme (with single photons) leads to
a complete failure. This is unsurprising given that in this case
the network must essentially classify the digit with only the
very last column to work with - one that very often contains
no significant information about the image.

Entanglement detection. The second task considered was
entanglement detection, where we require both, random en-
tangled and separable pure states with respect to a bipartition
on Hd⊗Hd for training, where Hd is the d-dimensional com-
plex Hilbert space of the quantum reservoir. This is easily
achievable as one can show that separable states are measure
zero on the underlying set and so uniform random sampling
over Hd ⊗ Hd will almost surely generate states belonging
to the entangled class. For the non-entangled states we ran-
domly sample two quantum states on Hd and compute their
tensor product. Embedding these states into the larger input
space of the quantum reservoir, the task is to identify if the
input contains any entanglement with respect to the chosen
bipartition, yielding the aforementioned 98% success rate on
never before seen states.

The code for both tasks is available at [10].

I. Quantum memristor for path-encoded photons

A quantum memristor in the photonic domain was first pro-
posed by Sanz et al. [11]. Although setting an excellent
groundwork, their scheme suffers from several drawbacks,
most of which can be traced down to the choice of the x-
quadrature operator as input variable of the device.

In the example with Fock states — which is arguably the
most relevant for quantum photonics applications — they ob-
tain a hysteresis figure that is not pinched at the origin. This
has been shown to be possible in memristive devices [12] if
the function f() from Eq. (1) goes to infinity, but it is clearly
not the case in the device of Sanz et al. [11]. The reason
why their device does not obtain a pinched shape hystere-
sis is that it does not match the form prescribed by Eq. (1),
where the input u is required to multiply f(). Physically, this
happens because an input state with zero quadrature does not
always imply an output state with zero photons. Therefore,
even though their device clearly shows a memory behaviour,
it is not consistent with the definition of memristive device.

Most importantly, however, their scheme is very challeng-
ing to implement practically, as it requires the tuning and
measurement of quadrature operators, which generally entails
mixing the states with a coherent beam, thus greatly compli-
cating any experimental setup. Furthermore, the input states
are given by the superposition of Fock states, which is possi-
ble but impractical to realise in linear optics, especially when
considering that the average quadrature of such a state de-
pends on its relative phase term, which would have to be
tightly controlled. An additional challenge is the fact that any
subsequent manipulation of a qubit encoded in a superposi-
tion with the vacuum state would be highly nontrivial.

Nevertheless, the paper by Sanz et al. does make an excel-
lent point by highlighting that performing single-photon de-
tection at one output of the beam splitter not only can be used
in conjunction with classical feedback to produce a memory
behaviour, but also has the effect of projecting the output on
a coherent superposition of quantum states. Starting from
this concept, we propose here a solution that substantially im-
proves upon their scheme.

First, we use photon number as the input variable, rather
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than the quadrature. This is possible through a close for-
mal analogy that we discovered between the equations of the
beam splitter and the equations of Struckov’s memristor [13],
which we discuss in Supplementary Information J. In addi-
tion to producing a hysteresis loop that always crosses the
origin, using photon number as input variable allows us to
drop the requirement of tuning and measuring quadrature op-
erators, thus greatly simplifying the experimental footprint.

Second, we address the challenge of creating and control-
ling superposition of Fock states by using a different encod-
ing. In essence, we switch from number-encoding (also re-
ferred to as single-rail) to path-encoding, which is perhaps
the most natural form of encoding in quantum photonics. The
equivalence of the scheme is explained in details in Supple-
mentary Information B.

J. From the "original" memristor to a photonic memristor

After being forgotten for several decades, the memristor
had an explosive comeback in 2008 when Struckov et al. [13]
reported for the first time a physical model of the "missing
memristor" in a simple semiconductor junction. They con-
sidered a nanometric junction between a doped semiconduc-
tor with resistivity Rlow and thickness w, and an instrinsic
semiconductor with resistivity Rhigh and thickness D−w, as
represented in Fig. 9. The overall resistance of the junction
is easily calculated as the series of its two parts. However,
when a voltage is applied to the junction it causes the ions
of the doped part to drift, thus effectively changing the resis-
tance of the junction itself. This can be modelled as a shift
of w, so that the behaviour of this device can be described by
the coupled equations

v(t) =

[
Rlow

w(t)

D
+Rhigh

(
1− w(t)

D

)]
· i(t), (25)

ẇ(t) = µ
Rhigh

D
· i(t), (26)

where µ is a constant related to the mobility of the ions in-
side the semiconductor. One can immediately see that these
equations satisfy the form required by Eqs. (1) and (2). Ab-
stractly, one can think of this device as a sort of sliding poten-
tiometer where the position of the slider w(t) — i.e. the state
variable of the device — is influenced by the past current that
went through the device, hence the hysteresis.

Let us now consider the tunable beam splitter of Fig. 10a.
In an idealized picture, one has the elementary relation

⟨nout⟩ = (1−R(θ)) ⟨nin⟩ , (3)

where R(θ) = [0, 1]. In a real-world device, however, the
reflectivity can never reach exactly zero or one. That is be-
cause, even if one assumes a lossless device, a fraction of the
input light (however small) will always leak into the unde-
sired output arm. This is especially true in integrated optics,
where a common way to realise a tunable beam splitter is by
a Mach-Zehnder interferometer with a phase shifter in one
of the arms, as shown in Fig. 10b. If the two directional cou-
plers composing the Mach-Zehnder have a perfectly balanced

w(t)

D

Doped
Rlow

Undoped
Rhigh

V(t)

Figure 9. Original memristor by Struckov et al [13]. When a volt-
age is applied across the junction, the ideal separation line between
doped and undoped semiconductor shifts, thereby changing the re-
sistance of the junction itself, and originating the hysteresis.

(a) (b)

A C

B D

A C

B

D

Figure 10. Photonic quantum memristor. a) Basic scheme of the
photonic quantum memristor. b) The integrated optics equivalent,
where the reflectivity is set by the phase θ. The black lines corre-
spond to guided modes of the integrated chip, and the crossing points
are directional couplers, which act as beam splitters.

splitting ratio of 1:1, the device has the ideal operation of Eq.
(3). In practice, however, the exact splitting ratio can only
be achieved up to a given experimental accuracy. Let us then
consider a Mach-Zehnder where, for simplicity, one of the
couplers is assumed to be perfectly balanced and the other to
be slightly off. In the Heisenberg picture, the action of the
Mach-Zehnder can be described by the matrix product of its
three components:(

âC
âD

)
=

(
t ir
ir t

)(
1 0
0 eiθ

)
1√
2

(
1 i
i 1

)(
âA
âB

)
, (27)

where â is the annihilation operator on each spatial mode and
the three matrices from left to right refer to the action of the
unbalanced directional coupler, the phase shifter and the bal-
anced coupler, respectively. Here, r and t indicate the reflec-
tion and transmission coefficients of the unbalanced coupler.
By computing the product one obtains

(
âC
âD

)
=

1√
2

(
t− reiθ i(t+ reiθ)
i(t+ reiθ) −r + teiθ

)(
âA
âB

)
. (28)

In analogy with the beam splitter of Fig. 10a, let us con-
sider A as input port and C as output port, while input B is
not used. One can extract from the previous matrix

âC =
1√
2
(t− reiθ) âA, (29)

from which we obtain

⟨nout⟩ =
1

2
(1− 2rt cos θ) ⟨nin⟩ . (30)
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In the ideal case, when r = t = 1/
√
2, the equation reduces

to the well known

⟨nout⟩ =
1

2
(1− cos θ) ⟨nin⟩ , (31)

and by comparison with Eq. (3) one easily finds

R(θ) =
1

2
(1 + cos θ). (32)

Because of the relation r2 + t2 = 1, the product rt in Eq.
(30) takes its maximum value of 1/2 for r = 1/

√
2. In a

more realistic picture, where r can only approximate the ideal
value, one has rt = 1/2 − η with η ≪ 1. Introducing this
product in Eq. (30) one obtains

⟨nout⟩ =
1

2
(1− (1− 2η) cos θ) ⟨nin⟩ . (33)

By the definition of Eq. (32) and some simple algebra, one
can rewrite the last equation as

⟨nout⟩ =
[
ηR(θ) + (1− η)(1−R(θ))] ⟨nin⟩ , (34)

which is our final point. This equation is a reasonable rep-
resentation of a real-world beam splitter, for which the trans-
mission never reaches exactly zero or one. Indeed, one can
only controlR(θ), and forR(θ) = 0 the transmission is 1−η,
while for R(θ) = 1 the transmission is η. We call η a leakage
factor, as it represents the fraction of photons that, regard-
less of the external control, always leaks into the undesired
output.

At this point, we observe that Eq. (34) is formally identi-
cal to Eq. (25), where ⟨nin⟩ corresponds to i(t), ⟨nout⟩ cor-
responds to v(t), η corresponds to Rlow, 1 − η corresponds
to Rhigh, and R(θ) corresponds to w(t)/D, both of them be-
ing adimensional quantities in the interval [0, 1] and acting as
state variables for the respective device. We also emphasise
that the analogy does not break down when considering an
ideal beam splitter with η = 0, as it just corresponds to an
ideal memristor with Rlow = 0. This is nearly the case in
reality, as the resistance of doped semiconductors is tipically
many orders of magnitude smaller than intrinsic semiconduc-
tors, even at moderate doping.

We have then found in the beam splitter a device that in-
herently replicates the form of Eq. (25). Consequently, the
natural choice of the feedback law would be one that repli-
cates the dynamics of Eq. (26). By the mere correspondence
of the quantities, this would translate to Ṙ(θ) ∝ ⟨nin⟩. How-
ever, a feedback law of this type would be rather pointless
because, unlike current and voltage, photon number can only
take positive values and thereforeR(θ) would just increase in
time, eventually saturating to unity. One of the fundamental
properties of a memristor, instead, is the ability to revert its
state, which implies that Ṙ(θ) must also take negative values.
This can be readily obtained by a simple baseline shift:

Ṙ(θ, t) = ⟨nin(t)⟩ − 0.5 ⟨n⟩max , (4)

where ⟨n⟩max is the maximum value of ⟨nin⟩ in time. In the
single-photon case, ⟨nmax⟩ = 1, so the law effectively be-
comes Ṙ(θ) = ⟨nin⟩ − 0.5. It is easy to see that in such a
case, input states with average number of photons lower than
0.5 will contribute negatively and bring R to zero, while in-
put states with average number of photons higher than 0.5
will contribute positively and bring R to one. The resulting
dynamics is an hysteresis figure that closely resembles that of
the original memristor, though limited to the positive quad-
rant of the input-output plane.
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