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1. THEORY OF THE SUPERRADIANT RESERVOIR

To describe a cavity coupled to an atomic beam reservoir, we derive a master equation from the single atom-cavity
Jaynes-Cummings Hamiltonian. The Hamiltonian is given by

HAF/h̄ =
∆ac

2
σz + g

(
σ†a+ σa†

)
, (S1)

where ∆ac = ωa − ωc represents the atom-cavity detuning, σz denotes the inversion operator, g is the atom-cavity
coupling constant and σ†(σ) is the raising(lowering) operator of the atom and a(a†) is the annihilation(creation)
operator for photons. According to Ref. [1], the unitary evolution operator U(τ) can be written as

U(τ) = e−iHAFτ/h̄ =

∞∑
n=0

(−iτ/h̄)n

n!
Hn

AF

=

(
cos(Ωnτ/2)− i∆acτ/2 sinc(Ωnτ/2) −igτ sinc(Ωnτ/2)a

−igτa† sinc(Ωn-1τ/2) cos(Ωn-1τ/2) + i∆acτ/2 sinc(Ωn-1τ/2)

)
,

(S2)

where Ωn ≡
√

∆2
ac + 4g2(a†a+ 1) and the representations |e〉 =

(
1
0

)
and |g〉 =

(
0
1

)
are used. If

√
n+ 1gτ � 1,

expanding to the second order of gτ , we obtain

cos (Ωnτ/2) ' cos(∆acτ/2)− 1

2
sinc(∆acτ/2) (gτ)

2
(a†a+ 1),

sinc (Ωnτ/2) ' sinc(∆acτ/2) +
2

(∆acτ)2
{cos(∆acτ/2)− sinc(∆acτ/2)} (gτ)

2
(a†a+ 1).

(S3)

After the interaction time τ , the atom leaves the cavity. The state of the cavity can be calculated by tracing out the
atom, ρ(τ) = Tra

[
U(τ)ρAF(0)U(τ)†

]
= 〈g|U(τ)ρAF(0)U(τ)† |g〉 + 〈e|U(τ)ρAF(0)U(τ)† |e〉, where ρ(t)(ρAF(t)) is the

cavity field(atom-field) density matrix. With foregoing approximations, we obtain

〈g|U(τ) =

{
−1

2
sinc(∆acτ/2) +

i

∆acτ
(cos(∆acτ/2)− sinc(∆acτ/2))

}
(gτ)2a†a 〈g|

+ ei∆acτ/2 〈g| − igτ sinc(∆acτ/2)a† 〈e| ,

〈e|U(τ) =

{
−1

2
sinc(∆acτ/2)− i

∆acτ
(cos(∆acτ/2)− sinc(∆acτ/2))

}
(gτ)2aa† 〈e|

+ e−i∆acτ/2 〈e| − igτ sinc(∆acτ/2)a 〈g| .

(S4)
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This yields

ρ(τ) = ρ(0) + ρee (gτ sinc(∆acτ/2))
2
a†ρ(0)a− igτ sinc(∆acτ/2)ρega

†ρ(0)e−i∆acτ/2

+ ρgg (gτ sinc(∆acτ/2))
2
aρ(0)a† − igτ sinc(∆acτ/2)ρgeaρ(0)ei∆acτ/2

+ igτ sinc(∆acτ/2)ρegρ(0)a†e−i∆acτ/2 + igτ sinc(∆acτ/2)ρgeρ(0)aei∆acτ/2

+ ρgge
−i∆acτ/2

{
−1

2
sinc(∆acτ/2) +

i

∆acτ
(cos(∆acτ/2)− sinc(∆acτ/2))

}
(gτ)2a†aρ(0)

+ ρgge
i∆acτ/2

{
−1

2
sinc(∆acτ/2)− i

∆acτ
(cos(∆acτ/2)− sinc(∆acτ/2))

}
(gτ)2ρ(0)a†a

+ ρeee
i∆acτ/2

{
−1

2
sinc(∆acτ/2)− i

∆acτ
(cos(∆acτ/2)− sinc(∆acτ/2))

}
(gτ)2aa†ρ(0)

+ ρeee
−i∆acτ/2

{
−1

2
sinc(∆acτ/2) +

i

∆acτ
(cos(∆acτ/2)− sinc(∆acτ/2))

}
(gτ)2ρ(0)aa†

+O
(

(gτ)
3
)
,

(S5)

where ρee and ρgg(ρeg and ρge) denote (off-)diagonal elements of the density matrix of the injected atom. Using the
Lindblad operator defined as L[a]ρ = aρa† − 1

2

(
a†aρ+ ρa†a

)
and defining a new function f(∆ac), Eq. (S5) can be

simplified to

ρ(τ)− ρ(0) = (gτ sinc(∆acτ/2))2ρeeL[a†]ρ(0) + (gτ sinc(∆acτ/2))2ρggL[a]ρ(0)

+ iρggf(∆ac)(gτ)2a†aρ(0)− iρggf(∆ac)(gτ)2ρ(0)a†a

− iρeef(∆ac)(gτ)2aa†ρ(0) + iρeef(∆ac)(gτ)2ρ(0)aa†

+ igτ sinc(∆acτ/2)
{
−ρega

†ρ(0)e−i∆acτ/2 − ρgeaρ(0)ei∆acτ/2
}

+ igτ sinc(∆acτ/2)
{
ρgeρ(0)aei∆acτ/2 + ρegρ(0)a†e−i∆acτ/2

}
+O

(
(gτ)

3
)
,

(S6)

where

f(∆ac) ≡ cos(∆acτ/2)

∆acτ
{cos(∆acτ/2)− sinc(∆acτ/2)}+

1

2
sin(∆acτ/2) sinc(∆acτ/2). (S7)

If τ is shorter than the characteristic time of field growth or decay, the time derivative of density matrix can be

approximated as ρ̇(t) ' ρ(τ)−ρ(0)
τ . This gives

ρ̇(t) = − i
h̄

[H, ρ(t)] +
N

τ
(gτ sinc(∆acτ/2))2ρeeL[a†]ρ(t) +

N

τ
(gτ sinc(∆acτ/2))2ρggL[a]ρ(t), (S8)

where each term has been multiplied by the average number N̄ of atoms in the cavity to account for multiple atoms.
More rigorous extension for many atoms can be found in Refs. [2, 3]. The Hamiltonian H can be written as

H/h̄ ≡ −γinj(ρgg − ρee)f(∆ac)(gτ)2a†a+ γinjgτ sinc(∆acτ)
(
ρega

†e−i∆acτ/2 + ρgeae
i∆acτ/2

)
, (S9)

where γinj ≡ N̄/τ denotes the atomic injection rate. The first term represents frequency pulling/pushing effect, which
is negligible for the experimental parameters in the manuscript. In Eq. (S8), the second(third) term corresponds to
the upper(lower) energy level of the atomic reservoir. The ratio of the coefficients in front of the Lindblad operators
can be equated to the Boltzmann factor to define the temperature of the atomic reservoir.

ρee

ρgg
= exp

(
− h̄ωa

kBTatom

)
(S10)

We now include the cavity decay by adding 2κL[a]ρ(t) to the righthand side of Eq. (S8). The result can be rearranged
as follows:

ρ̇(t) = − i
h̄

[H, ρ(t)] + Γrn̄thL
[
a†
]
ρ(t) + Γr (n̄th + 1)L [a] ρ(t), (S11)



3

where the thermal photon number and decay constant are defined as n̄th ≡ ρeeγinj{gτ sinc(∆acτ/2)}2

(ρgg−ρee)γinj{gτ sinc(∆acτ/2)}2+2κ
, and

Γr ≡ (ρgg − ρee)γinj {gτ sinc(∆acτ/2)}2 + 2κ, respectively. In the presence of the cavity decay, the second(third) term
in Eq. (S11) corresponds to the upper(lower) energy level of a redefined reservoir composed of atoms and the photonic
vacuum associated with the cavity decay. The temperature of the new reservoir is given by

n̄th

n̄th + 1
= exp

(
− h̄ωa

kBTR

)
, (S12)

which has the same form as the one describing a thermal reservoir containing n̄th photons.
Eqs. (S11) and (S12) show that atoms and a photonic vacuum form a single heat reservoir of temperature TR and

this is the heat reservoir that is employed in our experiment. It might be more rigorous to describe the engine as
being driven by many baths. However, in our experiment, photonic vacuum is an irremovable element and it does
not play an important role in driving the quantum engine: it has no quantum coherence and thus does not provide
energy to the working fluid. Therefore, it is more practical to incorporate it into a single heat reservoir characterized
by a single temperature as in Eqs. (S11) and (S12).

2. STEADY STATE : THERMAL COHERENT STATE

The steady state solution ρss satisfies

0 = − i
h̄

[H, ρss] + Γrn̄thL
[
a†
]
ρss + Γr (n̄th + 1)L [a] ρss. (S13)

We introduce a thermal coherent state ρss = D(α)ρthD
†(α) as an ansatz for solving the above equation, where

D(α) ≡ eαa
†−α∗a is a displacement operator, and ρth ≡

∑
k

n̄k
th

(1+n̄th)k+1 |k〉 〈k|. Here, α is an arbitrary complex

number. Let us apply D†(α) on the left and D(α) on the right. Using the relations D(α)†aD(α) = a + α, and
D(α)†a†D(α) = a† + α∗, we find

D†(α)L[a]ρssD(α) = (a+ α)ρth(a† + α∗)− 1

2

{(
a† + α∗

)
(a+ α) ρth + ρth

(
a† + α∗

)
(a+ α)

}
= L[a]ρth +

1

2

{(
α∗a− αa†

)
ρth + ρth

(
αa† − α∗a

)}
,

(S14)

D†(α)
i

h̄
[H, ρss]D(α) = iγinjgτ sinc(∆acτ/2)D†(α)

(
ρega

†e−i∆acτ/2 + ρgeae
i∆acτ/2

)
D(α)ρth

− iγinjgτ sinc(∆acτ/2)ρthD
†(α)

(
ρega

†e−i∆acτ/2 + ρgeae
i∆acτ/2

)
D(α)

= −iγinjgτ sinc(∆acτ/2)
[
ρth, ρega

†e−i∆acτ/2 + ρgeae
i∆acτ/2

]
.

(S15)

Substitution of the above results into Eq. (S13) gives

iγinjgτ sinc(∆acτ/2)
[
ρth, ρega

†e−i∆acτ/2 + ρgeae
i∆acτ/2

]
+ Γrn̄thL

[
a†
]
ρth + Γr (n̄th + 1)L [a] ρth

+
1

2
Γr (n̄th + 1)

[
ρth, αa

† − α∗a
]

+
1

2
Γrn̄th

[
ρth, α

∗a− αa†
]

= 0.
(S16)

The sum of the second and the third terms vanishes, and the equation is simplified as

iγinjgτ sinc(∆acτ/2)
[
ρth, ρega

†e−i∆acτ/2 + ρgeae
i∆acτ/2

]
+

1

2
Γr

[
ρth, αa

† − α∗a
]

= 0. (S17)

For the equation to hold, the value of α must be

α = −2i
γinj

Γr
gτ sinc(∆acτ/2)ρege

−i∆acτ/2. (S18)
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a b

FIG. S1. The second order correlation of the steady state a, The photon number ratio dependence of the second-order
correlation function at zero delay time. b, The second-order correlation measurement of the thermal coherent state. Black
circles correspond experimental data and red solid curve is the analytic solution. Experiments were performed under the
following condition: N = 0.4 and gτ = 0.03.

The mean photon number and the second-order correlation function at zero delay time of the steady state can be
calculated, respectively, as

〈n〉 =
〈
a†aρss

〉
= n̄th + |α|2 , (S19)

g(2)(0) =

〈
a†a†aaρss

〉
〈a†aρss〉2

=

〈
a†a†aaD(α)ρthD

†(α)
〉(

n̄th + |α|2
)2

=

〈
D†(α)a†D(α)D†(α)a†D(α)D†(α)aD(α)D†(α)aD(α)ρth

〉(
n̄th + |α|2

)2

=

〈(
a† + α∗

)2
(a+ α)

2
ρth

〉
(
n̄th + |α|2

)2 =

〈(
a†2a2 + 4 |α|2 a†a+ |α|4

)
ρth

〉
(
n̄th + |α|2

)2

=

〈
a†2a2ρth

〉
+ 4 |α|2 n̄th + |α|4(

n̄th + |α|2
)2 =

2n̄2
th + 4 |α|2 n̄th + |α|4(

n̄th + |α|2
)2

= 1 +
1 + 2 |α|2 /n̄th(
1 + |α|2 /n̄th

)2 .

(S20)

The second-order correlation function at zero delay time approaches unity as the ratio |α|2 /n̄th increases as shown
in Fig. S1a. By turning on and off quantum coherence, the ratio can be measured. After the equilibrium time 1/Γr,
g(2)(t) converges to unity, and therefore

g(2)(t) = 1 +
1 + 2 |α|2 /n̄th(
1 + |α|2 /n̄th

)2 e
−|Γrt|. (S21)

The analytic solution Eq. (S21) and the experimental result in Fig. S1b show a good agreement.
When the pump and cavity frequencies are the same, all atoms have the same phase, resulting in superradiance.

If the detuning between the pump laser and the cavity is much larger than the cavity linewidth, the atoms are no
longer superradiant, and thus the cavity field diminishes. It can be confirmed by measuring the photon number in the
cavity while scanning the pump laser frequency across the cavity resonance as shown in Fig. S2. The broad Gaussian
envelope centered at the atomic transition frequency has the width determined by the transit time of the atoms across
the pump laser beam and the cavity. A Lorentzian sharp peak centered at each cavity frequency under the envelope
is the superradiant signal. As the cavity frequency varies, the location of the sharp peak shifts along.
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FIG. S2. Pump-atom detuning dependence of the superradiance signal for various cavity-atom detuning. Symbols
represent experimental data and lines are Lorentz fits. The solid light-blue line is a theoretical envelope determined by the
transit time broadening.

3. ENTROPY OF THE ENGINE

According to Ref. [4], the density operator of the thermal coherent state can be written as

ρ = D(α)ρthD
†(α) =

1

n̄th + 1

(
n̄th + 1

n̄th

)−(α†−α∗)(a−α)

. (S22)

With the logarithm of the operator log ρ = − log(n̄th + 1)− log
(
n̄th+1
n̄th

) (
a† − α∗

)
(a− α), the von Neumann entropy

for the cavity field can be calculated as

S/kB = −Tr [ρ log ρ]

= log(n̄th + 1) + Tr

[
D(α)ρthD

†(α) log

(
n̄th + 1

n̄th

)(
a† − α∗

)
(a− α)

]
= log(n̄th + 1) +

∫
d2β

π
〈β|D(α)ρthD

†(α) log

(
n̄th + 1

n̄th

)(
a† − α∗

)
(a− α) |β〉

= log(n̄th + 1)

+

∫
d2β

π
〈β|D(α)ρth log

(
n̄th + 1

n̄th

)
D†(α)

(
a† − α∗

)
D(α)

D†(α) (a− α)D(α)D†(α) |β〉 .

(S23)

Using the relations D(α)†aD(α) = a+α, D(α)†a†D(α) = a† +α∗, and D(α)D(β) = exp[iIm(αβ∗)]D(α+ β), we find

S/kB = log(n̄th + 1) +

∫
d2β

π
〈β − α| ρth log

(
n̄th + 1

n̄th

)
a†a |β − α〉

= log(n̄th + 1) + log

(
n̄th + 1

n̄th

)
Tr
[
ρtha

†a
]

= log(n̄th + 1) + n̄th log

(
n̄th + 1

n̄th

)
= (n̄th + 1) log(n̄th + 1)− n̄th log (n̄th) .

(S24)

The entropy is independent of α, thus the entropy of the thermal coherent state is the same as that of the thermal
state.
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During the isochoric process, the field state changes from the thermal state to the thermal coherent state, vice
versa, for the same reservoir temperature. Consequently, the entropy of the engine or the cavity field does not change.
However, we have shown in Methods that heat Qab is absorbed by the engine from the reservoir during the isochoric
process a→b. Heat transfer without a change in the engine entropy may appear to contradict the second law of
thermodynamics. We show below that it is not the case.

4. ERGOTROPY TRANSFER FROM THE RESERVOIR

Ergotropy is defined as the maximum extractable work from a non-passive state[5]. It can be evaluated as

E =
∑
j,l

rjεl(|〈rj |εl〉|2 − δjl), (S25)

where the state and Hamiltonian is given as

ρ ≡
∑
j≥1

rj |rj〉 〈rj | , H ≡
∑
l≥1

εl |εl〉 〈εl| , r1 ≥ r2 ≥ · · · , ε1 ≤ ε2 ≤ · · · . (S26)

Let us consider the simplified scenario in which atoms initially prepared in the same superposition state
√
ρgg |g〉 +√

ρee |e〉 (with ρgg > ρee) coherently emit photons to a lossless cavity on resonance. The eigenstates are ground and
excited states

∣∣ε1(2)

〉
= |g(e)〉, and r1 = 1 because the prepared state is a pure state. Then the ergotropy change of

the reservoir is equal to the variation of the energy stored in the atoms:

∆E = h̄ωa

∑
k

∆ρee,k, (S27)

where ρee,k represents the excited state population of the kth atom.
Recently, It has been pointed out that the law of thermodynamics should be modified to include coherence in the

quantum regime as follows[6]:

TR∆S ≥ ∆Q+ TR∆C , (S28)

where C is the relative entropy of coherence of the reservoir as defined as

C /kB ≡ tr
[
ρR log ρR − ρdR log ρdR

]
, (S29)

where ρR(ρdR) is (the diagonal part of) the density matrix of the reservoir. The relative entropy of coherence for the
kth atom can be written as

Ck/kB = tr

[(
ρee,k

√
ρgg,kρee,k√

ρgg,kρee,k ρgg,k

)
log

(
ρee,k

√
ρgg,kρee,k√

ρgg,kρee,k ρgg,k

)]
− tr

[(
ρee,k 0

0 ρgg,k

)
log

(
ρee,k 0

0 ρgg,k

)]
.

(S30)

The first term is the entropy of the atom in a pure state, and therefore, it vanishes. Equation (S30) is then reduced
to

Ck/kB = −ρee,k log ρee,k − ρgg,k log ρgg,k

= −ρee,k log ρee,k − (1− ρee,k) log(1− ρee,k).
(S31)

When the change in the atomic state while traversing the cavity is small, the change in the relative entropy can be
approximated as

∆Ck/kB = (−1− log ρee,k)∆ρee,k + [1 + log(1− ρee,k)] ∆ρee,k

= log(ρgg,k/ρee,k)∆ρee,k ' log(ρgg/ρee)∆ρee,k.
(S32)
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FIG. S3. Effective temperature of the reservoir controlled during the cycle. The average temperature of black dashed
and red solid lines are 8000K and 6200K, respectively. Data are presented as mean values and error bars shown as shaded
vertical lines are one standard deviations from 60 repeated measurements.

For the isochoric process A→B, ∆S = 0 and thus Eq. (S28) then becomes

∆Q ≤ −TR∆C = − h̄ωa

kB log(ρgg/ρee)

∑
k

∆Ck

= −h̄ωa

∑
k

∆ρee,k = h̄ωa∆n
(S33)

where we used the definition of the reservoir temperature, Eq. (9), with κ = 0 and the energy conservation ∆n +∑
k ∆ρee,k = 0 for the lossless cavity, for which the equality holds. Equation (S33) shows that the heat absorbed by

the engine in the isochoric process indeed comes from the change in the relative entropy of coherence for the reservoir.
Note that the negative of the ergotropy change, −∆E , of the superradiant reservoir in Eq. (S27) is equal to the energy
transfer, ∆Q = −TR∆C , that occurs when the relative entropy of coherence changes. The relationship between the
two concepts has been revealed for more general cases[7].

5. ENGINE CONTROL

During the isoenergetic processes (B→C and D→A), the internal energy of the working fluid (nh̄ωc) is kept constant.
In the case of our engine, the photon number is almost constant in the expansion and compression stage because the
change in ωc is in the order of 10−9 with respect to its mean value. However, the gain profile of the atoms depends on
the atom-cavity detuning, so the temperature of the reservoir should be adjusted in order to keep the photon number
constant as shown in Fig. S3. Experimentally, the power of the pump laser is manipulated. To estimate the effective
temperature of the reservoir, we employ the 1S0↔1P1 cycling transition (553 nm). By comparing the fluorescence
of the 553-nm cycling transition when the 791-nm pump is turned on and off, the excited state population can be
inferred (i.e. shelving experiment). The effective reservoir temperature is then obtained from Eq. (9). As the mean
temperature decreases, the necessary change in temperature to maintain the internal energy becomes negligible (red
line in Fig. S3).

Our engine is not autonomous. That is, the mirrors are not pushed or pulled by radiation pressure alone, but the
distance between two mirrors or the resonance frequency of the cavity is modulated externally, as in other quantum
engine experiments[8–10]. We measured the resonance frequency of the cavity, which can be converted to the distance
between the mirror, from the cavity transmission spectrum. For the data shown in Fig. 1d, the cavity frequency
change is inversely proportional to the cavity length change and the 0.5 MHz scan range corresponds to a length
change of 1.3× 10−12 m, about 1/40 of the Bohr radius. Such a small change can be controlled by using a feedback
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FIG. S4. Cavity frequency controlCavity output field detected by a single photon counting module. The red line is the
expected cavity frequency.
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FIG. S5. The cavity resonance frequency dependence of the cavity mode volume. Black circles correspond the
numerically calculated result and red solid curve is the analytic solution.

loop. By manipulating the applied voltage to the piezoelectric transducer, the resonance frequency of the cavity can
be adjusted. From the measured transmission spectrum of the cavity, the resonance frequency can be deduced as
shown in Fig. S4.
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6. RELATIONSHIP BETWEEN VOLUME(PRESSURE) AND CAVITY RESONANCE
FREQUENCY(PHOTON NUMBER)

The x axis of the pressure-volume diagram in Fig. 1d in the main text is represented by the cavity resonance frequency,
and the y axis is represented by the number of photons. Here is the explicit relations between pressure(volume) and
photon number(cavity resonance frequency).

The cavity mode used in experiments is the TEM00 Gaussian mode with l anti-nodes along the cavity axis which
can be expressed as[11]

E(x, y, z) =
wm

w(x)
e
− r2

w2(x) cos

[
klx− arctan

(
x

x0

)
+
klr

2

R(x)
+ (l − 1)

π

2

]
, (S34)

where wm is the cavity waist, kl is the wave number, x0 is the Rayleigh range, r ≡
√
y2 + z2, and the spot size

parameter w(x) and the curvature at position x, R(x) are given by

w(x) = wm

√
1 + (x/x0)

2
, (S35)

R(x) = x
[
1 + (x0/x)

2
]
. (S36)

Then, the resonance frequency of the modes are

νl =

[
l +

2

π
arctan

(
L

2x0

)]
νF, (S37)

with the distance between the mirrors L, and the free spectral range νF = c
2L . Because L(1.1 mm) � x0(7.4 mm),

the following approximations are valid: wm ' w(x), and arctan
(
x
x0

)
� 1. Then, the cavity mode and its resonance

frequency can be approximated as

E(x, y, z) ' e−
r2

w2
m cos

[
klx+ (l − 1)

π

2

]
, (S38)

νl '
lc

2L
. (S39)

Therefore, the mode volume of the Fabry-Pérot cavity can be written as

Vm =

∫ L/2

−L/2
dx

∫ 2π

0

dθ

∫ ∞
0

dr |E(r, θ, x)|2 ' 1

4
πw2

mL =
π
√

2R

4kl
L3/2 =

π
√
Rl3c3

8kl
ν
−3/2
l , (S40)

where θ is the polar angle. The analytic solution Eq. (S40) and the mode volume obtained by numerically integrating
Eq. (S34) are compared in Fig. S5.

The radiation pressure is represented by the photon number. Let us consider a cylinder consisting of perfect
mirrors(L×A(area)). The round trip time between the two mirrors is 2L/c, and the amount of momentum transferred
in one collision is 2h̄kl. Therefore pressure on the wall is given by

P =
2nh̄kl/A

2L/c
=
nh̄ωc

AL
=
nh̄ωc

Vm
, (S41)

where n is the number of photons bouncing along the cavity axis.
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