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1 Derivation of the quantum Gouy phase

The quantum Gouy phase is the phase acquired by a Fock state of a
paraxial mode upon propagation. To derive this phase, let us consider the
transformation of the mode corresponding to the operator [1, 2]

â†ℓp(0) =

∫ ∫
uℓp(ρ, 0)â†(ρ)d2ρ , (S1)

upon a translation of z along the optical axis

â†ℓp(z) = e−iP̂zz/ℏâ†ℓp(0)eiP̂zz/ℏ , (S2)

where â†ℓp(z) represents the transverse mode at any plane z characterized by

the integers ℓ and p, ρ contains the transverse coordinates, â†(ρ) is an operator
density, and uℓp(ρ, 0) is the normalized structure of the mode. The operator

P̂z is the longitudinal component of the linear momentum operator, defined
for a monochromatic field in the plane wave basis as

P̂z =

∫ ∫
ℏkz(κj)â†(κj)â(κj)d

2κj , (S3)

where kz(κj) is the longitudinal wave vector for the mode j, which depends

on the transverse wave vector κj as kz(κj) =
√
k2 − ∥κj∥2, with k being the

wave number, common to all of the plane wave modes â†(κj). To operate on
our mode with this unitary, we initially express our mode in the plane wave
basis as

1
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â†ℓp(0) =

∫ ∫
Fℓp(κ, 0)â†(κ)d2κ , (S4)

where Fℓp(κ, 0) is the normalized angular spectrum of the mode ℓp at z = 0.
Now we can restate Eq. (S2)

â†ℓp(z) =

∫ ∫
Fℓp(κ, 0)e−iP̂zz/ℏâ†(κ)eiP̂zz/ℏd2κ, (S5)

then using the Baker-Hausdorff lemma, we can finally obtain

â†ℓp(z) =

∫ ∫
Fℓp(κ, 0)e−ikz(κ)zâ†(κ)d2κ. (S6)

The form of Eq. (S6) is now identical to a mode with an angular spectrum
Fℓp(κ, 0) propagated by a distance z using the angular spectrum method
(ASM) [3, 4]. Since the ASM accounts for every aspect of paraxial beam prop-
agation, including the Gouy phase and the plane wave phase e−ikz, we can
extract the Gouy phase out of the translated mode by initially expressing the
translated mode in real space using the complex field distribution

â†ℓp(z) =

∫ ∫
Fℓp(κ, 0)e−ikz(κ)zâ†(κ)d2κ

= e−ikz

∫ ∫
uℓp(ρ, z)â

†(ρ)d2ρ ,

(S7)

where uℓp(ρ, z) is the normalized transverse field for the mode, calculated
classically through the ASM. We can then choose an artificial set of orthogonal
spatial modes b̂†ℓp(z) which have exactly the structure of the ℓp modes at

the position z, without the Gouy phase, i.e., u′ℓp(ρ, z) = uℓp(ρ, z)e
−ikzeiΦG .

Expressing the position basis mode density in this new mode basis â†(ρ) =∑
ℓ′p′ u

′∗
ℓ′p′(ρ, z)b̂

†
ℓ′p′(z) the translated mode takes the form

â†ℓp(z) =
∑
ℓ′p′

e−iΦG b̂†ℓ′p′(z)

∫ ∫
u∗ℓ′p′(ρ, z)uℓp(ρ, z) d

2ρ . (S8)

Due to the orthonormality of the chosen spatial mode basis [5], the above
integral reduces to

â†ℓp(z) =
∑
ℓ′p′

δℓ′ℓδp′pe
−iΦG b̂†ℓ′p′(z) = e−iΦG b̂†ℓp(z) . (S9)

Hence, we can then state the evolution of an N-photon Fock state in the spatial
mode ℓp as

|N⟩ℓp; 0 =

(
â†ℓp(0)

)N
√
N !

|0⟩ →

(
b̂†ℓp(z)e−i(kz+ΦG)

)N
√
N !

|0⟩

=e−iNkz−iNΦG |N⟩ℓp; z ,

(S10)
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showing that upon translation, any phase accumulated by the mode results in
N-times the same phase being accumulated by the N-photon Fock state.

Interestingly, from the fact that any arbitrary mode b̂(z) can be chosen, one
can infer that any changes in the amplitude of the field during propagation is
also magnified N-times. Similarly to the N-times increase in the phase however,
in order to observe this N-fold change in the amplitude the measurement needs
to be chosen in a manner that displays this change. One example of such a
measurement is the post-selection on both of the photons existing in the same
spatial position which manifests as an increased confinement in Fig. 1c) of
the main text. Similarly, the same can be seen in the measured data in Fig.
3 as a narrowing of the envelope within which the fringes are observed. As
a result, these changes could be summarized as the state experiencing any
change in the mode to the power of N, which is in conflict with the effective de
Broglie wavelength interpretation whenever the amplitude changes or a phase
is acquired that has a nonlinear dependence on the wavenumber.

2 Derivation of the measurement probability

To model the expected measurement signal we calculate the probability of N
photons coupling into a single mode fiber (SMF) from a radial mode N00N
state. We start off with the radial mode N00N state at position z

|Ψ(z)⟩ =
1√
2

(
|N⟩0p; z |0⟩0p′; z − eiθ |0⟩0p; z |N⟩0p′; z

)
, (S11)

where θ is a constant phase offset between the two terms. By decomposing the
eigenmode of the SMF into a superposition of LG modes at a distance z from
the beam waist

â†f = Ap(z)â†0p(z) +Ap′(z)â†0p′(z) + · · · +Anq(z)â†nq(z) + . . . , (S12)

we can calculate the probability of N photons coupling into the SMF using

P =
1

N !
|⟨Ψ(z)|â†Nf |0⟩|2

=
1

2N !

∣∣∣ (⟨N |0p; z ⟨0|0p′; z − e−iθ ⟨0|0p; z ⟨N |0p′; z
)

(
Ap(z)â†0p(z) +Ap′(z)â†0p′(z) + . . .

)N
|0⟩
∣∣∣2 .

(S13)

Note that in the above equations, using the normalized transverse structures,
the overlaps are defined as

Aℓp(z) =

∫ ∫
u∗ℓp(ρ, z)uSMF(ρ)d2ρ , (S14)

which also includes the Gouy phase of each mode (note that for Ap(z), ℓ = 0).
From the overlap calculation in Eq. (S13), only the states with N photons in
either mode 0p or 0p′ survive and the above equation simplifies to
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P =
1

2

∣∣∣ (⟨N |0p; z − e−iθ ⟨N |0p′; z
)

(
ANp (z) |N⟩0p; z +ANp′ (z) |N⟩0p′; z

) ∣∣∣2
=

1

2

∣∣ANp (z) − e−iθANp′ (z)
∣∣2 .

(S15)

To get a more intuitive expression of this equation, we can further state Ai(z) =
ei(ΦG(z)+ϕ(z))|Ai(z)|, where ϕ(z) is small since the SMF only probes the phase
difference close to the optical axis where the phase of the overlap is mostly
dependent on the Gouy phase and not the changing wavefront curvature. By
then defining the Gouy phase difference as ∆ΦG(z) = Φ′

G − ΦG (ΦG and Φ′
G

correspond to Gouy phases acquired by LG modes of different mode order
S = 2p+ 1 and S′ = 2p′ + 1) we can write the probability as

P =
1

2

∣∣∣|Ap(z)|N − ei(N∆ΦG(z)−θ+Nϕ(z))|Ap′(z)|N
∣∣∣2

=
1

2

[
|Ap(z)|2N + |Ap′(z)|2N

− 2|Ap(z)|N |Ap′(z)|N cos(N∆ΦG(z) − θ +Nϕ(z))
]
.

(S16)

From the form of this equation, it is clear that the probability amplitude oscil-
lates according to cos(2N(p′ − p)× atan(z/zR)), meaning that the oscillations
get less frequent the further away we go from z = 0. In addition to this, the
oscillation happens inside an envelope function defined by the overlaps |Ap|
and |Ap′ |.

To derive a similar expected signal for the case of a classical monochromatic
field with the normalized transverse structure utotal(ρ, z) = 1√

2
(u0p(ρ, z) −

eiθu0p′(ρ, z)) being coupled into the SMF, we can calculate the power of the
light in the SMF as an overlap between the structure of the incident field and
the normalized eigenmode of the SMF

PL ∝
∣∣∣∣∫ ∫ (u0p(ρ, z) − eiθu0p′(ρ, z)

)∗
uSMF (ρ)d2ρ

∣∣∣∣2
=

∣∣∣∣∫ ∫ u∗0p(ρ, z)uSMF (ρ)d2ρ− e−iθ

∫ ∫
u∗0p′(ρ, z)uSMF (ρ)

∣∣∣∣2
=
∣∣Ap(z) − e−iθAp′(z)

∣∣2
=
[
|Ap|2 + |Ap′ |2 − 2|Ap||Ap′ | cos(∆ΦG − θ + ϕ(z))

]
,

(S17)

where the overlaps Ai(z) correspond to the same overlaps calculated in
Eq. (S14) and the same assumptions can be made about the overlaps near the
optical axis.



Supplementary material to:Observation of the quantum Gouy phase 5

3 Overlap between the eigenmode of a fiber
and a Laguerre-Gaussian mode

To speed up the data processing, we analytically derived the overlap of a
monochromatic p-mode and a Gaussian mode corresponding to the eigenmode
of the SMF

Ap(z) =

∫ ∫
u∗0p(ρ, z)uSMF(ρ)d2ρ , (S18)

where the normalized p-mode is defined according to [6]

u0p(r, φ, z) =

√
2

π

1

w(z)
exp

(
− r2

w2(z)

)
Lp

(
2r2

w2(z)

)
exp

(
i

[
r2k

2R
− (2p+ 1) arctan

(
z

zR

)])
,

(S19)

where r is the radial coordinate, φ is the azimuthal coordinate, w(z) =

w0

√
1 + [(z − z0)/zR]2 is the beam radius, Ln(x) =

∑n
j=0

(
n
j

) (−1)j

j! xj is the

Laguerre polynomial, w0 is the beam waist, R = z
(
1 + [zR/(z − z0)]2

)
is the

curvature radius, zR =
kw2

0

2 is the Rayleigh length, and k is the wave number.
The normalized eigenmode of the fiber can be similarly defined as

uSMF (r, φ) =

√
2

π

1

wf
exp

(
− r2

w2
f

)
. (S20)

For simplicity we have set z0 = 0 and insert the above definitions into
equation (S18)

Ap(z) =
2

π

1

wfw(z)
exp

(
i(2p+ 1) arctan

[
z

zR

])
×∫ ∞

0

∫ 2π

0

r exp

(
−r2

[
1

w2
f

+
1

w2(z)
+ i

k

2R

])
×

p∑
j=0

(
p

j

)
(−1)j

j!

(
2r2

w2(z)

)j
dφdr .

If we then define B(z) = w(z)
wf

exp
(

i(2p+ 1) arctan
[
z
zR

])
, C(z) =

w2(z)
2

(
1
w2

f
+ 1

w2(z) + i k
2R(z)

)
, and x(z) = 2r2

w2(z) , we can simplify the above

equation to

Ap(z) = B(z)

∫ ∞

0

exp [−C(z)x]

p∑
j=0

(
p

j

)
(−1)j

j!
xjdx . (S21)

We can then use the identity
∫∞
0
yn exp [−ay] dy = n!

an+1 , which holds when
Re(a) > 0 and n ∈ N, to arrive at the expression
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Ap(z) = B(z)

[
p∑
j=0

(
p

j

)
(−1)j

Cj+1(z)]

]
, (S22)

which we then used for calculating the overlaps in equations (S16) and (S17).

4 Derivation of the quantum Fisher information

The quantum Fisher information (QFI) carried by a probe state |ψ(x)⟩ about
a parameter x, encoded in the state by the unitary evolution Û(x) is given by
[7–9]

FQ(|ψ(x)⟩) = 4∆2Ĥ , Ĥ = i
dÛ†(x)

dx
Û(x) , (S23)

where Ĥ is the generator of the unitary Û and its variance ∆2Ĥ = ⟨Ĥ2⟩ψ −
⟨Ĥ⟩2ψ is taken with respect to the input state. In our case, where z is the

longitudinal displacement, the translation operator Û = eiP̂zz/ℏ is the unitary
of interest, yielding

FQ(|Ψ(z)⟩) = 4
∆2P̂z

∣∣
Ψ

ℏ2
. (S24)

Thus, to obtain the QFI we need an expression for the variance of the longi-
tudinal momentum operator, which we provide here for the radial N00N state
(S11).

We start by using equations (S3) and (S11) to obtain

⟨Ψ(z)|P̂z|Ψ(z)⟩ = ℏ
∫ ∫

kz(κ) ⟨Ψ(z)|â†(κ)â(κ)|Ψ(z)⟩d2κ

= ℏ
∑
ij

∫ ∫
kz(κ)F ∗

i (κ)Fj(κ) ⟨Ψ(z)|â†i âj |Ψ(z)⟩d2κ

=
Nℏ
2

(⟨kz⟩p + ⟨kz⟩p′) ,

(S25)

where we used

(⟨N |0p − ⟨N |0p′)
∑
ij

â†i âj (|N⟩0p − |N⟩0p′) = Nδipδjp +Nδip′δjp′ , (S26)

and

⟨kz⟩p =

∫ ∫
kz(κ)F ∗

p (κ)Fp(κ)d2κ , (S27)

is the classical average of the longitudinal wave vector kz for the mode p.
Similarly, we obtain that
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⟨Ψ(z)|P̂ 2
z |Ψ(z)⟩ =

ℏ2

2

[
(N2 −N)

(
⟨kz⟩2p + ⟨kz⟩2p′

)
+N

(
⟨k2z⟩p + ⟨k2z⟩p′

)]
.

(S28)
The resulting QFI is, therefore

FQ(|Ψ(z)⟩) = 4
∆2P̂z

∣∣
Ψ

ℏ2
= 2N

(
∆2kz|p + ∆2kz|p′

)
+N2 (⟨kz⟩p − ⟨kz⟩p′)2 ,

(S29)
where ∆2kz

∣∣
p

= ⟨k2z⟩ − ⟨kz⟩2, and equivalently for p′.

To obtain further insight on the QFI, we swap the modes p and p′ to the
Hermite-Gaussian (HG) modes HGmn and HGm′n′ , respectively. In the HG
basis, the average and variance of the longitudinal wave vector have the simple
expressions

∆2kz|p =
1

8z2r
[S2 + S + 2] , ⟨kz⟩p = k − 1

2zr
(S + 1) , (S30)

resulting in

FQ(|Ψ(z)⟩) =
N

4z2R
[S2 + S′

2 + S + S′ + 4] +
N2

4

(
d

dz
∆ΦG

∣∣∣
z=0

)2

, (S31)

where S = m + n is the mode order, S2 = m2 + n2 (with equivalent expres-
sions for S′ and S′

2), and ∆ΦG(z) = (S − S′) tan−1(z/zr) is the Gouy phase
difference between the modes. The QFI is z-independent, consistent with the
self-similarity of the angular spectrum upon propagation. It is worth noting
that the second term of the QFI remains unaltered in the LG basis, while a
closed form for the first term can be obtained by decomposing the LG modes
in the HG basis [10].

We note that the QFI is comprised of two fundamentally distinct terms.
The first, standard-quantum limited (proportional to N), increases monoton-
ically with the indices of the modes p and p′, and thus with dimension of the
state space. We hypothesize that this term carries information about the full
distribution of photons in the transverse plane, such that it’s retrieval cannot
be fully achieved by interferometric measurements alone. On the other hand,
the second term displays Heisenberg-limited scaling (proportional to N2) and
increases with the slope of the Gouy phase difference at the focus

d

dz
∆ΦG

∣∣∣
z=0

=
(S − S′)

zr
. (S32)
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Equation (S31), therefore, suggests that measurements of the quantum Gouy
phase with N00N states can reach quantum-optimal sensitivity in the estima-
tion of longitudinal displacements.

To support our claim, we also calculate the classical Fisher information
using the modeled measurement probability (S16) without the wavefront cur-
vature. Assuming |Ap| = |Ap′ | = A independent of z, around the region of
interest z = 0, we obtain [11]

F (z) =
∑
i=1,2

1

Pi

∣∣∣∣∂Pi∂z

∣∣∣∣2 ,
= FQ[O(N2)]

[
4Pmax cos2

(
Nδp tan−1(z/zR)

)
1 − Pmax sin2

(
Nδp tan−1(z/zR)

)] , (S33)

where Pmax = 2A2N , FQ[O(N2)] is the QFI term proportional to N2, P1 is
given by (S16) and P2 = 1−P1. The maximum value of the Fisher information
is obtained at the focus, and it’s given by

F (0) = 4PmaxFQ[O(N2)] . (S34)

The above equation shows that the proposed measurement setup is indeed
sensitive to the Heisenberg-limited part of the QFI, but does not capture any
of the information contained in the SQL part. It is worth noting that equations
(S33) and (S34) are valid in the limit where the SMF mode is much smaller
than the input modes, such that the contribution from the wavefront curvature
to the measurement probability is negligible. In this case, the high losses yield
A≪ 1 and the Fisher information is far from reaching its quantum bound.

5 Experimental details

The experimental setup consists of a photon pair source and the spatial mode
manipulation part (see Fig. S1 for a detailed schematic). In the photon pair
source we use a 405 nm continuous-wave pump laser focused down to a 12 mm
long, periodically poled nonlinear crystal made out of potassium titanyl
phosphate (ppKTP). The pump laser had a slightly astigmatic focus with an
approximately 67 µm Gaussian beam waist, in air, at the crystal position. In
the crystal, some of the 405 nm photons go through spontaneous parametric
downconversion (SPDC) which is type 0 phase matched. The frequencies of
the two emerging 810 nm photons were made degenerate by tuning the phase
matching by controlling the temperature of the crystal. After the SPDC,
the pump laser is filtered out using two bandpass filters (BPF), where the
first one has a 10 nm bandpass and the second one a 3 nm bandpass around
810 nm. The first filter is used to remove the pump laser and the second filter
is used to tune the spectral properties of the photon pair. To split each pair
of photons, we use their momentum anti-correlations by placing a lens one
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focal length away from the crystal after which we place a D-shaped mirror
one focal length behind the lens. The lens then performs an optical Fourier
transform and the momentum anti-correlations of the photons are used to
split each pair. After splitting the photons, one of them is sent through a
delay stage which controls the temporal indistinguishability of the two pho-
tons. The photons are then coupled into separate SMF’s placed on coupling
stages (xyz) using a lens and a microscope objective.

40
5n

m

ppKTP crystal

10nm+3nm BPF

300mm 75mm

Microscope 
objective

x20

x20

400mm400mm

HWP

QWP

SMF

SLM

Block

300 mm

300 mm

300 mm

300 mm

75 mm

STAGE

DELAY STAGE

BS

SPAD

C
C

SPAD

Fig. S1 A detailed drawing of the experimental system. The photon pair source (left)
generates photon pairs which are split and coupled into SMF’s. The source also includes a
delay stage which can tune the temporal distinguishability of the photon pair. The photons
are sent to the spatial mode manipulation setup using the SMF’s after which they are sent
onto two separate regions of a spatial light modulator (SLM). After the photons have been
strucutred at the SLM they are imaged with 4f systems to roughly one focal length away from
the 75 mm lens which is used to focus the photons onto a SMF placed on a stage. Within
these identical 4f systems we place a beamsplitter (BS) which is used to probabilistically
combine the photons into the same beam path. The half wave plates (HWP) and quarter
wave plates (QWP) are used to facilitate optimum efficiency of the polarization dependent
SPDC process and the SLM.

The photons then exit the SMF’s after which they are collimated and
sent through waveplates which align their polarizations such that the polar-
ization sensitive SLM operates at optimum efficiency. The SLM used was a
Holoeye Pluto 2 and it was wavefront corrected using the method described
in [12]. The two photons are then modulated on two separate regions of the
SLM, using mode carving which is a technique where amplitude and phase
modulation can be performed on a single phase-only hologram [13]. In the
process, a transverse field structure |uA(x, y)|e−iΦ(x,y) is carved onto the
first diffraction order of the hologram, out of a larger Gaussian input beam.
Quite often the effects of the initial Gaussian structure of the input beam
are removed by making the Gaussian large enough to have an effectively flat
amplitude distribution in the area of the hologram. However, to produce the
best possible modes at the beam radius required for our measurements, we
removed the structure of the initial Gaussian by generating a hologram for

the field |uA(x,y)|
u0(x,y; win)

e−iΦ(x,y) using the same mode carving technique. This

effectively removes the structure of the incident Gaussian u0(x, y; win) in the
first diffraction order, and we only need to measure the radius win of the beam
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and do not have to worry about making the incident Gaussian much larger
than the hologram. However, we note that the incident Gaussian still needs
to be slightly larger than the hologram for optimal performance. For more
information on this added Gaussian correction see the supplementary of [14].

At the SLM, we structure one of the photons in the p-mode superpo-
sition 1√

2
[u00(ρ, 0) − eiθ1u0p′(ρ, 0)] and the other one in the superposition

1√
2
[u00(ρ, 0) + eiθ2u0p′(ρ, 0)]. Here the phases θ1 and θ2 correspond to small

corrections that need to be made due to slight imperfections in the imaging.
Due to these same imperfections, we employed additional lens terms on one
of the holograms to match the focal points of the two beams as closely as
possible. After structuring, both photons go into identical 4f imaging systems
and they are also sent into the same beam path, probabilistically, using a
50:50 beamsplitter. Once in the same beam path the photons can bunch into
the radial mode N00N state, as long as they are indistinguishable in every
degree of freedom, which we verified in our experiments as shown below.
After this, the photons are focused down using a 75 mm focusing lens on to a
SMF (Thorlabs 780HP FC/PC) placed on a translation stage that scans the
SMF through the focus using a computer controlled piezo actuator (Thorlabs
PIA13). The final SMF is placed on a coupling stage (xyz) connected to a
mount which can control the tip and tilt of the SMF. After the photons are
coupled into the SMF, we split them using a 50:50 fiber beamsplitter and
sent them into separate single-photon avalanche diodes (SPAD; laser compo-
nents COUNT T) from which we post-selected on coincident detections of
two photons using a coincidence counter (CC; IDQ ID900). The accidental
coincidences were removed from all of the data. We calculated the accidental
rates as R1R2τ , when Ri correspond to the measured single photon rates in
each detector and τ = 1 ns is the coincidence window used.

In the measurements we initially set the stage as far away from the focus as
possible and moved it closer to the lens, scanning the focus in discrete steps.
When calculating the distance between subsequent measurement points, we
used the typical step size provided for the piezo actuator (20 nm per piezo
step). However, the manufacturer states that this step size can vary up to
20 % depending on the component variance, change of direction, and appli-
cation conditions. Thus we tried to keep the conditions of the lab consistent
while only scanning the piezo in one direction for all of the measurement.

For the measurements with a laser, an 810 nm continuous-wave laser
was used and we only required one input hologram. We also replaced the
coincident detection scheme with a power meter before and after the setup.
The results were then calculated as the power measured after the last SMF
normalized by the power measured before the laser was coupled out of the
input SMF. The reference power was measured continuously by splitting the
input light field using a fiber beamsplitter. Additionally, when structuring
the laser field into the superposition 1√

2
[u00(ρ, 0) − u0p′(ρ, 0)] at the mea-

surement fiber, we had to take into account the differing Gouy phases of odd
and even order modes. Hence, when p was an odd integer we had to generate
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the field 1√
2
[u00(ρ, 0) + eiθ1u0p′(ρ, 0)] instead of 1√

2
[u00(ρ, 0) − eiθ1u0p′(ρ, 0)]

to compensate for the π phase difference in Gouy phase when performing the
optical Fourier transform of the field.
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Fig. S2 Measured photon bunching curve with two photons in orthogonal radial mode
superpositions. Accidental coincidences have been removed from the data and the errorbars
(mean ± standard deviations) are calculated from 21 repetitions of the measurement. The
change in stage position should be multiplied by two to arrive at the effective path length
change (see Fig. S1 for the configuration of the mirrors on the delay stage). The results
show that the rate at which the photon pairs couple into the SMF roughly doubles when
the photons bunch into a radial mode N00N state.

To verify photon bunching in to radial mode N00N states, we set the
final SMF close to the focus of the field and generated a radial mode N00N
state 1√

2
[|2, 0⟩0,2 + |0, 2⟩0,2] by individually structuring the photons into the

superpositions 1√
2
[u00(ρ, 0) − iu02(ρ, 0)] and 1√

2
[u00(ρ, 0) + iu02(ρ, 0)], as

described earlier. We then scan the delay stage in the source to vary the
distinguishability of the photons. From the results of the scan (Fig. S2) we
see that, as expected, the rate of photon pairs coupling into the SMF roughly
doubles when the photons are made indistinguishable.
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