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1 HD(Type I, II) in limonene and fenchone
Figures S1 shows HD(Type II) in limonene as a function of fluence for l =±1 (Fig.S1a) and ±3 (Fig.S1b) , respectively for
linearly poarized helical light. The chiral signal increases with laser fluence and reaches a maximum of ∼ 6-7%. The chiral
signals in limonene and fenchone are of opposite signs (black curve and red curves are flipped) because they rotate the plane of
linear polarization in opposite directions (see Methods). The chiral signal did not increase with l-value in limonene.

FIG. S 1. HD(Type II) in limonene with linearly polarized light (s = 0) as a function of peak laser fluence. (a) l =±1 . (b)
l =±3. The colour bands represent the propagation error of the chiral signal for three independent measurements (sample size).
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FIG. S 2. Helical dichroism with asymmetric OAM beams in fenchone. Differential absorption of linearly polarized helical
light l =±1 as a function of the position (or displacement) of the singularity in the OAM beam. The insets show helical
dichroism as function of peak laser fluence when the singularity is at the positions marked by solid rectangles. The error bars
and colour bands represent the propagation error of the chiral signal for three independent measurements (sample size).

Figure. S2 shows that HD signal in fenchone. The spatial variation of differential absorption, HD(Type I), of linearly
polarized helical light in fenchone enantiomers exhibits the same behaviour as achiral molecules (Fig. 3b) as well as limonene
enantiomers (Fig. 4). The insets of Fig. S2 represent HD(Type II) as a function of peak laser fluence when the singularity was
at the positions marked by solid rectangles.

2 Intensity profile of OAM beams before and after the sample

To ensure that the beam profile is not influenced by nonlinear propagation effects at the interaction region we took single shot
images of the beam profile with and without the sample as shown in fig. S3. A pulse energy of 350 nJ for l =±1 was chosen
because the magnitude helical dichroism (see main article) is largest around that energy region. There was no change in the
beam profile after propagating through the sample. This suggests the nonlinear absorption is not influenced by any propagation
effects.
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FIG. S 3. Single shot beam profiles of l =−1 for a symmetrical LG (center row) and asymmetrical LG (top and bottom rows)
beams. The left (right) column shows the beam profiles without(with) the sample. The central column shows the simulated
intensity profiles.

3 Measuring the transmitted l value of an OAM beam

To ensure the l value remained unchanged after propagating through the sample, we performed a set of interference experiments
involving Gaussian and OAM beams to observe the signature fork patterns. Fig. S4 depicts simulated and measured single-shot
fork patterns for l =−1 in air (a,b) , l =+3 in sample (c,d). Fig. S4 e,f shows the measured patterns for l =±1 in the sample.
Though the contrast of the interference patterns is poor in the sample due to single-shot measurement, they are in agreement
with the expected signature patterns. Results indicate no change in the angular momentum value of the light when propagating
through the sample.
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FIG. S 4. Simulated and measured (a,b) two pronged fork pattern for l =−1 in air, (c,d) four pronged fork pattern for l =+3
in sample. (e,f) measured two pronged fork pattern for l =±1 in sample.

4 Single shot transmitted spectrum measurement

Nonlinear affects such as self-phase modulation can influence the propagation of incident light through the sample over the
range of pulse energies used in the experiment. Fig. S5 shows set of single-shot spectra (a) of Ti: Sapphire laser used as
a reference (black curve), (b) after the power and OAM/SAM control optics (magenta curve) with no sample, and (c) after
propagating through (-)-fenchone and (+)-fenchone for linearly polarized helical light, +l (cyan and green curves, respectively)
and −l (red and blue curves, respectively). There is no considerable change in the spectral shape after propagating through the
sample suggesting nonlinear affects are negligible. Compared to the reference spectrum, the spectrum of light incident on the
sample is altered due to numerous optics in the beam path.
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FIG. S 5. Single-shot measurement of transmitted spectra. The reference spectrum (black curve) corresponds to Ti:sapphire
laser, spectrum after the power and OAM/SAM contol but with no sample (magenta curve). The cyan (green) and red (blue)
curves are the spectrum of linearly polarized l =+1 (lin +ve) and l =−1 (lin -ve) after propagating through (-)-fenchone
((+)-fenchone).

5 Transmission measurements in air in the absence of sample

In the absence of a sample, transmission measurements conducted in air ensure that the photodiodes detect identical signals
when changing the incoming linearly polarized light from +l to −l. Fig. S6 a) and b) show transmission of a symmetrical
and an asymmetrical LG beams through air. The red (black) curves represent the difference between the PD1 (PD2) signal for
linearly polarized +l and −l. Both signals are centered about zero with a fluctuation of ±0.05V . Moreover, the red and black
curves nearly overlap over the entire energy range, demonstrating no signal change between PD1 (incident light) and PD2
(transmitted light) as the OAM value changed. This indicates there is no arbitrary signal/noise introduced by the experimental
setup to the observed differential absorption in chiral and achiral molecules. Transmission measurements in air were performed
before every experimental run and for every position of the displaced singularity.
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FIG. S 6. Transmission linearly polarized helical light in air (no sample) (a) for a symmetrical and (b) asymmetrical LG beams.
The red (black) curve represents the difference between the PD1 signal for +l and −l (PD2 monitoring the transmitted light ).

6 Differential absorption with non-OAM beams
Figure S7a shows normalized transmission of a linearly polarized Gaussian beam propagating through left- and right-handed
chiral molecule. Both in the linear and the nonlinear regimes, the two curves overlap exhibiting no differential absorption.
Similar transmission measurements were conducted for S(-)-limonene with left- and right-circularly polarized annular beam
resembling an Airy pattern obtained through Fresnel diffraction (Fig. S7b). In absence of phase, which is responsible for orbital
angular momentum, there is no differential absorption in a chiral molecule for a beam with a null intensity at the center. The
results remained the same even when the null intensity regions was displaced from the center (fig 3c of the main article). This
suggests that differential absorption is not purely due to the field gradient. Helical phase plays a crucial role.

FIG. S 7. (a) Transmission of linearly polarized Gaussian in left- and right-handed limonene. (b) Transmission of left- and
right-circularly polarized annular non-OAM beam for S(-)-limonene. Insets show the beam profiles. The colour bands represent
the propagation error of the chiral signal for three independent measurements (sample size).
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7 Spatial Mapping of singularity
Fig. S8 shows 2D contour map of differential absorption of linearly polarized (ε= 0.09) left and right handed OAM (l =±1)
for (+)-fenchone, obtained by displacing the singularity in the xy plane. The results presented in Fig.3, 4 (main text) and Fig.
S2 are a line scan along one axial direction. The sinusoidal behaviour of differential absorption becomes asymmetric as we
displace our singularity off-axis. This behaviour is likely due to the relative angle between the polarization direction and the
direction of displacement of the singularity.

FIG. S 8. Differential absorption of linearly polarized helcial light (l =±1) in (+)-fenchone as a function of the displacement
of the singularity in the XY-plane.

8 Fluence calculations
In LG beams with increasing l-value, the size of the null intensity region at the center increases. Consequently, for the same
spot size higher pulse energies are required to reach the threshold for the onset of nonlinear absorption. This can be seen from
the transmission curves shown in Fig. S9 for l = 1 (left) and l = 3 (right) plotted as a function of laser pulse energy in fenchone.

From the threshold energies, the peak fluence is calculated based on the below equation1:

Fl

[
J

(cm2)

]
=

2(|l|+1)r2|l|e
−2r2

ω(z)2

|l|!πω (z)2(|l|+1) Eth
l [J]

where l = 0;±1;±2;±3. . . is the orbital angular momentum value, r is the radial direction, ω(z) is the radius of a beam
evaluated at z=0 and El is the threshold pulse energy for different l-values.

For peak fluence, radial parameter r is evaluated at the mamxima of the intensity profile. For Gaussian beam (l = 0) maxima
occurs at r = 0, for OAM beam with l = 1 at rpk = ± w0√

2
and subsequently for higher order l values at the position of their

respective maxima.
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FIG. S 9. Transmission curves of limonene with linearly polarized light (s = 0) as a function of pulse energy. (a) l =±1 . (b)
l =±3. The colour bands represent the propagation error of the chiral signal for three independent measurements (sample size).

Substituting the above values for radial parameter, we get

For l = 0 beam : F0
(
rpk

)
= 2

Eth
0

πw2
0

For l = 1 beam : F1
(
rpk

)
= 2e−1 Eth

1

πw2
0

One can obtain similar equations for higher order OAM beams from which the peak laser fluences were calculated for the
presented results.

9 Optical dipole force
Here we show that optical gradient forces are non-zero for asymmetric LG beams. The total force acting on a dipole can be
written as2

F = (µ ·∇)E+ µ̇ ×B+ ṙ× (µ ·∇)B (1)

where µ is the dipole moment. Here first term on the RHS containing the inner product(µ ·∇) represents the dipole force
due to inhomogeneity in the fields. Second term is the expression of standard Lorentz force and third term represents particle
movement in the inhomogeneous magnetic field. The above equation was obtained by assuming dipoles does not change the
incident fields. For non relativistic speeds (ṙ << c), third term can be neglected as it is much smaller in comparison to first two
terms. Substituting µ = α(ω)E(r) where α is atomic polarizability, we get,

F = α(E ·∇)E+α(
dE
dt

×B) (2)

Using vector identity (E ·∇)E = 1
2 ∇

(
E2

)
−E× (∇×E) and second maxwell equation we get,

F = α
1
2

∇E2 +α
d
dt
(E×B). (3)

Here, first term defines the gradient force and second term is the scattering force which can be neglected when the poynting
vector does not change over an optical cycle. Fig. S10 shows the gradient force component (Fx) integrated over the beam
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FIG. S 10. Optical gradient force as a function of displaced position of singularities. Optical gradient force is zero for
symmetric LG beam and maximum at the position of displaced singularity. Force converges towards zero for the extreme
displacement in singularity where beam profile mimics gaussian profile.

cross-section as a function of displaced position of the singularity. For linearly polarized light one of the transverse components
will be dominant. The Fy component would be smaller in magnitude however exhibits similar behaviour. The gradient force is
zero for the symmetric LG beam for which the singularity is at the center. When the singularity is displaced, the gradient forces
initially increases and then decreases to zero for large displacement. A non-zero gradient force would give rise to a torque
which preferentially aligns the molecular axis parallel the polarization plane3. Such alignment of molecules in an asymmetric
LG beams will lead to non-zero averaged E1E2 dipole-quadrupole contribution to HD. Therefore, the HD signal, shown in Fig.
5 of the main text, is zero for symmetric LG beams, increases with the displacement of the singularity reaching a maximum and
then decreases when the singularity reaches the beam periphery.

10 Extension of theory to multiphoton case using time-dependent perturbation theory
Using perturbation theory, a generic time-dependent wavefunction

|Ψ⟩= |Ψ⟩(0)+∑
m

cm (t) |Ψm⟩(0) (4)

satisfies the Schrodinger equation

(H0 +λV (t)) |Ψ⟩= ih̄
∂

∂ t
|Ψ⟩ (5)

where, λ is the perturbation parameter and

V (t) =−µα Eα − 1
3

θαβ ∇α Eβ −mα Bα − ... (6)

is the interaction Hamiltonian4, 5. The corresponding multipoles and fields are complex quantities. |Ψ⟩(0) = |ψ⟩(0)e−iE(0)
n t/h̄ are

the stationary states satisfying

H0|Ψ⟩(0) = ih̄
∂

∂ t
|Ψ⟩(0) (7)
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We can expand the time dependent coefficient cm (t) in powers of perturbation parameter λ .

cm (t) = c(0)m +λc(1)m (t)+λ
2c(2)m (t)+ ...+λ

nc(n)m (t) (8)

where different order coeffecients can be obtained by comparing powers of perturbation parameter λ

c(0)m t (t) =
(

1
ih̄

)∫ t

−∞

dt ′⟨m|V
(
t ′
)
|g⟩eiωmgt (9)

and nth order is defined as,

c(n)m (t) =
(

1
ih̄

)n

∑
l

∫ t

−∞

dt ′⟨m|V
(
t ′
)
|l⟩c(n−1)

l

(
t ′
)

eiωml t ′ (10)

Now, we calculate the single photon absorption rate and generalize it to multiphoton absorption6 Considering a interaction
Hamiltonian of the form

V (t) =Ve−iωt +V ∗eiωt (11)

By implementing the rotating wave approximation, we neglected the complex conjugate of the field because we are only
considering absorption and ignore the stimulated emission (anti-resonant terms). The probability amplitude can be expressed as

p(n)m (t) = |c(n)m (t) |2 (12)

and the rate of transition

R(n)
mg =

p(n)m (t)
t

(13)

therefore, for single photon we obtain Fermi’s golden rule

R(1)
mg =

2π

h̄2 |⟨m|V |g⟩|2δ (ωmg −ω) (14)

Single photon transition rate is proportional to absorption cross-section6 which is proportional to the rate of energy
absorption (Γ) derived in the main text. Substituting the interaction Hamiltonian into the rate expression, we get

R(1)
mg =

2π

h̄2 |−µ
mg
α Eα − 1

3
θ

mg
αβ

∇α Eβ −mmg
α Bα |2δ (ωmg −ω) (15)

For physical situations, the delta function can be replaced by a lineshape function

R(1)
mg =

2π

h̄2 |−µ
mg
α Eα − 1

3
θ

mg
αβ

∇α Eβ −mmg
α Bα |2ρ (ωmg = ω) (16)

R(1)
mg =

2π

h̄2

((
µ

mg
α Eα

)(
µ

mg
α Eα

)∗
+
(
µ

mg
α Eα

)(
mmg

α Bα

)∗
+
(
µ

mg
α Eα

)(1
3

θ
mg
αβ

∇α Eβ

)∗
+
(
mmg

α Bα

)(
µ

mg
α Eα

)∗
+
(
mmg

α Bα

)(1
3

θ
mg
αβ

∇α Eβ

)∗
+
(
mmg

α Bα

)(
mmg

α Bα

)∗
+

(
1
3

θ
mg
αβ

∇α Eβ

)(
µ

mg
α Eα

)∗
+

(
1
3

θ
mg
αβ

∇α Eβ

)(
mmg

α Bα

)∗
+

(
1
3

θ
mg
αβ

∇α Eβ

)(
1
3

θ
mg
αβ

∇α Eβ

)∗)
ρ (ωmg = ω)

Ignoring the M1M1, M1E2 and the E2E2 coupling terms and applying the anisotropic averaging, we get

R(1)
mg =

2π

h̄2

[
|µmg

α |2|Eα |2 + |mmg
α |2|Bα |2 + ⟨µmg

α mmg∗
α ⟩ρ (Eα B∗

α)+ ⟨mmg
α µ

mg∗
α ⟩ρ (Bα E∗

α)

+
1
3

(
⟨θ mg

αβ
µ

mg∗
α ⟩ρ

(
∇α Eβ ·E∗

α

)
+ ⟨µmg

α θ
mg∗
αβ

⟩
(

Eα ∇α E∗
β

))
ρ (ωmg = ω)
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Here ρ is the orientation-dependent weighting factor arising from the anisotropic averaging (ρ = 0 for random orientations and
ρ = 1 for full alignment of molecules). The dipole transition µ is a real quantity , magnetic transition dipole m is imaginary7.
Approximating the response of the quadrupole tensor as a scalar we can rewrite the above expression as:

R(1)
mg =

2π

h̄2

[
|µmg

α |2|Eα |2 + |mmg
α |2|Bα |2 + ⟨µmg

α mgm
α ⟩ρ (Bα E∗

α −Eα B∗
α)

+
1
3

(
⟨µmg

α θ
gm
αβ

⟩ρ

(
∇α Eβ E∗

α +Eα ∇α E∗
β

))
ρ (ωmg = ω)

Since Bα E∗
α −Eα B∗

α =−2iIm [E∗
α Bα ] and,

(
E∗

α ∇α Eβ +Eα ∇α E∗
β

)
= 2Re

[
E∗

α ∇α Eβ

]
we can rewrite the above expression as

R(1)
mg =

2π

h̄2

|µmg
α |2|Eα |2︸ ︷︷ ︸

E1E1

+ |mmg
α |2|Bα |2︸ ︷︷ ︸

M1M1

+2⟨µmg
α mgm

α ⟩ρ Im [E∗
α Bα ]︸ ︷︷ ︸

E1M1

+
2
3
⟨µmg

α θ
gm
αβ

⟩ρ Re
[
E∗

α ∇α Eβ

]
︸ ︷︷ ︸

E1E2

ρ (ωmg = ω) (17)

This is the single photon transition rate and resembles equation (8) of main text. Im [E∗
α Bα ] and Re

[
E∗

α ∇α Eβ

]
correspond to

optical chirality C and helicity ϒ, respectively.
The transition rate for two photon process (transition states: g → k → m) is

R(2)
mg = 2π

∣∣∣∣∣∑k

VmkVkg

h̄2 (
ωkg −ω

) ∣∣∣∣∣
2

ρ (ωmg = 2ω) (18)

R(2)
mg = 2π

∣∣∣∣∣∣∑k

(
µmk

α Eα + 1
3 θ mk

αβ
∇α Eβ +mmk

α Bα

)(
µ

kg
α Eα + 1

3 θ
kg
αβ

∇α Eβ +mkg
α Bα

)
h̄2 (

ωkg −ω
)

∣∣∣∣∣∣
2

ρ (ωmg = 2ω) (19)

R(2)
mg = 2π

∣∣∣∣∣∑k
(µmk

α Eα)
(

µ
kg
α Eα

)
+(mmk

α Bα)
(

µ
kg
α Eα

)
+(µmk

α Eα)
(

mkg
α Bα

)
+
(

1
3 θ mk

αβ
∇α Eβ

)(
µ

kg
α Eα

)
+(µmk

α Eα)
(

1
3 θ

kg
αβ

∇α Eβ

)
h̄2(ωkg−ω)

∣∣∣∣∣
2

ρ (ωmg = 2ω)

(20)

Ignoring the higher order terms involving M1 and E2 we get

R(2)
mg = 2π ∑k

1
h̄4(ωkg−ω)

2

{∣∣µmk
α Eα

∣∣2 ∣∣∣µkg
α Eα

∣∣∣2 + ∣∣∣µkg
α Eα

∣∣∣2 [(µmk
α Eα

)(
mmk

α Bα

)∗
+
(
mmk

α Bα

)(
µmk

α Eα

)∗]
+
∣∣∣µkg

α Eα

∣∣∣2 [(µmk
α Eα

)( 1
3 θ mk

αβ
∇α Eβ

)∗
+
(

1
3 θ mk

αβ
∇α Eβ

)(
µmk

α Eα

)∗]
+
∣∣µmk

α Eα

∣∣2 [(µ
kg
α Eα

)(
mkg

α Bα

)∗
+
(

mkg
α Bα

)(
µ

kg
α Eα

)∗]
+
∣∣µmk

α Eα

∣∣2 [(µ
kg
α Eα

)(
1
3 θ

kg
αβ

∇α Eβ

)∗
+
(

1
3 θ

kg
αβ

∇α Eβ

)(
µ

kg
α Eα

)∗]}
ρ (ωmg = 2ω)

Implementing anisotropic averaging, we get

R(2)
mg = 2π ∑k

1
h̄4(ωkg−ω)

2

{∣∣∣µmk
α µ

kg
α

∣∣∣2 |Eα Eα |2 +
∣∣∣µkg

α

∣∣∣2 |Eα |2
[
⟨µmk

α mmk∗
α ⟩ρ (Eα B∗

α)+ ⟨mmk
α µmk∗

α ⟩ρ (Bα E∗
α)
]

+
∣∣∣µkg

α

∣∣∣2 |Eα |2
[
⟨µmk

α
1
3 θ mk∗

αβ
⟩ρ

(
Eα ∇α E∗

β

)
+ ⟨ 1

3 θ mk
αβ

µmk∗
α ⟩ρ

(
∇α Eβ E∗

α

)]
+
∣∣µmk

α

∣∣2 |Eα |2
[
⟨µkg

α mkg∗
α ⟩ρ (Eα B∗

α)+ ⟨mkg
α µ

kg∗
α ⟩ρ (Bα E∗

α)
]

+
∣∣µmk

α

∣∣2 |Eα |2
[
⟨ 1

3 µ
kg
α θ

kg∗
αβ

⟩ρ

(
Eα ∇α E∗

β

)
+ ⟨ 1

3 θ
kg
αβ

µ
kg∗
α ⟩ρ

(
∇α Eβ E∗

α

)]}
ρ (ωmg = 2ω)

R(2)
mg = 2π ∑k

1
h̄4(ωkg−ω)

2

{∣∣∣µmk
α µ

kg
α

∣∣∣2 |Eα Eα |2 +2
(∣∣∣µkg

α

∣∣∣2 |Eα |2 ⟨µmk
α mkm

α ⟩ρ +
∣∣µmk

α

∣∣2 |Eα |2 ⟨µkg
α mgk

α ⟩ρ

)
Im [E∗

α Bα ]

+ 2
3

(∣∣∣µkg
α

∣∣∣2 |Eα |2 ⟨µmk
α θ km

αβ
⟩ρ +

∣∣µmk
α

∣∣2 |Eα |2 ⟨µkg
α θ

gk
αβ

⟩ρ

)
Re

[
E∗

α ∇α Eβ

]}
ρ (ωmg = 2ω)
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Generalizing for n-photon case, where m is the final state and g is the ground state state

R(n)
mg = 2π

∑
p

∑
l
...∑

r
∑
k

∣∣∣µmp
α µ

pl
α ...µrk

α µ
kg
α

∣∣∣2 |Eα |2n

h̄2n (
ωpl − (n−1)ω

)2
...(ωrk −2ω)2 (

ωkg −ω
)2 ρ (ωmg = nω) (21)

+2∑
p

∑
l
...∑

r
∑
k

∣∣µmp
α

∣∣2 ∣∣∣µ pl
α

∣∣∣2 ... ∣∣µrk
α

∣∣2 Im
[
µ

kg
α mgk

α

]
+
∣∣µmp

α

∣∣2 ∣∣∣µ pl
α

∣∣∣2 ... ∣∣∣µkg
α

∣∣∣2 ⟨µrk
α mkr

α ⟩ρ + ...+

h̄2n (
ωpl − (n−1)ω

)2
...(ωrk −2ω)2 (

ωkg −ω
)2 (22)

...+
∣∣µmp

α

∣∣2 ... ∣∣µrk
α

∣∣2 ∣∣∣µkg
α

∣∣∣2 Im
[
µ

pl
α ml p

α

]
+
∣∣∣µ pl

α

∣∣∣2 ... ∣∣µrk
α

∣∣2 ∣∣∣µkg
α

∣∣∣2 ⟨µmp
α mpm

α ⟩ρ

h̄2n (
ωpl − (n−1)ω

)2
...(ωrk −2ω)2 (

ωkg −ω
)2 |Eα |2(n−1) Im [E∗

α Bα ]ρ (ωmg = nω) (23)

+
2
3 ∑

p
∑

l
...∑

r
∑
k

∣∣µmp
i

∣∣2 ∣∣∣µ pl
α

∣∣∣2 ... ∣∣µrk
α

∣∣2 Im
[
µ

kg
α θ

gk
αβ

]
+
∣∣µmp

α

∣∣2 ∣∣∣µ pl
α

∣∣∣2 ... ∣∣∣µkg
α

∣∣∣2 ⟨µrk
α θ kr

αβ
⟩ρ + ...+

h̄2n (
ωpl − (n−1)ω

)2
...(ωrk −2ω)2 (

ωkg −ω
)2 (24)

...+
∣∣µmp

α

∣∣2 ... ∣∣µrk
α

∣∣2 ∣∣∣µkg
α

∣∣∣2 Im
[
µ

pl
α θ

l p
αβ

]
+
∣∣∣µ pl

α

∣∣∣2 ... ∣∣µrk
α

∣∣2 ∣∣∣µkg
α

∣∣∣2 ⟨µmp
α θ

pm
αβ

⟩ρ

h̄2n (
ωpl − (n−1)ω

)2
...(ωrk −2ω)2 (

ωkg −ω
)2 |Eα |2(n−1) Re

[
E∗

α ∇α Eβ

]
ρ (ωmg = nω)

 (25)

Neglecting the higher order cross terms, we therefore obtain similar expressions involving E1E1, E1M1 and E1E2 expressed
in terms of optical chirality C and helicity ϒ. The above expressions were obtained in a scalar approximation regime where
tensor properties are restricted to a dominant component for oriented molecules. However, when the tensor nature of molecular
response is considered there will be multitude of cross terms that arise in case of n-photon transitions whose l- dependence
needs to be investigated further. We considered n-photon transition rates because in our experiments, for example, interaction
of Ti:Sapphire femtosecond laser with limonene (IP = 8.3 ev) is a 6 photon process.
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